
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 4, February 04, 2021 (Thursday)

• Reading: Mathematical Tools (Chapter 3 in Griffiths)

• Assignment: Problem Set 2 due February 10 (Wednesday).

Submit your homework assignments to Canvas.
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Topics for Today: Mathematical Tools

2.1 Linear Vector Spaces

2.2 Inner Product and Inner Product Spaces

2.3 Dirac Notation

2.4 Linear Operators

Topics for Next Lecture: Mathematical Tools

2.4 Linear Operators

2.5 Eigenvectors and Eigenvalues

2.6 Expectation Value

2.7 The Uncertainty Principle

2.8 Dirac Delta Functions
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2 Mathematical Introduction

2.1 Linear Vector Spaces

Vector

A set of quantities {~vi} with definite rules for addition and

multiplication is called a set of vectors if they satisfy

~vi + ~vj = ~vj + ~vi, (1)

~vi + (~vj + ~vk) = (~vi + ~vj) + ~vk, (2)

α(~vi + ~vj) = α~vi + α~vj , (3)

(α+ β)~vi = α~vi + β~vj , (4)

(αβ)~vi = α(β~vi) . (5)

What is the name of each property?
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2.1 Linear Vector Spaces

Vector

A set of quantities {~vi} with definite rules for addition and

multiplication is called a set of vectors if they satisfy

~vi + ~vj = ~vj + ~vi, (commutative law of addition)

~vi + (~vj + ~vk) = (~vi + ~vj) + ~vk, (associative law of addition)

α(~vi + ~vj) = α~vi + α~vj , (distributivity w.r.t vector addition)

(α+ β)~vi = α~vi + β~vj , (distributivity w.r.t number addition)

(αβ)~vi = α(β~vi), (associative law of multiplication)

where α, β ∈ C and w.r.t. = ’with respect to’.
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Linear Vector Space

If V represents the set of vectors {~vi} such that

1. α~vi + β~vj ∈ V ,

2. there exists a unique null vector or zero vector ∅ ∈ V such that

~vi + ∅ = ~vi = ∅+ ~vi,

3. for every vector ~vi, there exists a unique inverse −~vi ∈ V such that

~vi + (−~vi) = ∅,

then V is called a linear vector space.

Clearly, the familiar vectors in the 3-dimensional space represent a

linear vector space. In that case, addition involves both magnitudes

and directions of vectors. The null vector in this case is a vector of zero

magnitude and the inverse is a vector with the arrow reversed.
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Linear Independence

A set of vectors {~v1, ~v2, · · · , ~vN} is said to be linearly independent if a

relation of the type

N∑
i=1

αi~vi = 0 ,

has the only solution that all αi’s vanish, αi = 0.

Dimensionality

A vector space V is said to be N dimensional, and is denoted by V N if

the maximum number of linearly independent vectors that can be

found in that space is N

Theorem

An arbitrary nontrivial vector ~v in V N can be uniquely expressed as a

linear combination of N linearly independent vectors in V N .
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Basis

Any set of linearly independent vectors {~v1, ~v2, · · · , ~vN} is said to form

a basis in V . The coefficients of expansion of any vector ~v in terms of a

basis are said to be components in that basis.

Example:

In 3-dimensional vector space, a vector

~x = (x1, x2, x3) ,

= x1x̂+ x2ŷ + x3ẑ ,

= x1e1 + x2e2 + x3e3 ,

where ei’s are linearly independent vectors and form a basis.
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2.2 Inner Product and Inner Product Spaces

An inner product is a procedure for assigning a number to two vectors

and is denoted by 〈~vi, ~vj〉. It satisfies the following properties:

(i) 〈~vi, ~vi〉 ≥ 0, (0 only if ~vi = ∅),

(ii) 〈~vi, ~vj〉 = 〈~vj , ~vi〉∗,

(iii) 〈~vi, α~vj + β~vk〉 = α〈~vi, ~vj〉+ β〈~vi, ~vk〉,

If follows from (ii). and (iii). that

〈α~vj + β~vk, ~vi〉 = 〈~vi, α~vj + β~vk〉∗

= α∗〈~vi, ~vj〉∗ + β∗〈~vi, ~vk〉∗

= α∗〈~vj , ~vi〉+ β∗〈~vk, ~vi〉 .
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Inner Product Space

A vector space with a well-defined inner product is called an inner

product space.

Norm

The norm of a vector ~v is defined to be

v = |~v| = 〈~v,~v〉1/2

= (v∗1v1 + v∗2v2 + · · ·+ v∗NvN )
1/2

.

And a vector is said to be a unit vector or normalized vector if its norm

is one (discrete) or a Dirac delta function (continuous).
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Orthogonal

Two vectors are said to be orthogonal if their inner product vanishes,

〈~vi, ~vj〉 = 0, with ~vi, ~vj 6= ∅.

Orthonormal

A set of vectors (e1, e2, · · · , eN ) are said to be orthonormal if

〈ei, ej〉 = δij .

