
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 10, March 02, 2021 (Tuesday)

• Handout: Solutions to Problem Set 4.

• Reading:

Postulates of Quantum Mechanics and Schrödinger Equation

[Griffiths 1 and 2]

• Assignment: Problem Set 5 due March 05 (Friday).

Submit your homework assignments to Canvas.
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Topics for Today: Postulates of Quantum Mechanics

2.11 Bonus: The Momentum Space or the p−basis

3.1 The Postulates of Quantum Mechanics

3.2 Implications of the Postulates

3.3 Expectation Value

3.4 The Uncertainty Principle

Topics for Next Lecture:
Schrödinger Equation [Griffiths 1 and 2]

3.5 Ehrenfest’s Theorem

3.6 Stationary State Solutions

3.7 Equation of continuity
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A Brief Dictionary for Notations

Here are some helpful relations between two sets of notations when you

read the textbook:

• State vector: |Ψ(t)〉 → |S(t)〉

• Operators: Ω→ Q̂

• Basis vectors: |e1〉 → |1〉 and |e2〉 → |2〉

• Orthonormal relations: 〈x|y〉 = δ(x− y) → 〈gx|gy〉 = δ(x− y) and

〈p|q〉 = δ(p− q) → 〈fp|fq〉 = δ(p− q).

• Special wave functions: ψk(x) = 〈x|k〉 = 1√
2π
eikx → fk(x) and

ψp(x) = 〈x|p〉 = 1√
2πh̄

e(i/h̄)px → fp(x).

• Uncertainty or root mean square deviation ∆Ω→ σΩ.
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2.11 Bonus: The Momentum Space or the p−basis

The eigenvalue equation of the momentum operator P is

P |p〉 = p|p〉 .

In the x-basis, we have

〈x|P |p〉 = p〈x|p〉 = pψp(x) and

〈x|P |p〉 =

∫
〈x|P |y〉〈y|p〉 dy = −ih̄

∫
d

dx
δ(x− y)ψp(y) dy .

That leads to

−ih̄ d

dx
ψp(x) = pψp(x) or

d

dx
ψp(x)− ip

h̄
ψp(x) = 0 ,

with the solution

〈x|p〉 = ψp(x) = Ae( i
h̄ )p·x .
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Requiring that the basis vector |p〉 should be normalized

〈p|q〉 = δ(p− q)

we have

〈p|q〉 = 〈p|
(∫
|x〉〈x|dx

)
|q〉

=

∫ ∞
−∞
〈p|x〉〈x|q〉 dx

=

∫ ∞
−∞

A∗Ae−( i
h̄ )(p−q)x dx

= |A|2
∫
e−i(p−q)u h̄ du

= |A|2(2πh̄)δ(p− q) = δ(p− q)

where u = x/h̄ and dx = h̄du.
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Choosing A ∈ R and A > 0, we obtain

A =
1√
2πh̄

and

〈x|p〉 = ψp(x) =
1

(2πh̄)1/2
e(

i
h̄ )p·x .

It is the bridge between the coordinate space and the momentum space.

Let us consider a state vector |ψ〉. The state wave function in the

x−basis is

ψ(x) ≡ 〈x|ψ〉 .

And the state wave function in the p−basis becomes

φ(p) ≡ 〈p|ψ〉 .
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Then, we have a simple relation between ψ(x) and φ(p)

ψ(x) = 〈x|ψ〉

=

∫ ∞
−∞
〈x|p〉〈p|ψ〉 dp

=

∫ ∞
−∞

ψp(x)φ(p) dp

=
1

(2πh̄)1/2

∫ ∞
−∞

e(
i
h̄ )p·xφ(p) dp

where φ(p) is the wave function in the p−basis and it is the Fourier

transform of ψ(x) multiplied by a constant 1/
√
h̄.
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In the k-basis, the wave function becomes

φ(k) ≡ 〈k|ψ〉

=

∫ ∞
−∞
〈k|x〉〈x|ψ〉 dx =

1

(2π)1/2

∫ ∞
−∞

e−ik·xψ(x) dx ,

which is the Fourier transform of the wave function in the x−basis

ψ(x) ≡ 〈x|ψ〉

=

∫ ∞
−∞
〈x|k〉〈k|ψ〉 dk

=

∫ ∞
−∞

ψk(x)φ(k) dk

=
1

(2π)1/2

∫ ∞
−∞

eik·xφ(k) dk .

