
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 5, February 09, 2021 (Tuesday)

• Handout: Solutions to Problem Set 1.

• Reading: Mathematical Tools (Chapter 3 in Griffiths)

• Assignment: Problem Set 2 due February 10 (Wednesday).

Submit your homework assignments to Canvas.
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Topics for Today: Mathematical Tools

2.4 Linear Operators

2.5 Eigenvectors and Eigenvalues

Topics for Next Lecture: Mathematical Tools

2.6 Expectation Value

2.7 The Uncertainty Principle

2.8 Dirac Delta Functions

2.9 Operators in Infinite Dimensions
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2.4 Linear Operators

An operator denotes a mathematical operation transforms a vector into

another vector. Thus if |v〉 and |v′〉 are two ket vectors and if Ω is an

operator which takes |v〉 to |v′〉, we write

Ω|v〉 = |v′〉

That means Ω acting on |v〉 transforms it to |v′〉.

Operators can also act on bra vectors to produce other bra vectors,

〈v|Ω = 〈v′′|.

However, an operator cannot act on a ket vector to generate a bra

vector or vice versa.
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Linear operators are operators which obey the following rules:

(i) Ω(α|vi〉) = α(Ω|vi〉),

(ii) Ω(α|vi〉+ β|vj〉) = α(Ω|vi〉) + β(Ω|vj〉),

(iii) (α〈vi|)Ω = (〈vi|Ω)α,

(iv) (α〈vi|+ β〈vj |)Ω = (〈vi|Ω)α+ (〈vj |Ω)β,

where α and β are scalars.

The simplest linear operator is the identity operator I which leaves

every vector invariant. Thus

I|v〉 = |v〉,

〈v|I = 〈v|.

The ket and bra vectors are column and row vectors respectively, the

operators would be represented by square matrices with N2 elements.
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A knowledge of the transformation properties of the basis vectors

determines the matrix elements of the operator completely. For

example, if

Ω|ei〉 = |e′i〉,

Ωji = 〈ej |Ω|ei〉 = 〈ej |e′i〉.

Thus if |e′i〉 is known, this implies that all Ωji’s are known. These are

called the matrix elements of the operator Ω in this particular basis.

Once the Ωji’s are known, the transformation of any vector under Ω

can be easily found out. For example,

|v〉 =
∑
i

vi|ei〉,

Ω|v〉 = |v′〉 =
∑
i

v′i|ei〉.
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Then the transformed components can be obtained as

v′i = 〈ei|Ω|v〉,

= 〈ei|Ω
∑
j

vj |ej〉,

=
∑
j

vj〈ei|Ω|ej〉 =
∑
j

vjΩij =
∑
j

Ωijvj .

When two or more operators act on a vector, the order in which they

act is important. For example,

ΛΩ|v〉

stands for the operation of Ω on |v〉 followed by the action of the

operator Λ. In general,

ΛΩ|v〉 6= ΩΛ|v〉 .
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This is clearly reflected in the fact that matrix multiplication is not

commutative. The object

ΛΩ− ΩΛ ≡ [Λ,Ω]

is called the commutator of Λ with Ω and is in general nonzero. When

it vanishes, the operators are said to commute.

We can also define the inverse (Ω−1) of an operator Ω such that the

operation of Ω on any vector followed by the inverse leaves the vector

unchanged. Thus

Ω−1Ω|v〉 = |v〉,

Ω−1Ω = I = identity operator.
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Example 1: The identity operator

|v〉 =
∑

vi|ei〉,

vi = 〈ei|v〉,
Thus,

|v〉 =
∑

vi|ei〉

=
∑
|ei〉vi

=
∑
|ei〉〈ei|v〉 = I |v〉 ,∑

|ei〉〈ei| = I = identity operator, (The completeness relation.)

〈ej |I|ek〉 = 〈ej |(
∑
i

|ei〉〈ei|)|ek〉

=
∑
i

〈ej |ei〉〈ei|ek〉 =
∑
i

δjiδik = δjk .
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Example 2: The projection operator

I =
∑
i

|ei〉〈ei| =
∑
i

Pi ,

Pi = |ei〉〈ei| = projection operator ,

|v〉 =
∑
j

vj |ej〉 ,

Pi|v〉 =
∑
j

vjPi|ej〉

=
∑
j

vj |ei〉〈ei|ej〉

=
∑
j

vj |ei〉δij

= vi|ei〉 .
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Thus, Pi|v〉 i.e. the projection operator acting on a vector projects out

its component.

PiPj = |ei〉〈ei|ej〉〈ej |

= |ei〉δij〈ej |

= |ei〉〈ei|δij
= Piδij .

Physically, what this means is that since Pj projects out the jth

component of a vector, operation of Pi following Pj would be zero

unless both i and j math. Symbolically, we can write

P 2 = P.

Operators with such properties are called idempotent operators.
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Adjoint of an operator:

If an operator Ω acting on a ket vector |v〉 gives a new ket vector |v′〉,
then the adjoint of Ω is defined to be that operator which transforms

the bra 〈v| to 〈v′|,

Ω|v〉 = |v′〉 = |Ωv〉,

〈Ωv| = 〈v′| = (|v′〉)† = (Ω|v〉)† = 〈v|Ω†,

Ω†ij = 〈ei|Ω†|ej〉

= 〈Ωei|ej〉 = 〈ej |Ωei〉∗ = 〈ej |Ω|ei〉∗ = Ω∗ji

where Ω† is the adjoint of Ω and Ω∗ji is the hermitian conjugate of Ωij .
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Exercise: We can show that the adjoint of a product of operators is

the product of the adjoint of the operators in the reversed order

(Ω1Ω2 · · ·ΩN )† = Ω†N · · ·Ω
†
2Ω†1

Hermitian operators

An operator is Hermitian if it is self adjoint, i.e.,

Ω = Ω†

An operator is anti-Hermitian if

Ω = −Ω†

An operator is said to be unitary if

ΩΩ† = Ω†Ω = I = identity

This implies that the adjoint of a unitary operator is its inverse.
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Exercise: Show that a unitary operator U can be written as

U = eiH

where H is a Hermitian operator.

