
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 13, March 11, 2021 (Thursday)

• Reading: Time-Independent Schrödinger Equation [Griffiths 2]

• Assignment: Problem Set 6 due March 12 (Friday).

Submit your homework assignments to Canvas.

• Midterm Exam on March 16 (Tuesday) 1:00 pm–3:00 pm
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Topics for Today: Schrödinger Equation [Chapter 2
in Griffiths]

3.6 Schrödinger Equation

(a) Infinite Square Well [Griffiths 2.2]

(b) Free Particle [Griffiths 2.4]

(c) The Delta-Function Potential [Griffiths 2.5]

Topics for Next Lecture:
Schrödinger Equation [Chapter 2 in Griffiths]

(d) Finite Square Well [Griffiths 2.6]

3.7 Stationary State Solutions

3.8 Equation of continuity
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3.6 The Schrödinger Equation

(a) Infinite square well potential

Let us consider the potential

V (x) =

{
0 for x2 < a2, and

∞, for x2 ≥ a2.

To examine the motion of a particle in this potential, let us attempt to

solve the equation of motion (EOM) for

V (x) =

{
0, for x2 < a2, i.e. −a < x < a

V0, for x2 ≥ a2, i.e. x ≤ −a or x ≥ a.

with a > 0 and take the limit V0 →∞.
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Figure 1: The infinite square well potential with a = L/2.

In the x−basis the Hamiltonian is given by

H = − h̄2

2m

d2

dx2
+ V (x)

and the Schrödinger equation is[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x).

The potential is different in different regions. Thus we consider

Region (I): x ≤ −a, Region (II): −a < x < a, and Region (III): x ≥ a.
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Region (I): x ≤ −a, with V0 > E > 0, the EOM is

− h̄2

2m

d2

dx2
ψ(x) + V0ψ(x) = Eψ(x) or

d2ψ

dx2
− 2m

h̄2 (V0 − E)ψ(x) = 0 .

Hence

ψ(x) = A1e
−λx +B1e

λx with λ =

√
2m

h̄2 (V0 − E)

where A1 and B1 are constants. If the wave function has to retain a

probabilistic interpretation for a physical solution, A1 must vanish.

Otherwise, it grows exponentially with distance and would not

converge. Thus for x < −a,

ψ(x) = B1e
λx.

However, λ→∞ as V0 →∞. Therefore, in this limit

ψ(x) = 0, for x ≤ −a.
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Similarly, in Region (III): for x ≥ a, with V0 > E > 0, the EOM is

− h̄2

2m

d2

dx2
ψ(x) + V0ψ(x) = Eψ(x) or

d2ψ

dx2
− 2m

h̄2 (V0 − E)ψ(x) = 0 .

Hence

ψ(x) = A3e
−λx +B3e

λx with λ =

√
2m

h̄2 (V0 − E)

where A3 and B3 are constants. If the wave function has to retain a

probabilistic interpretation for a physical solution, B3 must vanish.

Otherwise, it grows exponentially with distance and would not

converge. Thus for x > a,

ψ(x) = A3e
−λx .

However, λ→∞ as V0 →∞. Therefore, in this limit

ψ(x) = 0, for x ≥ a.

6



Region (II): −a < x < a, the equation of motion (EOM) is

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x)

or

d2ψ

dx2
= −2mE

h̄2 ψ(x) = −k2ψ(x) .

In the standard form, the equation of motion becomes

d2ψ

dx2
+ k2ψ(x) = 0

where

k2 =
2mE

h̄2 and k =

√
2mE

h̄2 .

Find the characteristic equation an the general solution.
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The EOM is a linear second order homogeneous differential equation.

The characteristic equation is

λ2 + k2 = 0

with roots

λ1,2 = ±ik with k =

√
2mE

h̄2 .