Let ei denote an orthonormal basis in V N , then

~v =
N∑
i

viei , and

~w =

N∑
i

wiei .
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And the inner product becomes

〈~v, ~w〉 = 〈
N∑
i=1

viei,

N∑
j=1

wjej〉 ,

=
N∑
i=1

N∑
j=1

v∗iwj〈ei, ej〉 ,

=

N∑
i=1

N∑
j=1

v∗iwjδij ,

=
N∑
i=1

v∗iwi .
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2.3 Dirac Notation

We realize that an arbitrary vector in V N can be uniquely expressed in

terms of an orthonormal basis {|ei〉} as

~v = |v〉 =

N∑
i=1

vi|ei〉.

Similarly a vector can be expressed as an ordered n-tuple

(v1, v2, · · · , vN ). A familiar example in 3-dimensions is a vector

~x = (x1, x2, x3), where it is assumed that the basis is Cartesian:

|~x〉 =


x1

x2

x3

 , with |e1〉 =


1

0

0

 , |e2〉 =


0

1

0

 , |e3〉 =


0

0

1

 ,

where |ei〉 are basis vectors.
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We can collect the n-tuple into a column vector and obtain

|v〉 =


v1

v2
...

vN

 , with the basis vectors |ei〉 =



0

0
...

1
...

0


.

It is clear that the addition of vectors and multiplication of a vector by

a scalar obey matrix formulas with this representation of a vector.
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For example,

~v + ~w =


v1 + w1

v2 + w2

...

vN + wN

 =


z1

z2
...

zN

 = ~z , α~v =


αv1

αv2
...

αvN

 .

A column representation of a vector is called a ket vector and it is

denoted by

|v〉 =


v1

v2
...

vN

 .
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Given a column vector, we can take the Hermitian conjugate (†) of it

and obtain a row vector

〈v| =


v1

v2
...

vN



†

=


v1

v2
...

vN



∗T

= (v∗1 , v
∗
2 , · · · , v∗N ) ,

where ∗ = complex conjugate, and T = transpose.

Obviously, this can also be a representation of ~v. It is called a bra

vector and is denoted by

bra v = 〈v| = |v〉† = (ket v)†.

This is also called taking the adjoint.
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Let us now define the inner product of a bra with a ket,

〈w|v〉 ≡ (w∗1 , w
∗
2 , · · · , w∗N )


v1

v2
...

vN


= w∗1v1 + w∗2v2 + · · ·+ w∗NvN =

N∑
i=1

w∗i vi .

Since we can expand

|v〉 =
N∑
i=1

vi|ei〉

where vi’s are numbers (components) and |ei〉’s are the basis vectors.
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We can define basis ket vector (|ei〉) and the dual bra vector (〈ei|) as

|ei〉 =



0

0
...

1
...

0


, and

〈ei| = (0, 0, · · · , 1, · · · , 0) .

The we can write

|v〉 =
∑

vi|ei〉, and

〈v| =
∑

v∗i 〈ei|.
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Thus,

〈w|v〉 =
∑
i,j

w∗j 〈ej |vi|ei〉

=
∑
i,j

w∗j vi〈ej |ei〉

=
∑
i,j

w∗j viδij

=
∑
i

w∗i vi .

N.B. 〈ej |ei〉 = δij .

This is the orthonormal relation for basis vectors.

18



In addition, we have

|v〉 =
∑
i

vi|ei〉,

〈ej |v〉 =
∑
i

vi〈ej |ei〉 =
∑
i

viδij = vj .

Thus, the components of a vector can be obtained by taking the inner

products with the appropriate dual bra basis vectors.

We now have a complete set of orthonormal basis vectors:

|v〉 =
∑
i

vi|ei〉 =
∑
i

|ei〉vi =
∑
i

|ei〉〈ei|v〉 = C × |v〉 ,

〈ei|ej〉 = δij (orthonormal relation) ,

C =
∑
i

|ei〉〈ei| = I (completeness relation) ,

where I is the identity matrix or the identity operator.
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2.4 Linear Operators

An operator denotes a mathematical operation transforms a vector into

another vector. Thus if |v〉 and |v′〉 are two ket vectors and if Ω is an

operator which takes |v〉 to |v′〉, we write

Ω|v〉 = |v′〉

That means Ω acting on |v〉 transforms it to |v′〉.

Operators can also act on bra vectors to produce other bra vectors,

〈v|Ω = 〈v′′|.

However, an operator cannot act on a ket vector to generate a bra

vector or vice versa.
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Linear operators are operators which obey the following rules:

(i) Ω(α|vi〉) = α(Ω|vi〉),

(ii) Ω(α|vi〉+ β|vj〉) = α(Ω|vi〉) + β(Ω|vj〉),

(iii) (α〈vi|)Ω = (〈vi|Ω)α,

(iv) (α〈vi|+ β〈vj |)Ω = (〈vi|Ω)α+ (〈vj |Ω)β,

where α and β are scalars.

