
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 11, March 04, 2021 (Thursday)

• Reading:

Postulates of Quantum Mechanics and Schrödinger Equation

[Griffiths 1 and 2]

• Assignment: Problem Set 5 due March 05 (Friday).

Submit your homework assignments to Canvas.
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Topics for Today: Postulates of Quantum Mechanics

3.4 The Uncertainty Principle

3.5 Ehrenfest’s Theorem

Topics for Next Lecture:
Schrödinger Equation [Griffiths 1 and 2]

3.6 Stationary State Solutions

3.7 Schrödinger Equation

(a) Infinite Square Well

(b) Finite Square Well.

(c) The Delta-Function Potential

3.8 Equation of continuity
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3.4 The Uncertainty Principle

Let A and B be two non-commuting operators with

[A,B] = ih̄

As we have seen before, these are conjugate operators. Let ∆A be the

root mean square deviation of the operator A. Thus

(∆A)2 ≡ 〈A2〉 − 〈A〉2

Similarly let ∆B be the root mean square deviation of the operator B.

Thus

(∆B)2 = 〈B2〉 − 〈B〉2

then

∆A∆B ≥ h̄

2
(Heisenberg′s uncertainty principle)
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First of all notice that

(∆Ω)2 = 〈Ω2〉 − 〈Ω〉2

= 〈Ω2 − 2Ω〈Ω〉+ 〈Ω〉2〉

= 〈(Ω− 〈Ω〉)2〉

∆Ω ≡ 〈(Ω− 〈Ω〉)2〉1/2 =
[
Ω2〉 − 〈Ω〉2

]1/2
where (i) ∆Ω is the standard deviation which measures the average

fluctuation around the mean.

N.B. (i) ∆Ω is often called the root mean squared deviation or the

uncertainty in Ω.

(ii) (∆Ω)2 is called the mean square deviation or the variance.
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Let us define

δA ≡ A− 〈A〉 and δB ≡ B − 〈B〉.

Then we have [δA, δB] = [A,B] = ih̄. Furthermore,

(∆A)2(∆B)2 = 〈(A− 〈A〉)2〉〈(B − 〈B〉)2〉

= 〈(δA)2〉〈(δB)2〉

≥ |〈δAδB〉|2 (Schwartz inequality)

= |〈1
2

(δAδB + δBδA) +
1

2
(δAδB − δBδA)〉|2

= |〈1
2

(δAδB + δBδA) +
1

2
[δA, δB]〉|2

= |〈1
2

(δAδB + δBδA) +
1

2
(ih̄)〉|2 (complex z = x+ iy)

= |〈1
2

(δAδB + δBδA)〉|2 +
h̄2

4
(|z|2 = x2 + y2) .
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Therefore,

∆A∆B ≥ h̄

2
.

• This tells us that for any two conjugate variables, there is a

minimum of uncertainty associated with their measurements.

• Note that the Schwartz inequality becomes an equality if the

vectors are parallel to each other. Thus

δA|ψ〉 = λδB|ψ〉

and

1

2
〈ψ|(δAδB + δBδA)|ψ〉 =

1

2
〈ψ|λ∗δBδB + λδBδB)|ψ〉

=
1

2
(λ∗ + λ)〈ψ|δBδB|ψ〉

=
1

2
(λ∗ + λ)〈δBψ|δBψ〉 .
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If this vanishes, then we have

(∆A)(∆B) =
h̄

2

which is the minimum uncertainty.

Now we have

1

2
〈ψ|(δAδB + δBδA)|ψ〉 = 0 if

1

2
(λ∗ + λ)〈δBψ|δBψ〉 = 0 .

Since 〈δBψ|δBψ〉 is greater than zero unless |δBψ〉 = 0, then

λ∗ + λ = 0 or λ∗ = −λ .

Thus λ is pure imaginary.

Let λ = −ic where c is real. Then we have

δA|ψ〉 = λδB|ψ〉 = −icδB|ψ〉.

N.B. 〈Ω〉 = 〈ψ|Ω|ψ〉 and |Ωψ〉 ≡ Ω|ψ〉.
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Furthermore, we know that

δA = A− 〈A〉 and δB = B − 〈B〉 .

Since A and B are conjugate operators, we can express them as

differential operators. For example

〈x|P |y〉 = −ih̄ d

dx
δ(x− y) (x basis) and 〈p|X|q〉 = ih̄

d

dp
δ(p− q) (p basis).

In the x basis, let us consider

A = X , B = P → −ih̄ d

dx
, and δX|ψ〉 = λδP |ψ〉 = −icδP |ψ〉 .

Then we have

(x− 〈X〉)ψ(x) = −ic
(
−ih̄ d

dx
− 〈P 〉

)
ψ(x)

or

dψ

dx
= − 1

ch̄
(x− 〈X〉 − ic〈P 〉)ψ(x)
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and then

ψ(x) = Nexp

[
− 1

2ch̄
(x− 〈X〉)2 +

i

h̄
〈P 〉x

]
.

