PHYS 3803: Quantum Mechanics I, Spring 2021 Lecture 10, March 02, 2021 (Tuesday)

- Handout: Solutions to Problem Set 4.
- Reading:

Postulates of Quantum Mechanics and Schrödinger Equation [Griffiths 1 and 2]

• Assignment: Problem Set 5 due March 05 (Friday). Submit your homework assignments to Canvas.

Topics for Today: Postulates of Quantum Mechanics

- 2.11 Bonus: The Momentum Space or the p-basis
 - 3.1 The Postulates of Quantum Mechanics
 - 3.2 Implications of the Postulates
 - 3.3 Expectation Value
 - 3.4 The Uncertainty Principle

Topics for Next Lecture: Schrödinger Equation [Griffiths 1 and 2]

- 3.5 Ehrenfest's Theorem
- 3.6 Stationary State Solutions
- 3.7 Equation of continuity

A Brief Dictionary for Notations

Here are some helpful relations between two sets of notations when you read the textbook:

- State vector: $|\Psi(t)\rangle \rightarrow |S(t)\rangle$
- Operators: $\Omega \to \hat{Q}$
- Basis vectors: $|e_1\rangle \rightarrow |1\rangle$ and $|e_2\rangle \rightarrow |2\rangle$
- Orthonormal relations: $\langle x|y \rangle = \delta(x-y) \rightarrow \langle g_x|g_y \rangle = \delta(x-y)$ and $\langle p|q \rangle = \delta(p-q) \rightarrow \langle f_p|f_q \rangle = \delta(p-q).$
- Special wave functions: $\psi_k(x) = \langle x|k \rangle = \frac{1}{\sqrt{2\pi}} e^{ikx} \to f_k(x)$ and $\psi_p(x) = \langle x|p \rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{(i/\hbar)px} \to f_p(x).$
- Uncertainty or root mean square deviation $\Delta \Omega \rightarrow \sigma_{\Omega}$.

2.11 Bonus: The Momentum Space or the p-basis

The eigenvalue equation of the momentum operator P is

 $P|p\rangle = p|p\rangle$.

In the x-basis, we have

$$\langle x|P|p
angle = p \langle x|p
angle = p \psi_p(x)$$
 and
 $\langle x|P|p
angle = \int \langle x|P|y
angle \langle y|p
angle dy = -i\hbar \int \frac{d}{dx} \delta(x-y) \psi_p(y) dy.$

That leads to

$$-i\hbar \frac{d}{dx}\psi_p(x) = p\psi_p(x) \text{ or }$$
$$\frac{d}{dx}\psi_p(x) - \frac{ip}{\hbar}\psi_p(x) = 0,$$

with the solution

$$\langle x|p\rangle = \psi_p(x) = Ae^{(\frac{i}{\hbar})p \cdot x}.$$

Requiring that the basis vector $|p\rangle$ should be normalized

$$\langle p|q \rangle = \delta(p-q)$$

we have

$$\begin{split} \langle p|q\rangle &= \langle p|\left(\int |x\rangle\langle x|dx\right)|q\rangle \\ &= \int_{-\infty}^{\infty} \langle p|x\rangle\langle x|q\rangle \,dx \\ &= \int_{-\infty}^{\infty} A^*Ae^{-\left(\frac{i}{\hbar}\right)(p-q)x} \,dx \\ &= |A|^2 \int e^{-i(p-q)u} \,\hbar \,du \\ &= |A|^2(2\pi\hbar)\delta(p-q) \,= \,\delta(p-q) \end{split}$$

where $u = x/\hbar$ and $dx = \hbar du$.

