
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 8, February 23, 2021 (Tuesday)

• Handout: Solutions to Problem Set 3.

• Reading: Mathematical Tools (Chapter 3 in Griffiths)

• Assignment: Problem Set 4 due February 26 (Friday).

Submit your homework assignments to Canvas.
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Topics for Today: Mathematical Tools

2.* Introduction to the Uncertainty Principle

2.8 Operators in Infinite Dimensions

Topics for Next Lecture: Mathematical Tools

2.9 Hilbert Space and Fourier Transform

2.10 The Uncertainty Principle

2.11 The Momentum Space or the p−basis
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2.* Introduction to the Uncertainty Principle

Let A and B be two non-commuting operators with

[A,B] = ih̄

As we have seen before, these are conjugate operators. Let ∆A be the

root mean square deviation of the operator A. Thus

(∆A)2 ≡ 〈A2〉 − 〈A〉2

Similarly let ∆B be the root mean square deviation of the operator B.

Thus

(∆B)2 = 〈B2〉 − 〈B〉2

then

∆A∆B ≥ h̄

2
(Heisenberg′s uncertainty principle)
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First of all notice that

(∆Ω)2 = 〈Ω2〉 − 〈Ω〉2

= 〈Ω2 − 2Ω〈Ω〉+ 〈Ω〉2〉

= 〈(Ω− 〈Ω〉)2〉

(∆Ω) ≡ 〈(Ω− 〈Ω〉)2〉1/2

where (i) ∆Ω is the standard deviation which measures the average

fluctuation around the mean.

N.B. (i) ∆Ω is often called the root mean squared deviation or the

uncertainty in Ω.

(ii) (∆Ω)2 is called the mean square deviation or the variance.

4



Expectation Value in the Coordinate Space

In the coordinate space, the state vector becomes a wave function ψ(x)

ψ(x) ≡ 〈x|ψ〉 (similar to vi = 〈ei|v〉)

that is the inner product of |ψ〉 with the normalized basis vector |x〉.

The vectors |x〉 and |y〉 form a complete set of orthonormal basis∫
|x〉〈x| dx = I (completeness relation) .

And the expectation value of Ω becomes

〈ψ|Ω|ψ〉 = 〈ψ|
(∫

|x〉〈x| dx
)
|Ω|
(∫

|y〉|〈y| dy
)
|ψ〉

=

∫
dx

∫
dy δ(x− y) 〈ψ|x〉〈x|Ω|y〉〈y|ψ〉

=

∫
ψ∗(x)〈x|Ω|x〉ψ(x) dx .
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2.8 Operators in Infinite Dimensions

Let us consider systems with discrete basis vectors.

• We can expand every vector as a linear combination of a complete

set of orthonormal basis

|v〉 =

(
N∑
i

|ei〉〈ei|

)
|v〉 =

N∑
i

〈ei|v〉|ei〉

=

N∑
i

vi|ei〉 where vi ≡ 〈ei|v〉 .

It is similar to ordinary vector analysis

~v =
∑
i

vix̂i where vi ≡ ~v · x̂i .

• And every operator can be represented with matrix elements

Ωij = 〈ei|Ω|ej〉 where Ω = X ,P ,L , or H .
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Now let us consider the x-basis with a continuous variable x.

• We can expand every vector in terms of a complete set of

orthonormal basis

|f〉 =

(∫
|x〉〈x| dx

)
|f〉

=

∫
〈x|f〉 |x〉 dx

=

∫
f(x) |x〉 dx where f(x) ≡ 〈x|f〉 .

• Every operator can be represented with matrix elements

Ωxy = 〈x|Ω|y〉

where Ω = X ,P ,L, or H .
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We are now familiar with kets |f〉 and the basis vectors |x〉. Let us ask

how linear operators act on this space

Ω|f〉 = |g〉

Since |f〉 may be expressed as

|f〉 = I · |f〉 =

(∫
|x〉〈x|dx

)
|f〉 =

∫
f(x)|x〉 dx ,

we can think of the operators as taking the function f(x) into g(x).

Let us consider D as the operator which takes f(x) to df/dx, then

D|f〉 = | df
dx
〉 = |g〉

〈x|D|f〉 = 〈x| df
dx
〉 =

df(x)

dx
and

〈x|D|f〉 =

∫
〈x|D|y〉〈y|f〉 dy =

∫
〈x|D|y〉f(y) dy =

df(x)

dx
.
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We have found that if D|f〉 = |df/fx〉, then∫
〈x|D|y〉f(y) dy =

df(x)

dx
.