The simplest linear operator is the identity operator I which leaves

every vector invariant. Thus

I|v〉 = |v〉,

〈v|I = 〈v|.

The ket and bra vectors are column and row vectors respectively, the

operators would be represented by square matrices with N2 elements.
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A knowledge of the transformation properties of the basis vectors

determines the matrix elements of the operator completely. For

example, if

Ω|ei〉 = |e′i〉,

Ωji = 〈ej |Ω|ei〉 = 〈ej |e′i〉.

Thus if |e′i〉 is known, this implies that all Ωji’s are known. These are

called the matrix elements of the operator Ω in this particular basis.

Once the Ωji’s are known, the transformation of any vector under Ω

can be easily found out. For example,

|v〉 =
∑
i

vi|ei〉,

Ω|v〉 = |v′〉 =
∑
i

v′i|ei〉.
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Then the transformed components can be obtained as

v′i = 〈ei|Ω|v〉,

= 〈ei|Ω|
∑
j

vj |ej〉,

=
∑
j

vj〈ei|Ω|ej〉 =
∑
j

vjΩij =
∑
j

Ωijvj .

When two or more operators act on a vector, the order in which they

act is important. For example,

ΛΩ|v〉

stands for the operation of Ω on |v〉 followed by the action of the

operator Λ. In general,

ΛΩ|v〉 6= ΩΛ|v〉 .
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This is clearly reflected in the fact that matrix multiplication is not

commutative. The object

ΛΩ− ΩΛ ≡ [Λ,Ω]

is called the commutator of Λ with Ω and is in general nonzero. When

it vanishes, the operators are said to commute.

We can also define the inverse (Ω−1) of an operator Ω such that the

operation of Ω on any vector followed by the inverse leaves the vector

unchanged. Thus

Ω−1Ω|v〉 = |v〉,

Ω−1Ω = I = identity operator.
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Example 1: The identity operator

|v〉 =
∑

vi|ei〉,

vi = 〈ei|v〉,
Thus,

|v〉 =
∑

vi|ei〉

=
∑
|ei〉vi

=
∑
|ei〉〈ei|v〉 = I |v〉 ,∑

|ei〉〈ei| = I = identity operator, (The completeness relation.)

〈ej |I|ek〉 = 〈ej |(
∑
i

|ei〉〈ei|)|ek〉

=
∑
i

〈ej |ei〉〈ei|ek〉 =
∑
i

δjiδik = δjk .
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Example 2: The projection operator

I =
∑
i

|ei〉〈ei| =
∑
i

Pi ,

Pi = |ei〉〈ei| = projection operator ,

|v〉 =
∑
j

vj |ej〉 ,

Pi|v〉 =
∑
j

vjPi|ej〉

=
∑
j

vj |ei〉〈ei|ej〉

=
∑
j

vj |ei〉δij

= vi|ei〉 .
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Thus, Pi|v〉 i.e. the projection operator acting on a vector projects out

its component.

PiPj = |ei〉〈ei|ej〉〈ej |

= |ei〉δij〈ej |

= |ei〉〈ei|δij
= Piδij .

Physically, what this means is that since Pj projects out the jth

component of a vector, operation of Pi following Pj would be zero

unless both i and j math. Symbolically, we can write

P 2 = P.

Operators with such properties are called idempotent operators.
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Adjoint of an operator:

If an operator Ω acting on a ket vector |v〉 gives a new ket vector |v′〉,
then the adjoint of Ω is defined to be that operator which transforms

the bra 〈v| to 〈v′|,

Ω|v〉 = |v′〉 = |Ωv〉,

〈Ωv| = 〈v′| = (|v′〉)† = (Ω|v〉)† = 〈v|Ω†,

Ω†ij = 〈ei|Ω†|ej〉

= 〈Ωei|ej〉 = 〈ej |Ωei〉∗ = 〈ej |Ω|ei〉∗ = Ω∗ji

where Ω† is the adjoint of Ω and Ω∗ji is the hermitian conjugate of Ωij .
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Exercise: We can show that the adjoint of a product of operators is

the product of the adjoint of the operators in the reversed order

(Ω1Ω2 · · ·ΩN )† = Ω†N · · ·Ω
†
2Ω†1

Hermitian operators

An operator is Hermitian if it is self adjoint, i.e.,

Ω = Ω†

An operator is anti-Hermitian if

Ω = −Ω†

An operator is said to be unitary if

ΩΩ† = Ω†Ω = I = identity

This implies that the adjoint of a unitary operator is its inverse.
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Exercise: Show that a unitary operator U can be written as

U = eiH

where H is a Hermitian operator.

Theorem

Unitary operators preserve the inner product between vectors they act

on.

Let

U |v〉 = |v′〉, and,

〈w|U† = 〈w′|,

then

〈w′|v′〉 = 〈w|U†U |v〉 = 〈w|I|v〉 = 〈w|v〉.
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