Theorem

Unitary operators preserve the inner product between vectors they act

on.

Let

U |v〉 = |v′〉, and,

〈w|U† = 〈w′|,

then

〈w′|v′〉 = 〈w|U†U |v〉 = 〈w|I|v〉 = 〈w|v〉.
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2.5 Eigenvectors and Eigenvalues

In general, an operator changes a vector into a new vector

Ω|v〉 = |v′〉 , (transformation) .

If the effect of an operator acting on a vector is to multiply it by a

scalar, i.e.,

Ω|v〉 = ω|v〉 , (eigenvalue equation) ,

where ω is a scalar.

Note that

• |v〉 is an eigenvector of the operator Ω,

• The eigenvalue is ω.

• The normalized eigenvector is

|u〉 =
|v〉

〈v|v〉1/2
, or ~u =

~v

|~v|
=

~v

(~v · ~v)1/2
.
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It is clear that we can write the above equation as

(Ω− ω)|v〉 = 0.

and

〈ei|(Ω− ω)|v〉 =
∑
j

vj〈ei|(Ω− ω)|ej〉 = 0 , or

∑
j

(Ωij − ωδij)vj = 0 , with |v〉 =
∑
j

vj |ej〉 .

This is a set of homogeneous equations. A nontrivial solution exists if

the determinant of the coefficient matrix vanishes, i.e.

det(Ωij − ωδij) = 0 .

In an N-dimensional vector space, it is an Nth order polynomial

equation in ω. This is the characteristic equation with N solutions for

ω as the eigenvalues of the operator Ω.
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Example:

Let us consider an operator in V 3,

Ω =


1 0 0

0 0 2

0 2 0

 .

The characteristic equation is

det(Ωij − ωδij) = det


1− ω 0 0

0 −ω 2

0 2 −ω

 = 0 .

That leads to

(1− ω)(ω2 − 4) = 0 or (ω − 1)(ω + 2)(ω − 2) = 0 , with ω = 1, 2,−2.

Let us choose ω1 = 2, ω2 = 1, ω3 = −2 in the descending order.
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For ω = ω1 = 2, we have

Ω|a〉 = ω1|a〉 or


1 0 0

0 0 2

0 2 0




a1

a2

a3

 = 2


a1

a2

a3


with the eigenvector |a〉

|a〉 =


a1

a2

a3

 .

That leads to three equations

a1 = 2a1 , 2a3 = 2a2 , 2a2 = 2a3

with a1 = 0, a3 = a2, and a2 is arbitrary.
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Thus the eigenvector corresponding to eigenvalue ω1 = 2 is

|a〉 =


0

a2

a2

 .

We can utilize the arbitrariness in a2 to choose a2 ∈ R, a2 > 0 and

define a normalized eigenvector

|u1〉 = |ω1〉 =
|a〉√
〈a|a〉

=
1√
2a2


0

a2

a2

 =
1√
2


0

1

1


such that 〈ω1|ω1〉 = 1.
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For ω = ω2 = 1, we have

Ω|b〉 = ω2|b〉 or


1 0 0

0 0 2

0 2 0




b1

b2

b3

 =


b1

b2

b3


with the eigenvector |b〉

|b〉 =


b1

b2

b3

 .

That leads to three equations

b1 = b1 , 2b3 = b2 , 2b2 = b3

with b2 = 0, b3 = 0, and b2 is arbitrary.
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Thus the eigenvector corresponding to eigenvalue ω2 = 1 is

|b〉 =


b1

0

0

 .

We can utilize the arbitrariness in b1 to choose b1 ∈ R, b1 > 0 and

define a normalized eigenvector

|u2〉 = |ω2〉 =
|b〉√
〈b|b〉

=
1

b1


b1

0

0

 =


1

0

0


such that 〈ω2|ω2〉 = 1.
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For ω = ω3 = −2, we have

Ω|c〉 = ω3|c〉 or


1 0 0

0 0 2

0 2 0




c1

c2

c3

 = −2


c1

c2

c3


with the eigenvector |c〉

|c〉 =


c1

c2

c3

 .

That leads to three equations

c1 = −2c1 , 2c3 = −2c2 , 2c2 = −2c3

with c1 = 0, c3 = −c2, and c2 is arbitrary.
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Thus the eigenvector corresponding to eigenvalue ω3 = −2 is

|c〉 =


0

c2

−c2

 .

We can utilize the arbitrariness in c2 to choose c2 ∈ R, c2 > 0 and

define a normalized eigenvector

|u3〉 = |ω1〉 =
|c〉√
〈c|c〉

=
1√
2c2


0

c2

−c2

 =
1√
2


0

1

−1


such that 〈ω3|ω3〉 = 1.
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Summary

The operator Ω has eigenvalues ω1 = 2, ω2 = 1, and ω3 = −2, and

normalized eigenvectors

|ω1〉 =
1√
2


0

1

1

 , |ω2〉 =


1

0

0

 , |ω3〉 =
1√
2


0

1

−1

 .

Since the eigenvectors |ω1〉, |ω2〉, and |ω3〉 form a complete set of

orthonormal basis vectors, a unitary matrix U can be built out of these

eigenvectors and can be expressed as

U = (|ω1〉|ω2〉|ω3〉) =


0 1 0

1/
√

2 0 1/
√

2

1/
√

2 0 −1/
√

2

 .
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