Choosing $A \in \mathcal{R}$ and A > 0, we obtain

$$A = \frac{1}{\sqrt{2\pi\hbar}}$$

and

$$\langle x|p\rangle = \psi_p(x) = \frac{1}{(2\pi\hbar)^{1/2}} e^{\left(\frac{i}{\hbar}\right)p \cdot x}.$$

It is the bridge between the coordinate space and the momentum space. Let us consider a state vector $|\psi\rangle$. The state wave function in the x-basis is

$$\psi(x) \equiv \langle x | \psi \rangle \; .$$

And the state wave function in the p-basis becomes

 $\phi(p) \equiv \langle p | \psi \rangle \; .$

Then, we have a simple relation between $\psi(x)$ and $\phi(p)$

$$\begin{split} \psi(x) &= \langle x | \psi \rangle \\ &= \int_{-\infty}^{\infty} \langle x | p \rangle \langle p | \psi \rangle \, dp \\ &= \int_{-\infty}^{\infty} \psi_p(x) \phi(p) \, dp \\ &= \frac{1}{(2\pi\hbar)^{1/2}} \int_{-\infty}^{\infty} e^{\left(\frac{i}{\hbar}\right)p \cdot x} \phi(p) \, dp \end{split}$$

where $\phi(p)$ is the wave function in the *p*-basis and it is the Fourier transform of $\psi(x)$ multiplied by a constant $1/\sqrt{\hbar}$.

In the k-basis, the wave function becomes

$$\begin{split} \phi(k) &\equiv \langle k | \psi \rangle \\ &= \int_{-\infty}^{\infty} \langle k | x \rangle \langle x | \psi \rangle \ dx \ = \ \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} e^{-ik \cdot x} \psi(x) \ dx \ , \end{split}$$

which is the Fourier transform of the wave function in the x-basis

$$\begin{split} \psi(x) &\equiv \langle x | \psi \rangle \\ &= \int_{-\infty}^{\infty} \langle x | k \rangle \langle k | \psi \rangle \, dk \\ &= \int_{-\infty}^{\infty} \psi_k(x) \phi(k) \, dk \\ &= \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} e^{ik \cdot x} \phi(k) \, dk \end{split}$$

It is clear that $\psi(x)$ is the inverse Fourier transform of $\phi(k)$.

3.1 The Postulates of Quantum Mechanics

There are four most important postulates in quantum mechanics.

- (i) In quantum mechanics the state of a system at a fixed time is denoted by the state vector $|\Psi(t)\rangle$ that belongs to a Hilbert space.
- (ii) The observables x and p are replaced by operators X and P with the commutation relation $[X, P] = i\hbar$. The matrix elements of operators X and P in the x-basis become

$$\langle x|X|y\rangle = x\delta(x-y)$$
 and $\langle x|P|y\rangle = -i\hbar \frac{d}{dx}\delta(x-y)$.

Any operator Ω corresponding to the observable ω is obtained as the same function of the operators X and P. We usually symmetrize products of two operators. Thus we have

$$\omega(x,p) \to \Omega(X,P) \text{ and}$$
 $xp \to \frac{1}{2}(XP+PX).$

(iii) Quantum mechanics gives probabilistic results. If a system is in a state $|\psi\rangle$, then a measurement corresponding to Ω yields one of the eigenvalues ω_i of Ω with a probability

$$P(\omega_i) = \frac{|\langle \omega_i | \psi \rangle|^2}{\langle \psi | \psi \rangle},$$

$$\sum_i P(\omega_i) = 1.$$

The result of the measurement would be to change the state of the system to the eigenstate $|\omega_i\rangle$ of the operator Ω .

(iv) In quantum mechanics the state vector evolve with time according to Schrödinger equation

$$i\hbar \frac{d}{dt} |\Psi(t)
angle = H |\Psi(t)
angle$$

where H = H(X, P) = the Hamiltonian operator.

In relativistic mechanics, we know that the energy and momentum form a four vector denoted by

 $p^{\mu} = (E/c, +\vec{p})$ (contravariant) and $p_{\mu} = (E/c, -\vec{p})$ (covariant).

The relative negative sign is a consequence of the Lorentz group structure. Recall that the P operator in the x-basis becomes

$$P_{xy} \equiv \langle x | P | y \rangle = -i\hbar \frac{d}{dx} \delta(x-y) \quad \text{or} \quad P_x \to -i\hbar \frac{d}{dx}.$$

This suggests that

$$E \to i\hbar \frac{d}{dt}$$
 and $H|\Psi(t)\rangle = i\hbar \frac{d}{dt}|\Psi(t)\rangle$,

which is the Schrödinger equation.