This is a Gaussian centered at x = 〈X〉 with a width ∆x given by

1

(∆x)2
=

1

ch̄

where N is the normalization constant.

Exercise: Find the normalization constant for

ψ(x) = Nexp

[
− 1

2ch̄
(x− 〈X〉)2 +

i

h̄
〈P 〉x

]
such that ∫

|ψ(x)|2 dx = 1.
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3.5 Ehrenfest’s Theorem

Let us consider an operator Ω and its expectation value 〈Ω〉 ≡ 〈ψ|Ω|ψ〉
in a state with state vector |ψ〉.

We are interested in the change of 〈Ω〉 in time

d

dt
〈Ω〉 =

d

dt
〈ψ|Ω|ψ〉

= 〈ψ̇|Ω|ψ〉+ 〈ψ| ∂
∂t

Ω|ψ〉+ 〈ψ|Ω|ψ̇〉 .

We know from Schrödinger equation that

ih̄
d

dt
|ψ〉 = ih̄|ψ̇〉 = H|ψ〉

−ih̄〈ψ̇| = 〈ψ|H .

N.B. The Hamiltonian is Hermitian H† = H.
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Substituting this into the above equation we have

d

dt
〈Ω〉 = 〈ψ̇|Ω|ψ〉+ 〈ψ| ∂

∂t
Ω|ψ〉+ 〈ψ|Ω|ψ̇〉

=
i

h̄
〈ψ|HΩ|ψ〉+ 〈ψ| ∂

∂t
Ω|ψ〉 − i

h̄
〈ψ|ΩH|ψ〉

= 〈ψ| ∂
∂t

Ω|ψ〉 − i

h̄
〈ψ|[Ω, H]|ψ〉 .

If the operator Ω has no explicit time dependence, then we can write

d

dt
〈Ω〉 = − i

h̄
〈ψ|[Ω, H]|ψ〉 or ih̄

d

dt
〈Ω〉 = 〈ψ|[Ω, H]|ψ〉 .

This is known as Ehrenfest’s Theorem.
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We now have

dΩ

dt
= − i

h̄
[Ω, H] similar to

dω

dt
= {ω,H}

which is Hamilton’s equation of motion.

The quantum correspondence principle is expressed as

[Ω1,Ω2] = ih̄{ω1, ω2} = ih̄
∑
i

(
∂ω1

∂xi

∂ω2

∂pi
− ∂ω1

∂pi

∂ω2

∂xi

)
.

We can consider

〈[Ω, H]〉 = ih̄〈{ω,H}〉 = ih̄
d

dt
(ω) = ih̄

d

dt
〈Ω〉

that is

ih̄
d

dt
〈Ω〉 = 〈[Ω, H]〉 .
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Example:

Let us consider the motion of one particle with

H =
P 2

2m
+ V (X)→ H =

−h̄2

2m

d2

dx2
+ V (x) .

We can investigate

d〈X〉
dt

=
d

dt
〈ψ|X|ψ〉

= − i
h̄
〈ψ|[X,H]|ψ〉

= − i
h̄
〈ψ|[X, P

2

2m
+ V (x)]|ψ〉

= − i
h̄
〈ψ|[X, P

2

2m
]|ψ〉

= − i
h̄

1

2m
〈ψ|P [X,P ] + [X,P ]P |ψ〉

= − i
h̄

1

2m
(2ih̄)〈ψ|P |ψ〉 =

1

m
〈ψ|P |ψ〉 .
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We have found

d

dt
〈X〉 = − i

h̄
〈ψ|[X,H]|ψ〉 =

〈P 〉
m

.

In classical mechanics, we know that

ẋ =
∂H

∂p
=

p

m
, and ṗ = −∂H

∂x
= − d

dx
V (x) .

Thus we have seen that for an operator Ω, the expectation value 〈Ω〉
has the following evolution equation

d

dt
〈Ω〉 = − i

h̄
〈[Ω, H]〉

or

ih̄
d

dt
〈Ω〉 = 〈[Ω, H]〉 .

That means the expectation value of an operator 〈Ω〉 follows the

classical equation of motion.
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Let us consider a system with the state vector |ψ〉.

• The position measurement yields a value x with uncertainty ∆X.

• And the momentum measurement yields a value p with uncertainty

∆P ' h̄

2∆X
.

Note that the uncertainty relation for X and P is

∆X∆P ≥ h̄

2
.

If the state is such that the uncertainties ∆X and ∆P are negligible

compared to the measured values x and p then we replace

〈X〉 = x and 〈P 〉 = p

where x and p are classical quantities.
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For such a state, therefore, the fluctuation around the mean is

negligible and we can write

〈Ω(X,P )〉 = Ω(〈X〉, 〈P 〉) = Ω(x, p) = ω(x, p)

Therefore in such a case we can write the Ehrenfest equation as

d

dt
〈Ω〉 =

dω

dt
= {ω,H}

which is Hamilton’s equation.

Thus we see that quantum mechanics reduces to classical Hamiltonian

mechanics when it is applied to macroscopic systems.
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