On the other hand, we have

d

dx
f(x) =

d

dx

∫
δ(x− y)f(y) dy =

∫
δ(x− y)

df(y)

dy
dy .

Clearly, that leads to the matrix element of D in the x-basis

Dxy ≡ 〈x|D|y〉 =
d

dx
δ(x− y) .

In finite dimensional vector spaces, we know that D is Hermitian if

D† = D. However we have

(D†)xy = D∗yx = 〈y|D|x〉∗ =

[
d

dy
δ(y − x)

]∗
= − d

dx
δ(x− y) = −Dxy .
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In fact we see that the operator D is naively anti-Hermitian. However,

we can easily make it Hermitian by defining

K = −iD then K† = K

and would be naively Hermitian. But we also know that for an

operator to be Hermitian if must satisfy

〈g|K|f〉 = 〈f |K|g〉∗

L.H.S. = 〈g|K|f〉

=

∫ b

a

dx

∫ b

a

dy 〈g|x〉〈x|K|y〉〈y|f〉

=

∫ b

a

dx

∫ b

a

dy g∗(x)(−i d
dx
δ(x− y))f(y)

=

∫ b

a

g∗(x)(−i)df(x)

dx
dx

= −i
∫ b

a

g∗(x)
df(x)

dx
dx .

10



R.H.S. = 〈f |K|g〉∗

= [

∫ b

a

dx

∫ b

a

dy 〈f |x〉〈x|K|y〉〈y|g〉]∗

= [

∫ b

a

dx

∫ b

a

dyf∗(x)(i
d

dy
δ(x− y))g(y)]∗

= [

∫ b

a

dxf∗(x)(−i)dg(x)

dx
]∗

= i

∫ b

a

dx
dg∗(x)

dx
f(x)dx

= i

∫ b

a

dx[
d

dx
(g∗(x)f(x))− g∗(x)

df(x)

dx
]

= ig∗(x)f(x)|ba − i
∫ b

a

g∗(x)
df(x)

dx
dx .

11



Thus we see that only if

g∗(x)f(x)|ba = 0

then the operator K would be Hermitian.

If the functions are like the displacements of a string which is fixed,

then of course this product vanishes.

However, we can also think of periodic functions such that

f(b) = f(a) ,

g(b) = g(a) ,

then also this vanishes and the operator K is Hermitian.
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In quantum mechanics, we often work with −∞ ≤ x ≤ ∞. A function

of the form eikx raises the following question:

e−ikxe+iqx|∞−∞ = 0?

We can write

e−i(k−q)x|∞−∞ = −i(k − q)
∫ ∞
−∞

e−i(k−q)x dx

= −2πi(k − q)δ(k − q) = 0 .

N.B. xδ(x) = 0 as a distribution.

This shows that K is Hermitian in this space. Let us now calculate the

eigenvalues of K. It would seem formidable since K is an infinite

matrix and, therefore, the characteristic equation would involve

polynomials of infinite order.
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Let us consider the eigenvector of K as |k〉 with the eigenvalue k

K|k〉 = k|k〉 .

In the x-basis, the eigenvalue equation becomes

〈x|K|k〉 = k〈x|k〉∫
〈x|K|y〉〈y|k〉 dy = k〈x|k〉

Defining 〈x|k〉 = ψk(x), we have∫
−i d
dx
δ(x− y)ψk(y) dy = kψk(x)

or − i d
dx
ψk(x) = kψk(x)

Therefore, ψk(x) = Aeikx and any real number k is an eigenvalue with

ψk(x) as the eigenfunction.
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We have found a differential equation in the standard form

d

dx
ψk(x)− ikψk(x) = 0 where ψk(x) ≡ 〈x|k〉 .

The characteristic equation of this linear differential equation is

λ− ik = 0 with λ = ik .

Therefore, the solution is ψk(x) = Aeλx = Aeikx.

Here A is an arbitrary constant and we can choose A = 1/
√

2π so that

the vector |k〉 is normalized:

〈k|q〉 =

∫
〈k|x〉〈x|q〉 dx =

∫
ψ∗k(x)ψq(x) dx

= |A|2
∫

e−ikxeiqx dx = |A|2
∫

e−i(k−q)x dx

= |A|2(2π)δ(k − q) = δ(k − q) .

Choosing A ∈ R, A > 0, we obtain A = 1/
√

2π.
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