Since H(X, P) is the operator corresponding to the total energy of the system, if $|\psi\rangle$ is an eigenstate with energy E, we can write

 $H|\psi\rangle = E|\psi\rangle$ (eigenvalue equation).

3.2 Implications of the Postulates

In quantum mechanics, a physics system is described with a state vector $|\Psi(t)\rangle$ belonging to a Hilbert space.

In the x basis,

- a state vector is represented by a wave function $\psi(x) \equiv \langle x | \psi \rangle$, and
- an operator (X, P, L or H) is represented with matrix elements $\Omega_{xy} \equiv \langle x | \Omega | y \rangle.$

The state vector is expanded with the basis vector $|x\rangle$

 $|\Psi(t)\rangle = \int |x\rangle \langle x|\Psi(t)\rangle \, dx$ (completeness relation),

and

$$\langle x|\Psi(t)\rangle = \Psi(x,t)$$

is the coefficient of expansion. This is also the wave function.

- The particles in microscopic systems spread out and the spread can be infinite.
- The quantity $|\Psi(x,t)|^2$ is the probability density at position x and at time t.
- The quantity $|\Psi(x,t)|^2 dx$ not only measures the probability of finding a particle between x and x + dx, but also how the probability changes with time.
- Since the state vectors define a Hilbert space, if $|\psi\rangle$ and $|\phi\rangle$ define two states of the system, then so does $\alpha |\psi\rangle + \beta |\phi\rangle$. This is called the principle of superposition.

The probabilistic nature of quantum mechanics of course implies two states $|\psi\rangle$ and $\alpha |\psi\rangle$ give the same probability of a particular measurement. Thus corresponding to each physical state $|\psi\rangle$, there exists a set of states $\alpha |\psi\rangle$ for all possible values of α which define a ray in the Hilbert space. Clearly for a physical state we assume

 $\langle \psi | \psi \rangle = 1$ or a Dirac delta function.

This still allows a ray of the form $e^{i\theta}|\psi\rangle$.

If a state is an eigenstate $|\omega_i\rangle$ of some operator Ω , then the corresponding measurement would definitely yield the value ω_i . This follows immediately from the fact that

$$P(\omega_i) = \frac{|\langle \omega_i | \psi \rangle|^2}{\langle \psi | \psi \rangle} = 1.$$

Let us consider the state formed by superposing two eigenstates $|\omega_1\rangle$ and $|\omega_2\rangle$ of the operator Ω .

The normalized state vector is

$$\psi\rangle = \frac{\alpha|\omega_1\rangle + \beta|\omega_2\rangle}{(|\alpha|^2 + |\beta|^2)^{1/2}} \,.$$

- If we make a measurement corresponding to Ω then the measurement would yield a value ω₁ with a probability |α|²/(|α|² + |β|²) and a value ω₂ with a probability |β|²/(|α|² + |β|²).
- Thus the measurement on a superposed state sometimes behaves like it is in one of the states and sometimes like in the other.

If an operator is degenerate, for example, Ω is doubly degenerate with eigenstates $|\omega, 1\rangle$ and $|\omega, 2\rangle$, then the probability that a measurement would yield an eigenvalue ω is given by

$$P(\omega) = \frac{1}{\langle \psi | \psi \rangle} \left[|\langle \omega, 1 | \psi \rangle|^2 + |\langle \omega, 2 | \psi \rangle|^2 \right] \,.$$

3.3 Expectation Value

Let us consider a physics system described by a state vector $|\psi\rangle$.

