PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 5, February 09, 2021 (Tuesday)

e Handout: Solutions to Problem Set 1.
e Reading: Mathematical Tools (Chapter 3 in Griffiths)

e Assignment: Problem Set 2 due February 10 (Wednesday).

Submit your homework assignments to Canvas.




Topics for Today: Mathematical Tools

2.4 Linear Operators

2.5 Eigenvectors and Eigenvalues

Topics for Next Lecture: Mathematical Tools
2.6 Expectation Value

2.7 The Uncertainty Principle

2.8 Dirac Delta Functions

2.9 Operators in Infinite Dimensions




2.4 Linear Operators

An operator denotes a mathematical operation transforms a vector into
another vector. Thus if |v) and |v") are two ket vectors and if 2 is an

operator which takes |v) to |[v), we write
Qv) = [v)

That means () acting on |v) transforms it to |v’).

Operators can also act on bra vectors to produce other bra vectors,

(v|Q = (v"].

However, an operator cannot act on a ket vector to generate a bra

vector or vice versa.




Linear operators are operators which obey the following rules:
(1) Qafvi)) = a(Qvs)),

(i) Q(cvi) + Blvy)) = a(Qvi)) + B(Q|v))),

(iii) (o(vi)Q = ({vi[Q)ev,

(iv) (e(ui| + B(v;[)2 = ((vi|Q2) e + ((v;£2) 3,

where o and [ are scalars.

The simplest linear operator is the identity operator I which leaves

every vector invariant. Thus
Ifv) [v),
(v| I (v].

The ket and bra vectors are column and row vectors respectively, the

operators would be represented by square matrices with N? elements.




A knowledge of the transformation properties of the basis vectors
determines the matrix elements of the operator completely. For

example, if

Qle;) = eq),

1

Qi = (e;]Qes) = (ejle]).

Thus if |e}) is known, this implies that all £2,;’s are known. These are
called the matrix elements of the operator {2 in this particular basis.
Once the €);;’s are known, the transformation of any vector under {2

can be easily found out. For example,

|U> Zvi‘ei>7

Qlv)




Then the transformed components can be obtained as

(i v),

<€z‘|QZ’Uj|€j>,

When two or more operators act on a vector, the order in which they
act is important. For example,

AQ|v)

stands for the operation of (2 on |v) followed by the action of the
operator A. In general,

AQ|v) # QA|v) .




This is clearly reflected in the fact that matrix multiplication is not

commutative. The object
AQ — QA = [A, Q]
is called the commutator of A with €2 and is in general nonzero. When

it vanishes, the operators are said to commute.

We can also define the inverse (Q271) of an operator  such that the
operation of {2 on any vector followed by the inverse leaves the vector

unchanged. Thus

Q~1Qfv) [0),
Q10 I = identity operator.




Example 1: The identity operator

Zv’i|ei>7
(ei]v),

identity operator, (The completeness relation.)

<€j\(Z ei){ei])lex)

Z<63|6@ (eiler) 259@5”“ = 0 -

1




Example 2: The projection operator

2 leieil =3 P,
i i
le;){e;| = projection operator,

> viles),

J

> vPile;)

j

> vjles)eiles)
j

> vjlei)ds;
j

Ui|€i> .




Thus, P;|v) i.e. the projection operator acting on a vector projects out

its component.

P, P; e;){eilej)(e;l
e;)0ij{e;]
ei)(€eildi
PZ5’I,] .

Physically, what this means is that since P; projects out the jth

component of a vector, operation of P; following P; would be zero

unless both 2 and § math. Symbolically, we can write
P?=P.

Operators with such properties are called idempotent operators.




Adjoint of an operator:

If an operator €2 acting on a ket vector |v) gives a new ket vector |v'),
then the adjoint of €2 is defined to be that operator which transforms
the bra (v| to (v/[,
Qo) = ) =),
(| = (W]= ()= (Qv)" = (v|Q,
O = {eile;)
= (Qeilej) = (e|Qe:)™ = (ej[Qes)™ =

where Q7 is the adjoint of 2 and (2%, is the hermitian conjugate of €2;;.




