PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 10, March 02, 2021 (Tuesday)

e Handout: Solutions to Problem Set 4.

e Reading:
Postulates of Quantum Mechanics and Schrodinger Equation
(Griffiths 1 and 2]

e Assignment: Problem Set 5 due March 05 (Friday).

Submit your homework assignments to Canvas.




Topics for Today: Postulates of Quantum Mechanics

2.11 Bonus: The Momentum Space or the p—basis
3.1 The Postulates of Quantum Mechanics
3.2 Implications of the Postulates
3.3 Expectation Value

3.4 The Uncertainty Principle

Topics for Next Lecture:
Schrodinger Equation [Griffiths 1 and 2]

3.5 Ehrenfest’s Theorem
3.6 Stationary State Solutions

3.7 Equation of continuity




A Brief Dictionary for Notations

Here are some helpful relations between two sets of notations when you
read the textbook:

e State vector: |U(t)) — |S(2))
e Operators: Q — Q)
e Basis vectors: |e;) — |1) and |es) — |2)

Orthonormal relations: (z|y) =d(z —y) — (92]9y) = 0(x — y) and
(plg) =d0(p—q) — (fplfa) =0(p—q).

Special wave functions: ¢ (x) = (z|k) = \/%—We“” — fr(z) and
Up(z) = (z|p) = \/#—he(i/h)px — fp(@).

e Uncertainty or root mean square deviation AQ) — oq.




2.11 Bonus: The Momentum Space or the p—basis

The eigenvalue equation of the momentum operator P is

Plp) = p|p) .

In the x-basis, we have

(z| P|p) p{z|p) = pYp(x) and
d

wlPlp) = [@lPlytl dy = —in [ 25— y)o()dy.

That leads to

_’lh ¢p() pYp(z) or

L) - ?j ()

with the solution

(z|p) =




Requiring that the basis vector |p) should be normalized

(plg) = d(p —q)

ol ( [ 12)6ald) 1o

| wleala) da

/ A* Ae— () =)z g,

A2 / e HP=av 1 qy
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where v = z/h and dr = hdu.




Choosing A € R and A > 0, we obtain

1
2mh

A =

1
(27h)1/2 ‘

S

(z|p) = Yp(x) =

It is the bridge between the coordinate space and the momentum space.

Let us consider a state vector |¢). The state wave function in the

xr—basis is

(z) = (zh) -

And the state wave function in the p—basis becomes

o(p) = lY) -




Then, we have a simple relation between ¥ (z) and ¢(p)
() (z[4)
| (el olo) dp

/_ 0 (@)ep) dp
1 O

(2mh)1/2 /_ e(F)Pg(p) dp

where ¢(p) is the wave function in the p—basis and it is the Fourier
transform of ¢ (z) multiplied by a constant 1/v/.




In the k-basis, the wave function becomes
o(k) = (kly)
/ (klx)(z|p) do = (277)1/2/ e~ p(z) dx

— o0

which is the Fourier transform of the wave function in the x—basis

() (z]t))

| @l a

| @
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It is clear that ¥ (x) is the inverse Fourier transform of ¢(k).




3.1 The Postulates of Quantum Mechanics

There are four most important postulates in quantum mechanics.

(i) In quantum mechanics the state of a system at a fixed time is
denoted by the state vector |W(t)) that belongs to a Hilbert space.

(i) The observables x and p are replaced by operators X and P with
the commutation relation | X, P| = i¢h. The matrix elements of
operators X and P in the x-basis become

(@l X|y) = w6z —y) and (alPly) = ~ih-o-5(x ).

Any operator €2 corresponding to the observable w is obtained as
the same function of the operators X and P. We usually
symmetrize products of two operators. Thus we have

w(x,p) — QX,P) and

1
S(XP 4 PX).

rp —




(iii) Quantum mechanics gives probabilistic results. If a system is in a
state 1), then a measurement corresponding to €2 yields one of the

eigenvalues w; of €} with a probability

[{wil¥)]?
(W)

P(w;)

ZP(%')

The result of the measurement would be to change the state of the

system to the eigenstate |w;) of the operator 2.

In quantum mechanics the state vector evolve with time according

to Schrodinger equation
L d
th— |¥(t)) = H|¥())

where H = H(X, P) = the Hamiltonian operator.




In relativistic mechanics, we know that the energy and momentum
form a four vector denoted by

p" = (E/c,+p) (contravariant) and p, = (E/c,—p) (covariant).

The relative negative sign is a consequence of the Lorentz group
structure. Recall that the P operator in the x-basis becomes

d d
%5(33 —y) or P,— —ih—

P,, = (x|Ply) = —ih T

This suggests that

d d
E— Zhdt and H|W¥(t)) Zhdt' (),

which is the Schrodinger equation.

Since H (X, P) is the operator corresponding to the total energy of the
system, if |1)) is an eigenstate with energy E, we can write

H|y) = E|y) (eigenvalue equation).




3.2 Implications of the Postulates

In quantum mechanics, a physics system is described with a state
vector |W (%)) belonging to a Hilbert space.

In the x basis,
e a state vector is represented by a wave function ¢ (x) = (z|v), and

e an operator (X, P, L or H) is represented with matrix elements
Qay = (2[Qy).

The state vector is expanded with the basis vector |z)

W(1)) = / o) (x| T(D) dz  (completeness relation),

(x| W(t)) = ¥(z,1)

is the coefficient of expansion. This is also the wave function.