It is clear that ψ(x) is the inverse Fourier transform of φ(k).

8



3.1 The Postulates of Quantum Mechanics

There are four most important postulates in quantum mechanics.

(i) In quantum mechanics the state of a system at a fixed time is

denoted by the state vector |Ψ(t)〉 that belongs to a Hilbert space.

(ii) The observables x and p are replaced by operators X and P with

the commutation relation [X,P ] = ih̄. The matrix elements of

operators X and P in the x-basis become

〈x|X|y〉 = xδ(x− y) and 〈x|P |y〉 = −ih̄ d

dx
δ(x− y) .

Any operator Ω corresponding to the observable ω is obtained as

the same function of the operators X and P . We usually

symmetrize products of two operators. Thus we have

ω(x, p) → Ω(X,P ) and

xp → 1

2
(XP + PX) .
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(iii) Quantum mechanics gives probabilistic results. If a system is in a

state |ψ〉, then a measurement corresponding to Ω yields one of the

eigenvalues ωi of Ω with a probability

P (ωi) =
|〈ωi|ψ〉|2

〈ψ|ψ〉
,∑

i

P (ωi) = 1 .

The result of the measurement would be to change the state of the

system to the eigenstate |ωi〉 of the operator Ω.

(iv) In quantum mechanics the state vector evolve with time according

to Schrödinger equation

ih̄
d

dt
|Ψ(t)〉 = H|Ψ(t)〉

where H = H(X,P ) = the Hamiltonian operator.
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In relativistic mechanics, we know that the energy and momentum

form a four vector denoted by

pµ = (E/c,+~p) (contravariant) and pµ = (E/c,−~p) (covariant).

The relative negative sign is a consequence of the Lorentz group

structure. Recall that the P operator in the x-basis becomes

Pxy ≡ 〈x|P |y〉 = −ih̄ d

dx
δ(x− y) or Px → −ih̄

d

dx
.

This suggests that

E → ih̄
d

dt
and H|Ψ(t)〉 = ih̄

d

dt
|Ψ(t)〉 ,

which is the Schrödinger equation.

Since H(X,P ) is the operator corresponding to the total energy of the

system, if |ψ〉 is an eigenstate with energy E, we can write

H|ψ〉 = E|ψ〉 (eigenvalue equation) .
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3.2 Implications of the Postulates

In quantum mechanics, a physics system is described with a state

vector |Ψ(t)〉 belonging to a Hilbert space.

In the x basis,

• a state vector is represented by a wave function ψ(x) ≡ 〈x|ψ〉, and

• an operator (X,P,L or H) is represented with matrix elements

Ωxy ≡ 〈x|Ω|y〉.

The state vector is expanded with the basis vector |x〉

|Ψ(t)〉 =

∫
|x〉〈x|Ψ(t)〉 dx (completeness relation),

and

〈x|Ψ(t)〉 = Ψ(x, t)

is the coefficient of expansion. This is also the wave function.
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• The particles in microscopic systems spread out and the spread can

be infinite.

• The quantity |Ψ(x, t)|2 is the probability density at position x and

at time t.

• The quantity |Ψ(x, t)|2dx not only measures the probability of

finding a particle between x and x+ dx, but also how the

probability changes with time.

