PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 8, February 23, 2021 (Tuesday)

e Handout: Solutions to Problem Set 3.
e Reading: Mathematical Tools (Chapter 3 in Griffiths)

e Assignment: Problem Set 4 due February 26 (Friday).

Submit your homework assignments to Canvas.




Topics for Today: Mathematical Tools

2.% Introduction to the Uncertainty Principle

2.8 Operators in Infinite Dimensions

Topics for Next Lecture: Mathematical Tools
2.9 Hilbert Space and Fourier Transform
2.10 The Uncertainty Principle

2.11 The Momentum Space or the p—basis




2.* Introduction to the Uncertainty Principle

Let A and B be two non-commuting operators with
(A, B] =ih

As we have seen before, these are conjugate operators. Let AA be the

root mean square deviation of the operator A. Thus
(AA)? = (A7) - (4)°

Similarly let AB be the root mean square deviation of the operator B.
Thus

(AB)* = (B*) — (B)*

(Heisenberg’s uncertainty principle)




First of all notice that
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where (i) A€ is the standard deviation which measures the average

fluctuation around the mean.

N.B. (i) AQ is often called the root mean squared deviation or the
uncertainty in 2.

(i) (AQ)? is called the mean square deviation or the variance.




Expectation Value in the Coordinate Space

In the coordinate space, the state vector becomes a wave function v (x)
Y(x) = (x|tp) (similar to v; = (e;|v))
that is the inner product of |¢) with the normalized basis vector |z).

The vectors |x) and |y) form a complete set of orthonormal basis

/ |z)(x|dr =1 (completeness relation) .

And the expectation value of {2 becomes

wiol) = (ol ([ la)telde) 91 ( [ Wl a) 1)

/ iz / dy 6(x — y) ($]z){z|2y) (y|)
/¢ ) (2| Q2) () da




2.8 Operators in Infinite Dimensions

Let us consider systems with discrete basis vectors.

e We can expand every vector as a linear combination of a complete
set of orthonormal basis

[v) (Zleiﬂez‘) v) = Y feilv)les)

) )
N

= Z’Ui\eﬁ where v; = (e;|v).

7

It is similar to ordinary vector analysis

Uzg v;T; Where v;=U-I;.

1

e And every operator can be represented with matrix elements

Q;; = (e;|Q0e;) where Q=X P L, or H.




Now let us consider the x-basis with a continuous variable x.

e We can expand every vector in terms of a complete set of
orthonormal basis

n = ([ 1ol in
[ tal1) la) do

/ f(x)|z)dx where f(x)= (z|f).

e Lvery operator can be represented with matrix elements

where Q =X ,P.L,or H .




We are now familiar with kets |f) and the basis vectors |z). Let us ask

how linear operators act on this space

Qlf) =lg)

Since |f) may be expressed as

H=t1) = ([ o) 1) = [ s a

we can think of the operators as taking the function f(z) into g(z).
Let us consider D as the operator which takes f(x) to df /dx, then

lj) = 1Zy=1

df \ _ df(x)

b = (@ daz>_ dx

and

D / (2| Dly) (vl f) dy = / (2| Dly) £ (y) dy




We have found that if D|f) = |df/fz), then

On the other hand, we have
_d _ df(y)
— o [ -wiw dy= [ sa-T 2 day.

Clearly, that leads to the matrix element of D in the x-basis

Dyy = (21Dly) = 6z —y).

dx
In finite dimensional vector spaces, we know that D is Hermitian if
D' = D. However we have
i d

d(y — :1:)] = —%5(.% —y)=—D,,.

%k %k d
(D'),, = D, = (4] Dla)* = [d—y




In fact we see that the operator D is naively anti-Hermitian. However,
we can easily make it Hermitian by defining

K =—iD then K=K

and would be naively Hermitian. But we also know that for an
operator to be Hermitian if must satisfy
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Thus we see that only if

g"(x) f(z)|g =0

then the operator K would be Hermitian.

If the functions are like the displacements of a string which is fixed,

then of course this product vanishes.

However, we can also think of periodic functions such that

fb) =
g(b) =

then also this vanishes and the operator K is Hermitian.




In quantum mechanics, we often work with —oo < x < co. A function

kx

of the form e*** raises the following question:

e—zkaze—l—qu’iooo — 0?

We can write

e_i(k_Q)xBOOO = —i(k—q)/ e~ k=0T g

— OO

= 27i(k—q)o(k—q)=0.

N.B. zd(x) = 0 as a distribution.

This shows that K is Hermitian in this space. Let us now calculate the
eigenvalues of K. It would seem formidable since K is an infinite
matrix and, therefore, the characteristic equation would involve

polynomials of infinite order.




Let us consider the eigenvector of K as |k) with the eigenvalue k
In the x-basis, the eigenvalue equation becomes
(z|Kk) = k{z|k)
[ Ikl ik dy = kalb

Defining (x|k) = ¥ (x), we have

/ il (z —v)¥r(y) dy kg (x)

dx
d

or -— z%@bk(x) k()

Therefore, 1 (z) = Ae'*® and any real number k is an eigenvalue with

Yr(x) as the eigenfunction.




We have found a differential equation in the standard form

%@bk(x) — ik (x) =0 where Yp(x) = (x|k).

The characteristic equation of this linear differential equation is
A—1tk=0 with \=1k.

Therefore, the solution is ¢ (z) = Ae?® = Ae'k®,

Here A is an arbitrary constant and we can choose A = 1/4/27 so that
the vector |k) is normalized:

Mo = [ t)ela)de = [ vife)yo
‘A|2/ e—ikxeiqa: dr — |A‘2/ e—i(k—q):v dx
[AP(2m)0(k —q) = 6(k—q).
Choosing A € R, A > 0, we obtain A =1/v/2m.