The particles in microscopic systems spread out and the spread can

be infinite.

The quantity |¥(z,t)|? is the probability density at position z and

at time t.

The quantity |¥(z,t)|°dz not only measures the probability of

finding a particle between x and x + dx, but also how the

probability changes with time.

Since the state vectors define a Hilbert space, if |¢)) and |¢) define
two states of the system, then so does a|v) + B|¢). This is called

the principle of superposition.




The probabilistic nature of quantum mechanics of course implies two
states |¢) and a|y) give the same probability of a particular
measurement. Thus corresponding to each physical state |¢), there
exists a set of states i) for all possible values of a which define a ray
in the Hilbert space. Clearly for a physical state we assume

(1|1p) = 1 or a Dirac delta function.

This still allows a ray of the form e%?|1)).

If a state is an eigenstate |w;) of some operator €2, then the
corresponding measurement would definitely yield the value w;.

This follows immediately from the fact that

[{wil)|* _

Pl ="y =1




Let us consider the state formed by superposing two eigenstates |w1)
and |ws) of the operator €.
The normalized state vector is

_alwr) + Blws)
)= a2 1R 2

e If we make a measurement corresponding to {2 then the

measurement would yield a value w; with a probability
la|?/(Ja|* +|B)?) and a value wy with a probability

B/ (el + [B]%).

e Thus the measurement on a superposed state sometimes behaves

like it is in one of the states and sometimes like in the other.

If an operator is degenerate, for example, (2 is doubly degenerate with
eigenstates |w, 1) and |w,2), then the probability that a measurement
would yield an eigenvalue w is given by

[, 1) 2 + [{w, 2092 -




3.3 Expectation Value

Let us consider a physics system described by a state vector |¢).

e The outcome of a measurement corresponding to operator 2 is an

eigenvalue w; with probability P(w;)

[{wi|)|”
(W)

e Now suppose an infinite number of such experiments are performed.

P(WZ) =

Then we obtain a variety of values with different probabilities.

e The statistical mean of this measurement is and define an average

of the operator to be

(Q) = Z P(w;)w; .




Clearly, therefore,
) =

> (Wlwi)wilpywi  (Wlws) = (wily)*)

1

> (@lQwi) (wily)  (eigenvalue equation)

1

(¥|§2 (Z wz’><wi> )

(¥[Qy)  with Z’%‘sz‘\:I

where we have applied the completeness relation and have assumed
that the state vector [¢) is normalized.

This is the expectation value of the operator €2 in the state |).




Expectation Value in the x-Basis

In the x-basis with |x), the state vector can be expanded as

\w>=( / \x><w|) W)de= [G@ladr, where ¥(@) = {el),

And the expectation value of (2 becomes

wiols) = wI( [ laale) @ ( [ nltldy) 10
— [ o [ ayln) i)

For example, the matrix elements of X and P are

(| X]y) yo(x —y) =xd(x —y), and

@lPly) = —ih iz ).




Examples: (a) 2 =X and (b) Q=P
In the coordinate space we have a complete set of orthonormal basis

(xly) = 6(x —y) (orthonormal), / lz)(x|dr =1 (completeness).

The state vector |1) and operators (£2) are represented with
Y(x) = (z|yp) (wave function), €y, = (2|Qy) (matrix element).

(a) The expectation value of X becomes

wixte) = (ol ([ latelde) €0 ( [ mlolay) 1)

/ da / dy (]} (x| X]y) (y])
/dx/dyw ) [y3(z — )] ¥ (y)
/ ¥ () [ ()] da.




(b) The expectation value of P becomes

wiple) = i ( [ loalde) ) ([ Wlwlds)
/dgfwwm £ Ply) )
/dx/dyzp [ ih——8(x — y)lw(y)

where

i [ v | g d

(x|Ply) = —ihd—é(az —y) where P =hK = —ihD
T

in the x-basis.




3.4 The Uncertainty Principle

Let A and B be two non-commuting operators with
(A, B] = ih

As we have seen before, these are conjugate operators. Let AA be the

root mean square deviation of the operator A. Thus
(AA)? = (A7) —(4)°

Similarly let AB be the root mean square deviation of the operator B.
Thus

(AB)* = (B*) — (B)*

(Heisenberg’s uncertainty principle)




First of all notice that

(AQ)?

1/2

A Q) —

<
<
<
<

(
(
where (i) A€ is the standard deviation which measures the average

fluctuation around the mean.

N.B. (i) A is often called the root mean squared deviation or the
uncertainty in 2.

(ii) (AQ)? is called the mean square deviation or the variance.




Let us define
0A = A —
Then we have [0A4,dB] =

(AA)*(AB)°

(A) and 0B = B — (B).
|A, B] = th. Furthermore,
— (A)*)N{(B - (B))%)

0A)*N(0B)?)

§ASB)|* (Schwartz inequality)
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1
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1
(BASB + 6BSA) + S[0A,6B])|?

(= (5ASB + 6BSA) + %(mm?

2
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1
2
1
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Therefore,

AAAB > g

e This tells us that for any two conjugate variables, there is a

minimum of uncertainty associated with their measurements.

e Note that the Schwartz inequality becomes an equality if the
vectors are parallel to each other. Thus

0A[p) = AoB|y)

and

%(M((SAcSB + 6BSA) ) %WIA*(SBéB + A0BOB)[1))

SO+ A (0 1BSBY)

%()\* - \(BY|SBY) .