• The outcome of a measurement corresponding to operator Ω is an eigenvalue ω_i with probability $P(\omega_i)$

$$P(\omega_i) = \frac{|\langle \omega_i | \psi \rangle|^2}{\langle \psi | \psi \rangle} \,.$$

- Now suppose an infinite number of such experiments are performed. Then we obtain a variety of values with different probabilities.
- The statistical mean of this measurement is and define an average of the operator to be

$$\langle \Omega
angle = \sum_i P(\omega_i) \omega_i \,.$$

Clearly, therefore,

$$\begin{split} \langle \Omega \rangle &= \sum_{i} P(\omega_{i})\omega_{i} \\ &= \sum_{i} |\langle \omega_{i} | \psi \rangle|^{2} \omega_{i} \quad (|z|^{2} = z^{*}z) \\ &= \sum_{i} \langle \psi | \omega_{i} \rangle \langle \omega_{i} | \psi \rangle \omega_{i} \quad (\langle \psi | \omega_{i} \rangle = \langle \omega_{i} | \psi \rangle^{*}) \\ &= \sum_{i} \langle \psi | \Omega | \omega_{i} \rangle \langle \omega_{i} | \psi \rangle \quad \text{(eigenvalue equation)} \\ &= \langle \psi | \Omega \left(\sum_{i} |\omega_{i} \rangle \langle \omega_{i} | \right) | \psi \rangle \\ &= \langle \psi | \Omega | \psi \rangle \quad \text{with} \quad \sum_{i} |\omega_{i} \rangle \langle \omega_{i} | = \mathrm{I} \end{split}$$

where we have applied the completeness relation and have assumed that the state vector $|\psi\rangle$ is normalized.

This is the **expectation value** of the operator Ω in the state $|\psi\rangle$.

Expectation Value in the x-Basis

In the x-basis with $|x\rangle$, the state vector can be expanded as

$$|\psi\rangle = \left(\int |x\rangle\langle x|\right) |\psi\rangle \, dx = \int \psi(x) |x\rangle dx \,, \quad \text{where} \quad \psi(x) \equiv \langle x|\psi\rangle \,.$$

And the expectation value of Ω becomes

$$\begin{split} \langle \psi | \Omega | \psi \rangle &= \langle \psi | \left(\int |x\rangle \langle x| \, dx \right) (\Omega) \left(\int |y\rangle | \langle y| \, dy \right) | \psi \rangle \\ &= \int dx \int dy \, \langle \psi | x \rangle \langle x| \Omega | y \rangle \langle y| \psi \rangle \,. \end{split}$$

For example, the matrix elements of X and P are

$$\langle x|X|y\rangle = y\delta(x-y) = x\delta(x-y)$$
, and
 $\langle x|P|y\rangle = -i\hbar \frac{d}{dx}\delta(x-y)$.

Examples: (a) $\Omega = X$ and (b) $\Omega = P$ In the coordinate space we have a complete set of orthonormal basis $\langle x|y \rangle = \delta(x-y)$ (orthonormal), $\int |x \rangle \langle x| \, dx = I$ (completeness). The state vector $|\psi \rangle$ and operators (Ω) are represented with $\psi(x) \equiv \langle x|\psi \rangle$ (wave function), $\Omega_{xy} \equiv \langle x|\Omega|y \rangle$ (matrix element). (a) The expectation value of X becomes

$$egin{aligned} &\langle\psi|\left(\int|x
angle\langle x|\,dx
ight)(X)\left(\int|y
angle|\langle y|\,dy
ight)|\psi
ight)\ &=&\int dx\int dy\,\langle\psi|x
angle\langle x|X|y
angle\langle y|\psi
angle\ &=&\int dx\int dy\,\psi^*(x)\left[y\delta(x-y)
ight]\psi(y)\ &=&\int\psi^*(x)\left[x\psi(x)
ight]\,dx\,. \end{aligned}$$

(b) The expectation value of P becomes

$$\begin{split} \langle \psi | P | \psi \rangle &= \langle \psi | \left(\int |x\rangle \langle x| \, dx \right) (P) \left(\int |y\rangle | \langle y| \, dy \right) | \psi \rangle \\ &= \int dx \int dy \, \langle \psi | x \rangle \langle x | P | y \rangle \langle y | \psi \rangle \\ &= \int dx \int dy \, \psi^*(x) \left[-i\hbar \frac{d}{dx} \delta(x-y) \right] \psi(y) \\ &= -i\hbar \int \psi^*(x) \left[\frac{d}{dx} \psi(x) \right] dx \,, \end{split}$$

where

$$\langle x|P|y\rangle = -i\hbar \frac{d}{dx}\delta(x-y)$$
 where $P = \hbar K = -i\hbar D$

in the x-basis.

