PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 11, March 04, 2021 (Thursday)

e Reading:
Postulates of Quantum Mechanics and Schrodinger Equation
|Griffiths 1 and 2]

e Assignment: Problem Set 5 due March 05 (Friday).

Submit your homework assignments to Canvas.




Topics for Today: Postulates of Quantum Mechanics
3.4 The Uncertainty Principle
3.5 Ehrenfest’s Theorem

Topics for Next Lecture:
Schrodinger Equation [Griffiths 1 and 2]

3.6 Stationary State Solutions
3.7 Schrodinger Equation

(a) Infinite Square Well

(b) Finite Square Well.

(c) The Delta-Function Potential

3.8 Equation of continuity




3.4 The Uncertainty Principle

Let A and B be two non-commuting operators with
(A, B] = ih

As we have seen before, these are conjugate operators. Let AA be the

root mean square deviation of the operator A. Thus
(AA)? = (A7) —(4)°

Similarly let AB be the root mean square deviation of the operator B.
Thus

(AB)* = (B*) — (B)*

(Heisenberg’s uncertainty principle)




First of all notice that

(AQ)?
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where (i) A€ is the standard deviation which measures the average

fluctuation around the mean.

N.B. (i) A is often called the root mean squared deviation or the
uncertainty in 2.

(ii) (AQ)? is called the mean square deviation or the variance.




Let us define
)A=A—-(A) and 0B =B — (B).
Then we have [0A,§B| = [A, B] = ¢h. Furthermore,

(AAP*(AB)* = ((A—(4)*N(B—(B))*)

0A)*)((6B)?)
§A6B)|? (Schwartz inequality)
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Therefore,

AAAB > g

e This tells us that for any two conjugate variables, there is a

minimum of uncertainty associated with their measurements.

e Note that the Schwartz inequality becomes an equality if the
vectors are parallel to each other. Thus

0A[p) = AoB|y)

and

%(M((SAcSB + 6BSA) ) %WIA*(SBéB + A0BOB)[1))

SO+ A (0 1BSBY)

%()\* - \(BY|SBY) .




If this vanishes, then we have

(AA)(AB) =&

which is the minimum uncertainty.

Now we have

(WI(6ASB + SBSAN) =0 i (X +X)(3BYI0BY) = 0.

1

2

Since (0 Bw|dB1) is greater than zero unless |§B) = 0, then
A4+ A=0 or A'=-)\.

Thus A is pure imaginary.

Let A = —ic where ¢ is real. Then we have

SA|Y) = ASBJ) = —icd B|w).

N.B. (Q) = ([Q4) and [) = Q).




Furthermore, we know that

0A=A—-(A) and 0B =B-—(B).
Since A and B are conjugate operators, we can express them as
differential operators. For example

i&(a} —y) (xbasis) and (p|X|q) = ih%d(p — q) (p basis).

Ply) = —ih
(@ Ply) = —ih— :

In the x basis, let us consider

A=X, B=P— —ih% , and O0X|Y) = ANIP|Y) = —icdPly) .

Then we have

(2= (X0) (o) = —ic (-in_ = (P}) w(o

dp _

(z — (X) —ie(P)) ¥ ()




and then

0(x) = Nexp |~ (¢ — (X))* + + (P)a

This is a Gaussian centered at x = (X) with a width Ax given by
1 1

(Ax)? h

where N is the normalization constant.

Exercise: Find the normalization constant for

b(z) = Nexp [—%m X))+ (Pl

such that

[ w@pP =1




3.5 Ehrenfest’s Theorem

Let us consider an operator €2 and its expectation value () = (y|Q2|))

in a state with state vector [v).
We are interested in the change of (€2) in time

d d
() = Wil

= () + (0l 2 Q) + (I

We know from Schrodinger equation that

) = i) = Hy)
—ih(y] = (¢|H .

N.B. The Hamiltonian is Hermitian H' = H.




Substituting this into the above equation we have

Sl = WIok + s mw + ()

3<¢|Hﬂ|w> (]S — T (wIRH )
(S ) — (w2 H]Jw).

If the operator €2 has no explicit time dependence, then we can write

d 0 L d
() = —= W[ H]|¢) or ih—(Q) = ([, H]|¢).

This is known as Ehrenfest’s Theorem.




We now have

o ' d
_E[Q,H] similar to d—L: = {w, H}

dt  h

which is Hamilton’s equation of motion.

The quantum correspondence principle is expressed as

. . Owy 0 Owq 0
0, 0g] = iffwr,wa} =ih ) (3:1:1- 5. o az?> |

We can consider

. L d L d
(I H])) =ih{{w, H}) = zh£(w) = zh£<Q>




Example:

Let us consider the motion of one particle with

p2 —h? 2
H=-—+V(X)—> H=
+V(X) = 2m dx?

2m

+ Vi(zx).
We can investigate

d(X)
dt

d
X
— (X, Hly)

2

X, o+ V@)l

pea[y

(Y| PIX, P] + [X, P|P[t))

QiR)WIP) = — (WIPIY).




We have found

d i (P)

(XY =~ (BI[X, H]J) =

In classical mechanics, we know that

. OH p . 0OH d
=y T W PE s = V@)

m

Thus we have seen that for an operator €2, the expectation value ({2)

has the following evolution equation

iy — L

() (€2, HJ)

dt A

d
h— () = (|, H]) .
() = (9, 1)
That means the expectation value of an operator (2) follows the

classical equation of motion.




Let us consider a system with the state vector [1)).

e The position measurement yields a value x with uncertainty AX.

e And the momentum measurement yields a value p with uncertainty

_h
- 2AX

AP

Note that the uncertainty relation for X and P is

AXAP > g

If the state is such that the uncertainties AX and AP are negligible

compared to the measured values x and p then we replace
(X) =2 and (P)=p

where x and p are classical quantities.




For such a state, therefore, the fluctuation around the mean is

negligible and we can write
(X, P)) = Q(X), (P)) = Q(z,p) = w(z, p)

Therefore in such a case we can write the Ehrenfest equation as

d dw
%<Q> = At ={w, H}

which is Hamilton’s equation.

Thus we see that quantum mechanics reduces to classical Hamiltonian

mechanics when it is applied to macroscopic systems.