Hence the general solution is

ψ(x) = Aeλ1x +Beλ2x = Ae+ikx +Be−ikx

or

ψ(x) = C sin(kx) +D cos(kx)

where C and D are constants.
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The solution has to be continuous everywhere and in particular at the

boundary. Thus matching solutions at x = ±a, we have

ψ(a) = C sin(ka) +D cos(ka) = 0 and

ψ(−a) = −C sin(ka) +D cos(ka) = 0 .

There are two nontrivial solutions.

(a) Even function solution with C = 0 and cos(ka) = 0,

kn(2a) = nπ , kn =
nπ

2a
, k2

n =
n2π2

4a2
, n = 1, 3, 5, · · ·

En =
h̄2k2

n

2m
=
h̄2n2π2

8ma2

where n is an odd integer and cos(knx) is an even function. Thus

Ψ(x, t) =
∑

Dnψn(x)e−(i/h̄)Ent , where

ψn(x) =
1√
a

cos(knx) , n = 1, 3, 5, · · · .
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(b) Odd function solution with D = 0 and sin(ka) = 0,

kn(2a) = nπ , n = 2, 4, 6, · · ·

kn =
nπ

2a

k2
n =

n2π2

4a2

En =
h̄2k2

n

2m
=
h̄2n2π2

8ma2
.

where n is an even integer and sin(knx) is an odd function. Thus

Ψ(x, t) =
∑

Cnψn(x)e−(i/h̄)Ent

where

ψn(x) =
1√
a

sin(knx) , n = 2, 4, 6, · · · .
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In summary, we have eigen-functions of the Hamiltonian for the infinite

square well

ψn(x) =
1√
a

cos(knx) =
1√
a

cos
(nπx

2a

)
, n = 1, 3, 5, · · ·

and

ψn(x) =
1√
a

sin(knx) =
1√
a

sin
(nπx

2a

)
, n = 2, 4, 6, · · ·

with

kn =
nπ

2a
and En =

p2

2m
=
h̄2k2

n

2m
=
h̄2n2π2

8ma2
.

The ground state and the first excited state have the energy

E1 =
h̄2π2

8ma2
, n = 1 , and

E2 =
h̄2π2

2ma2
, n = 2 .
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Orthogonal Functions

Here are useful identities for orthonormal functions.

(i) ∫ a

−a
sin2

(πx
a

)
dx =

( a
π

)∫ π

−π
sin2 u du

=
( a
π

)[u
2
− sin2 u

4

] ∣∣∣∣π
u=−π

= a

where we have applied

u =
πx

a
, du =

π

a
dx , and u = ±π for x = ±a .

(ii) ∫ a

−a
sin
(πx
a

)
cos

(
3πx

2a

)
dx = 0 odd integrand .

12



Useful integrals ∫
cos2(x)dx =

x

2
+

sin 2x

4
,∫

sin2(x)dx =
x

2
− sin 2x

4
,

and ∫ a

−a
cos(kmx) cos(knx)dx = 0 for m 6= n ,∫ a

−a
sin(kmx) sin(knx)dx = 0 for m 6= n ,∫ a

−a
cos(kmx) sin(knx)dx = 0 (odd function)

where

kn =
nπ

2a
m, n ∈ N .

13



One of the things we notice immediately is that whereas classically for

any E > 0 particle is allowed, quantum mechanically particle motion is

allowed only for discrete values of the energy.

Energy for this system is quantized.

We also see that for this system

ψ(x) = 0 for |x| ≥ a

and

lim
|x|→∞

ψ(x) = 0 .

Such a system is called a bound state.

14



Such a system is called a bound state and for every bound state we

have quantization of energy. A very familiar example is the Hydrogen

atom. Furthermore, in the present system

ψ(x) = 0 for x2 ≥ a2

This system is equivalent to a particle inside a box of length 2a.

Exercise

Normalize the solutions. Calculate ∆X for the ground state. Estimate

the ground state energy from the uncertainty principle and compare it

with the actual value.