3.4 The Uncertainty Principle

Let A and B be two non-commuting operators with

$$[A,B] = i\hbar$$

As we have seen before, these are conjugate operators. Let ΔA be the root mean square deviation of the operator A. Thus

$$(\Delta A)^2 \equiv \langle A^2 \rangle - \langle A \rangle^2$$

Similarly let ΔB be the root mean square deviation of the operator B. Thus

$$(\Delta B)^2 = \langle B^2 \rangle - \langle B \rangle^2$$

then

$$\Delta A \Delta B \ge \frac{\hbar}{2}$$
 (Heisenberg's uncertainty principle)

First of all notice that

$$(\Delta \Omega)^{2} = \langle \Omega^{2} \rangle - \langle \Omega \rangle^{2}$$

= $\langle \Omega^{2} - 2\Omega \langle \Omega \rangle + \langle \Omega \rangle^{2} \rangle$
= $\langle (\Omega - \langle \Omega \rangle)^{2} \rangle$
 $\Delta \Omega \equiv \langle (\Omega - \langle \Omega \rangle)^{2} \rangle^{1/2} = [\Omega^{2} \rangle - \langle \Omega \rangle^{2}]^{1/2}$

where (i) $\Delta\Omega$ is the standard deviation which measures the average fluctuation around the mean.

N.B. (i) ΔΩ is often called the root mean squared deviation or the uncertainty in Ω.
(ii) (ΔΩ)² is called the mean square deviation or the variance.

Let us define

$$\delta A \equiv A - \langle A \rangle$$
 and $\delta B \equiv B - \langle B \rangle$.

Then we have $[\delta A, \delta B] = [A, B] = i\hbar$. Furthermore,

$$\begin{split} \Delta A)^2 (\Delta B)^2 &= \langle (A - \langle A \rangle)^2 \rangle \langle (B - \langle B \rangle)^2 \rangle \\ &= \langle (\delta A)^2 \rangle \langle (\delta B)^2 \rangle \\ &\geq |\langle \delta A \delta B \rangle|^2 \text{ (Schwartz inequality)} \\ &= |\langle \frac{1}{2} (\delta A \delta B + \delta B \delta A) + \frac{1}{2} (\delta A \delta B - \delta B \delta A) \rangle|^2 \\ &= |\langle \frac{1}{2} (\delta A \delta B + \delta B \delta A) + \frac{1}{2} [\delta A, \delta B] \rangle|^2 \\ &= |\langle \frac{1}{2} (\delta A \delta B + \delta B \delta A) + \frac{1}{2} (i\hbar) \rangle|^2 \\ &= |\langle \frac{1}{2} (\delta A \delta B + \delta B \delta A) \rangle|^2 + \frac{\hbar^2}{4} \end{split}$$

Therefore,

$$\Delta A \Delta B \ge \frac{\hbar}{2}.$$

- This tells us that for any two conjugate variables, there is a minimum of uncertainty associated with their measurements.
- Note that the Schwartz inequality becomes an equality if the vectors are parallel to each other. Thus

$$\delta A |\psi\rangle = \lambda \delta B |\psi\rangle$$

and

$$\frac{1}{2} \langle \psi | (\delta A \delta B + \delta B \delta A) | \psi \rangle = \frac{1}{2} \langle \psi | \lambda^* \delta B \delta B + \lambda \delta B \delta B) | \psi \rangle$$
$$= \frac{1}{2} (\lambda^* + \lambda) \langle \psi | \delta B \delta B | \psi \rangle$$
$$= \frac{1}{2} (\lambda^* + \lambda) \langle \delta B \psi | \delta B \psi \rangle.$$