
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 12, March 09, 2021 (Tuesday)

• Handout: Solutions to Problem Set 5.

• Reading: Time-Independent Schrödinger Equation [Griffiths 2]

• Assignment: Problem Set 6 due March 12 (Friday).

Submit your homework assignments to Canvas.
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Topics for Today: Schrödinger Equation [Chapter 2
in Griffiths]

3.6 Schrödinger Equation

(a) Infinite Square Well [Griffiths 2.2]

Topics for Next Lecture:
Schrödinger Equation [Chapter 2 in Griffiths]

(a) Infinite Square Well [Griffiths 2.2]

(b) Free Particle [Griffiths 2.4]

(c) Finite Square Well [Griffiths 2.6]

(d) Potential of a Barrier (Bonus)

3.7 Stationary State Solutions

3.8 Equation of continuity
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3.6 The Schrödinger Equation

The Schrödinger equation is

H|Ψ(t)〉 = E|Ψ(t)〉 i.e. H|Ψ(t)〉 = ih̄
d

dt
|Ψ(t)〉 or ih̄

d|Ψ(t)〉
dt

= H|Ψ(t)〉 .

In the x−basis, the Schrödinger equation becomes

ih̄
d

dt
〈x|Ψ(t)〉 =

∫
〈x|H|y〉〈y|Ψ(t)〉dy

where the wave function is Ψ(x, t) ≡ 〈x|Ψ(t)〉, and the matrix elements

of X, V (X), P , P 2, and H become

• 〈x|X|y〉 and 〈x|V (X)|y〉

• 〈x|P |y〉 and 〈x|P 2|y〉

• 〈x|H|y〉
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The Schrödinger equation is

ih̄
d|Ψ(t)〉
dt

= H|Ψ(t)〉 .

In the x−basis, the relevant matrix elements become

• 〈x|X|y〉 = yδ(x− y) and 〈x|V (X)|y〉 = V (y)δ(x− y),

•

〈x|P |y〉 = −ih̄ ∂

∂x
δ(x− y) and 〈x|P 2|y〉 = −h̄2 ∂

2

∂x2
δ(x− y) ,

and

〈x|H|y〉 =

[
− h̄2

2m

∂2

∂x2
+ V (y)

]
δ(x− y) .

And the Schrödinger equation becomes

ih̄
∂

∂t
Ψ(x, t) =

[
− h̄2

2m

∂2

∂x2
+ V (x)

]
Ψ(x, t) .
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Introducing separation of variables Ψ(x, t) = f(t)u(x), we obtain

ih̄

(
df

dt

)
u(x) = f(t)

[
− h̄2

2m

d2

dx2
+ V (x)

]
u(x)

ih̄
df/dt

f
=

1

u

[
− h̄2

2m

d2u

dx2
+ V (x)u(x)

]
= E .

Since the left-hand side depends only on time and the right-hand side

depends only on spatial coordinates, both sides must be equal to a

constant which we call E. Thus

ih̄
df

dt
= Ef with f(t) = Ate

−( i
h̄ )Et[

− h̄2

2m

d2

dx2
+ V (x)

]
u(x) = Eu(x) .

In the energy basis

Ψ(x, t) = u(x)f(t) = u(x)e−(
i
h̄ )Et = ψ(x)e−(

i
h̄ )Et

where we have absorbed the normalization constant At into u(x).
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If the Hamiltonian does not depend on time explicitly, we have the

time independent Schrödinger equation

Hψn(x) = Enψn(x) eigenvalue equation

where En are eigenvalues of the Hamiltonian operator H.

The general solution to the equation of motion becomes

Ψ(x, t) =

∞∑
n=0

cnψn(x)e−(
i
h̄ )Ent =

∞∑
n=0

cnΨn(x, t) .

The separable solutions

Ψn(x, t) = ψn(x)e−(
i
h̄ )Ent

are stationary states, such that probabilities and expectation values are

independent of time.

6



(a) Infinite square well potential

Let us consider the potential

V (x) =

{
0, for x2 < a2, and

∞, for x2 ≥ a2.

To examine the motion of a particle in this potential, let us attempt to

solve the EOM for

V (x) =

{
0, for x2 < a2, i.e. −a < x < a

V0, for x2 ≥ a2, i.e. x ≤ −a or x ≥ a.

with a > 0 and take the limit V0 →∞.
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Figure 1: The infinite square well potential.

In the x−basis the Hamiltonian is given by

H = − h̄2

2m

d2

dx2
+ V (x)

and the Schrödinger equation is[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x).

The potential is different in different regions. Thus we consider

Region (I): x ≤ −a, Region (II): −a < x < a, and Region (III): x ≥ a.
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Region (I): x ≤ −a, with V0 > E > 0, the EOM is

− h̄2

2m

d2

dx2
ψ(x) + V0ψ(x) = Eψ(x) or

d2ψ

dx2
− 2m

h̄2
(V0 − E)ψ(x) = 0 .

Hence

ψ(x) = A1e
−λx +B1e

λx with λ =

√
2m

h̄2
(V0 − E)

where A1 and B1 are constants. If the wave function has to retain a

probabilistic interpretation for a physical solution, A1 must vanish.

Otherwise, it grows exponentially with distance and would not

converge. Thus for x < −a,

ψ(x) = B1e
λx.

However, λ→∞ as V0 →∞. Therefore, in this limit

ψ(x) = 0, for x ≤ −a.
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Similarly, in Region (III): for x ≥ a, with V0 > E > 0, the EOM is

− h̄2

2m

d2

dx2
ψ(x) + V0ψ(x) = Eψ(x) or

d2ψ

dx2
− 2m

h̄2
(V0 − E)ψ(x) = 0 .

Hence

ψ(x) = A3e
−λx +B3e

λx with λ =

√
2m

h̄2
(V0 − E)

where A3 and B3 are constants. If the wave function has to retain a

probabilistic interpretation for a physical solution, B3 must vanish.

Otherwise, it grows exponentially with distance and would not

converge. Thus for x > a,

ψ(x) = A3e
−λx .

However, λ→∞ as V0 →∞. Therefore, in this limit

ψ(x) = 0, for x ≥ a.
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Region (II): −a < x < a, the equation of motion (EOM) is

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x)

or

d2ψ

dx2
= −2mE

h̄2
ψ(x) = −k2ψ(x) .

In the standard form, the equation of motion becomes

d2ψ

dx2
+ k2ψ(x) = 0

where

k2 =
2mE

h̄2
and k =

√
2mE

h̄2
.

Find the characteristic equation an the general solution.
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The EOM is a linear second order homogeneous differential equation.

The characteristic equation is

λ2 + k2 = 0

with roots

λ1,2 = ±ik with k =

√
2mE

h̄2
.

Hence the general solution is

ψ(x) = Aeλ1x +Beλ2x = Ae−ikx +Beikx

or

ψ(x) = C sin(kx) +D cos(kx)

where C and D are constants.
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