Exercise: We can show that the adjoint of a product of operators is
the product of the adjoint of the operators in the reversed order

(21 - Qn)t = ij . Q%QI

Hermitian operators

An operator is Hermitian if it is self adjoint, i.e.,
Q=Qf
An operator is anti-Hermitian if

Q=-0f

An operator is said to be unitary if
QO = QTQ = T = identity

This implies that the adjoint of a unitary operator is its inverse.




Exercise: Show that a unitary operator U can be written as
U=et
where H is a Hermitian operator.

Theorem

Unitary operators preserve the inner product between vectors they act

O1l.

Let

Ulv) = [|v'), and,
(w|UT (w'],

(w'[v') = (w|UTUv) = (w|I]v) = (wlv).




2.5 Eigenvectors and Eigenvalues

In general, an operator changes a vector into a new vector
Qv) = [v"), (transformation).

If the effect of an operator acting on a vector is to multiply it by a

scalar, i.e.,
Qlv) = wlv), (eigenvalue equation),

where w 1is a scalar.
Note that

e |v) is an eigenvector of the operator €2,
e The eigenvalue is w.

e The normalized eigenvector is




It is clear that we can write the above equation as

(Q —w)|v) = 0.

(€| (2 — w)[v) > viel(@ —w)le;) =0, or
J
Z(Qw — wdb-j)vj O, with ‘U> = Z ’Uj‘@j> .
J J
This is a set of homogeneous equations. A nontrivial solution exists if

the determinant of the coefficient matrix vanishes, i.e.

det(Qz-j — w5¢j> =0.

In an N-dimensional vector space, it is an Nth order polynomial
equation in w. This is the characteristic equation with N solutions for

w as the eigenvalues of the operator (2.




Example:

Let us consider an operator in V3,

1 0 O
Q=10 0 2
0 2 0

The characteristic equation is

det(Qij — w5ij) — det

That leads to
(1-w)(w*—=4)=0 or (w—1(w+2)(w—-2)=0, withw=1,2,-2.

Let us choose wy = 2, wy = 1, wy3 = —2 in the descending order.




For w = w; = 2, we have

Qla) = wy|a) or

with the eigenvector |a)

That leads to three equations
al — 2&1 y 2&3 = 2&2 y 2&2 = 20,3

with a1 = 0, ag = a9, and as is arbitrary.




Thus the eigenvector corresponding to eigenvalue w; = 2 is

0
a) = a2
a2

We can utilize the arbitrariness in as to choose as € R, as > 0 and

define a normalized eigenvector

) 1
(ala)  V2as

jw1) =

such that (wq|wy) = 1.




For w = wy = 1, we have

Qlb) = wy|b) or

with the eigenvector |b)

That leads to three equations
by =01, 2b3 =02, 202 =103

with by = 0, b3 = 0, and b, is arbitrary.




Thus the eigenvector corresponding to eigenvalue wo = 1 is

b1
)= 0
0

We can utilize the arbitrariness in b; to choose b; € R, by > 0 and

define a normalized eigenvector

ug) = |wa2) =

such that (ws|ws) = 1.




For w = w3 = —2, we have

Qlc) = wsl|c)  or

with the eigenvector |c)

That leads to three equations
cp = —2c1, 2¢c3=—2cy, 2c9= —2c3

with ¢; = 0, c3 = —c9, and ¢y is arbitrary.




Thus the eigenvector corresponding to eigenvalue w3 = —2 is

0
e) =

We can utilize the arbitrariness in ¢y to choose c5 € R, co > 0 and

define a normalized eigenvector

o 1
(o) Ve

ug) = |wi) =

such that (ws|ws) = 1.




Summary

The operator €2 has eigenvalues w; = 2, wy = 1, and w3 = —2, and

normalized eigenvectors

0
1 1

wy) = NG 1 |, |we)= o |wsg) = 7

—1

Since the eigenvectors |w1), |w2), and |ws) form a complete set of
orthonormal basis vectors, a unitary matrix U can be built out of these

eigenvectors and can be expressed as

0 1 0
U= (lwi)|w2)ws)) = 1/v2 0 1/v2
1/vV2 0 —1/v/2