Exercise

Plot the first few solutions and describe their qualitative features. In

particular show that the nth state has n− 1 nodes inside the well.

15



(b) Free particle in one dimension

In general, the Schrödinger Equation is

ih̄
d

dt
|Ψ〉 = H|Ψ〉 with H =

P 2

2m
+ V (X) .

For a free particle the potential energy is zero: V (X) = 0.

In the p−basis the Schrödinger equation becomes

ih̄
d

dt
〈p|Ψ〉 = 〈p|H|Ψ〉 =

p2

2m
〈p|Ψ〉 ,

where we have applied the eigenvalue equation

P |p〉 = p|p〉 , P 2

2m
|p〉 =

p2

2m
|p〉 , and 〈p| P

2

2m
= 〈p| p

2

2m
.
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Defining the wave function in the momentum space as

φ(p) ≡ 〈p|Ψ〉

we obtain

ih̄
dφ(p)

dt
=

p2

2m
φ(p) .

Homework:

(a) Show that the general solution of this differential equation is

φ(p) = Ne
− i

h̄

(
p2

2m

)
t

where N is the normalization constant.

(b) Apply inverse Fourier transform and find the wave function ψ(x) in

the coordinate space.
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In the x−basis, the Schrödinger Equation becomes

ih̄
d

dt
〈x|Ψ(t) =

∫
〈x| P

2

2m
|y〉〈y|Ψ(t)〉 dy

ih̄
∂

∂t
Ψ(x, t) = − h̄2

2m

d2

dx2
Ψ(x, t) or

∂

∂t
Ψ(x, t) =

ih̄

2m

∂2

∂x2
Ψ(x, t)

This is like a heat equation except that the coefficient is imaginary.

This solution can be written as

Ψ(x, t) =
N

(a2 + ih̄t/m)1/2
e−x

2/2(a2+ih̄t/m)

where “a” is a constant which can be determined from the value of the

initial wave function. The constant N is determined from

normalization of the probability. The probability density is given by

ψ∗ψ =
N2

a(a2 + h̄2t2/m2a2)1/2
e−x

2/(a2+h̄2t2/m2a2) .
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Thus we see that a free particle is denoted by a Gaussian.

Furthermore, the probability of finding a particle peaks around x = 0

and has a mean width of

1

2
(a2 +

h̄2t2

m2a2
)

Thus we see that by choosing an appropriate constant ’a’ we can

localize the particle initially but as time grows the width of the

Gaussian increases. This is known as the dispersion of the wave packet.

Homework

Derive the same result by working in the momentum basis and then

transforming to the x−basis.
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(c) The Delta-Function Potential [Griffiths 2.5]

Homework:

Let us consider a particle bound in a delta function potential in one

dimension

V (x) = −αδ(x), α > 0,

where α is a constant and the total energy E < 0.

Let us consider Region I for x < 0 and Region III for x > 0.

In Region I and Region III, the Schrödinger equation is

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x)

where E < 0 for a bound state. The general solution of this equation is

ψi(x) = Aie
−kx +Bie

+kx for i = 1, 3 .
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In Region II, that is the region near x = 0 with −ε < x < ε, we have

lim
ε→0

∫ ε

−ε

[
− h̄2

2m

d2

dx2
ψ(x)− αδ(x)ψ(x)

]
dx = lim

ε→0

∫ ε

−ε
Eψ(x) dx or

lim
ε→0
− h̄2

2m
[ψ′3(ε)− ψ′1(−ε)]− αψ(0) = 0 .

Then we have

ψ′1(x = 0)− ψ′3(x = 0) =
2mα

h̄2 ψ(0) where ψ′(x) =
dψ

dx

has a finite jump (discontinuity) at x = 0 while ψ(x) is continuous at

x = 0 with

B1 = A3 = A .

Let us choose A to be real and find the normalized continuous wave

function. For all x, i.e., −∞ ≤ x ≤ ∞, we have

ψ(x) = Ae−k|x| .
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