• Since the state vectors define a Hilbert space, if |ψ〉 and |φ〉 define

two states of the system, then so does α|ψ〉+ β|φ〉. This is called

the principle of superposition.
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The probabilistic nature of quantum mechanics of course implies two

states |ψ〉 and α|ψ〉 give the same probability of a particular

measurement. Thus corresponding to each physical state |ψ〉, there

exists a set of states α|ψ〉 for all possible values of α which define a ray

in the Hilbert space. Clearly for a physical state we assume

〈ψ|ψ〉 = 1 or a Dirac delta function.

This still allows a ray of the form eiθ|ψ〉.

If a state is an eigenstate |ωi〉 of some operator Ω, then the

corresponding measurement would definitely yield the value ωi.

This follows immediately from the fact that

P (ωi) =
|〈ωi|ψ〉|2

〈ψ|ψ〉
= 1 .
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Let us consider the state formed by superposing two eigenstates |ω1〉
and |ω2〉 of the operator Ω.

The normalized state vector is

|ψ〉 =
α|ω1〉+ β|ω2〉

(|α|2 + |β|2)1/2
.

• If we make a measurement corresponding to Ω then the

measurement would yield a value ω1 with a probability

|α|2/(|α|2 + |β|2) and a value ω2 with a probability

|β|2/(|α|2 + |β|2).

• Thus the measurement on a superposed state sometimes behaves

like it is in one of the states and sometimes like in the other.

If an operator is degenerate, for example, Ω is doubly degenerate with

eigenstates |ω, 1〉 and |ω, 2〉, then the probability that a measurement

would yield an eigenvalue ω is given by

P (ω) =
1

〈ψ|ψ〉
[
|〈ω, 1|ψ〉|2 + |〈ω, 2|ψ〉|2

]
.
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3.3 Expectation Value

Let us consider a physics system described by a state vector |ψ〉.

• The outcome of a measurement corresponding to operator Ω is an

eigenvalue ωi with probability P (ωi)

P (ωi) =
|〈ωi|ψ〉|2

〈ψ|ψ〉
.

• Now suppose an infinite number of such experiments are performed.

Then we obtain a variety of values with different probabilities.

• The statistical mean of this measurement is and define an average

of the operator to be

〈Ω〉 =
∑
i

P (ωi)ωi .
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Clearly, therefore,

〈Ω〉 =
∑
i

P (ωi)ωi

=
∑
i

|〈ωi|ψ〉|2ωi (|z|2 = z∗z)

=
∑
i

〈ψ|ωi〉〈ωi|ψ〉ωi (〈ψ|ωi〉 = 〈ωi|ψ〉∗)

=
∑
i

〈ψ|Ω|ωi〉〈ωi|ψ〉 (eigenvalue equation)

= 〈ψ|Ω

(∑
i

|ωi〉〈ωi|

)
|ψ〉

= 〈ψ|Ω|ψ〉 with
∑
i

|ωi〉〈ωi| = I

where we have applied the completeness relation and have assumed

that the state vector |ψ〉 is normalized.

This is the expectation value of the operator Ω in the state |ψ〉.
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Expectation Value in the x-Basis

In the x-basis with |x〉, the state vector can be expanded as

|ψ〉 =

(∫
|x〉〈x|

)
|ψ〉 dx =

∫
ψ(x)|x〉dx , where ψ(x) ≡ 〈x|ψ〉 .

And the expectation value of Ω becomes

〈ψ|Ω|ψ〉 = 〈ψ|
(∫

|x〉〈x| dx
)

(Ω)

(∫
|y〉|〈y| dy

)
|ψ〉

=

∫
dx

∫
dy 〈ψ|x〉〈x|Ω|y〉〈y|ψ〉 .

For example, the matrix elements of X and P are

〈x|X|y〉 = yδ(x− y) = xδ(x− y) , and

〈x|P |y〉 = −ih̄ d

dx
δ(x− y) .
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Examples: (a) Ω = X and (b) Ω = P

In the coordinate space we have a complete set of orthonormal basis

〈x|y〉 = δ(x− y) (orthonormal) ,

∫
|x〉〈x| dx = I (completeness) .

The state vector |ψ〉 and operators (Ω) are represented with

ψ(x) ≡ 〈x|ψ〉 (wave function) , Ωxy ≡ 〈x|Ω|y〉 (matrix element) .

(a) The expectation value of X becomes

〈ψ|X|ψ〉 = 〈ψ|
(∫

|x〉〈x| dx
)

(X)

(∫
|y〉|〈y| dy

)
|ψ〉

=

∫
dx

∫
dy 〈ψ|x〉〈x|X|y〉〈y|ψ〉

=

∫
dx

∫
dy ψ∗(x) [yδ(x− y)]ψ(y)

=

∫
ψ∗(x) [xψ(x)] dx .
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(b) The expectation value of P becomes

〈ψ|P |ψ〉 = 〈ψ|
(∫

|x〉〈x| dx
)

(P )

(∫
|y〉|〈y| dy

)
|ψ〉

=

∫
dx

∫
dy 〈ψ|x〉〈x|P |y〉〈y|ψ〉

=

∫
dx

∫
dy ψ∗(x)

[
−ih̄ d

dx
δ(x− y)

]
ψ(y)

= −ih̄
∫

ψ∗(x)

[
d

dx
ψ(x)

]
dx ,

where

〈x|P |y〉 = −ih̄ d

dx
δ(x− y) where P = h̄K = −ih̄D

in the x-basis.
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3.4 The Uncertainty Principle

Let A and B be two non-commuting operators with

[A,B] = ih̄

As we have seen before, these are conjugate operators. Let ∆A be the

root mean square deviation of the operator A. Thus

(∆A)2 ≡ 〈A2〉 − 〈A〉2

Similarly let ∆B be the root mean square deviation of the operator B.

Thus

(∆B)2 = 〈B2〉 − 〈B〉2

then

∆A∆B ≥ h̄

2
(Heisenberg′s uncertainty principle)
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First of all notice that

(∆Ω)2 = 〈Ω2〉 − 〈Ω〉2

= 〈Ω2 − 2Ω〈Ω〉+ 〈Ω〉2〉

= 〈(Ω− 〈Ω〉)2〉

∆Ω ≡ 〈(Ω− 〈Ω〉)2〉1/2 =
[
Ω2〉 − 〈Ω〉2

]1/2
where (i) ∆Ω is the standard deviation which measures the average

fluctuation around the mean.

N.B. (i) ∆Ω is often called the root mean squared deviation or the

uncertainty in Ω.

(ii) (∆Ω)2 is called the mean square deviation or the variance.
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Let us define

δA ≡ A− 〈A〉 and δB ≡ B − 〈B〉.

Then we have [δA, δB] = [A,B] = ih̄. Furthermore,

(∆A)2(∆B)2 = 〈(A− 〈A〉)2〉〈(B − 〈B〉)2〉

= 〈(δA)2〉〈(δB)2〉

≥ |〈δAδB〉|2 (Schwartz inequality)

= |〈1
2

(δAδB + δBδA) +
1

2
(δAδB − δBδA)〉|2

= |〈1
2

(δAδB + δBδA) +
1

2
[δA, δB]〉|2

= |〈1
2

(δAδB + δBδA) +
1

2
(ih̄)〉|2

= |〈1
2

(δAδB + δBδA)〉|2 +
h̄2

4
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Therefore,

∆A∆B ≥ h̄

2
.

• This tells us that for any two conjugate variables, there is a

minimum of uncertainty associated with their measurements.

• Note that the Schwartz inequality becomes an equality if the

vectors are parallel to each other. Thus

δA|ψ〉 = λδB|ψ〉

and

1

2
〈ψ|(δAδB + δBδA)|ψ〉 =

1

2
〈ψ|λ∗δBδB + λδBδB)|ψ〉

=
1

2
(λ∗ + λ)〈ψ|δBδB|ψ〉

=
1

2
(λ∗ + λ)〈δBψ|δBψ〉 .
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