PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 4, February 04, 2021 (Thursday)

e Reading: Mathematical Tools (Chapter 3 in Griffiths)

e Assignment: Problem Set 2 due February 10 (Wednesday).

Submit your homework assignments to Canvas.




Topics for Today: Mathematical Tools

2.1 Linear Vector Spaces
2.2 Inner Product and Inner Product Spaces

2.3 Dirac Notation

2.4 Linear Operators

Topics for Next Lecture: Mathematical Tools
2.4 Linear Operators

2.5 Eigenvectors and Eigenvalues

2.6 Expectation Value

2.7 The Uncertainty Principle

2.8 Dirac Delta Functions




2 Mathematical Introduction

2.1 Linear Vector Spaces

Vector

A set of quantities {¥;} with definite rules for addition and

multiplication is called a set of vectors if they satisty

What is the name of each property?




2.1 Linear Vector Spaces

Vector

A set of quantities {¥;} with definite rules for addition and

multiplication is called a set of vectors if they satisty

U; + U;, (commutative law of addition)
(U3 + ¥;) + Uk, (associative law of addition)

av; + av;, (distributivity w.r.t vector addition)

av; + fu;, (distributivity w.r.t number addition)

a(Bv;), (associative law of multiplication)

where o, § € C and w.r.t. = 'with respect to’.




Linear Vector Space

If V represents the set of vectors {v;} such that
1. av; + pv; €V,

2. there exists a unique null vector or zero vector () € V' such that
v; + 0 = v, :(D—Fﬁi,

3. for every vector v;, there exists a unique inverse —v; € V such that

then V is called a linear vector space.

Clearly, the familiar vectors in the 3-dimensional space represent a
linear vector space. In that case, addition involves both magnitudes
and directions of vectors. The null vector in this case is a vector of zero

magnitude and the inverse is a vector with the arrow reversed.




Linear Independence

A set of vectors {v7,¥s, -+, Un} is said to be linearly independent if a

relation of the type

N
E Oé,,;‘l_))i — O,
1=1

has the only solution that all a;’s vanish, «; = 0.

Dimensionality

A vector space V is said to be N dimensional, and is denoted by V% if

the maximum number of linearly independent vectors that can be

found in that space is N

Theorem

An arbitrary nontrivial vector ¥ in V¥ can be uniquely expressed as a

linear combination of N linearly independent vectors in V*V.




Basis

Any set of linearly independent vectors {v1,vs,---,Un} is said to form
a basis in V. The coefficients of expansion of any vector ¢ in terms of a
basis are said to be components in that basis.

Example:

In 3-dimensional vector space, a vector

T ($1,QZ2,$3),

1T + T2y + 32,

Tri1€e1 + Toeg + r3€3,

where e;’s are linearly independent vectors and form a basis.




2.2 Inner Product and Inner Product Spaces

An inner product is a procedure for assigning a number to two vectors
and is denoted by (v;, ¥;). It satisfies the following properties:

(i) (v, 7;) >0, (0 only if &; = 0),
(i) (vi, vj) = (v, 0)",

(iii) (0;, at; + BUk) = (¥, U;) + BV, Uk),

If follows from (ii). and (iii). that

)
)

(a¥; + BUy, U;)




Inner Product Space

A vector space with a well-defined inner product is called an inner

product space.

Norm

The norm of a vector v is defined to be

v 0] = (v, 7)/?

>1/2

(vivy + V509 + -+ + VNUN

And a vector is said to be a unit vector or normalized vector if its norm

is one (discrete) or a Dirac delta function (continuous).




Orthogonal

Two vectors are said to be orthogonal if their inner product vanishes,

<?7Z',17j> — O, with ?71',?7]' ?é (Z)

Orthonormal

A set of vectors (e1,es, -+, en) are said to be orthonormal if
<6i,€j> = 5@]

Let e; denote an orthonormal basis in V¥, then

v

N
E w;€; .
1




And the inner product becomes




2.3 Dirac Notation

We realize that an arbitrary vector in V¥ can be uniquely expressed in

terms of an orthonormal basis {|e;)} as

N

T=v) =) uviles).

1=1

Similarly a vector can be expressed as an ordered n-tuple
(v1,v9, -+, vn). A familiar example in 3-dimensions is a vector

T = (x1,x2,x3), where it is assumed that the basis is Cartesian:

1 0
, withlet)=1 0 [,le)=] 1 |, les) =
0 0

where |e;) are basis vectors.




We can collect the n-tuple into a column vector and obtain
[0
0

,  with the basis vectors |e;) =
1

Lo

It is clear that the addition of vectors and multiplication of a vector by

-

a scalar obey matrix formulas with this representation of a vector.




For example,

( V1 + w1 \ / QU1 \

Vo + Wo QU9

\’UN—|.—UJN) | \Oé’l.)N)

A column representation of a vector is called a ket vector and it is
denoted by

(’01\

V2

o




Given a column vector, we can take the Hermitian conjugate (1) of it

and obtain a row vector

(01\ (”1\

V2 V2

\ov ) \ew )
where * = complex conjugate, and T’ = transpose.

Obviously, this can also be a representation of v. It is called a bra

vector and is denoted by

bra v = (v|

This is also called taking the adjoint.




Let us now define the inner product of a bra with a ket,

(’01\

U2

o

N

WiV + Wavg + -+ - F WNUN = g w; v;
i=1

Since we can expand

N

v) =) wiles)

1=1

where v;’s are numbers (components) and |e;)’s are the basis vectors.




We can define basis ket vector (|e;)) and the dual bra vector ({e;|) as

[0

The we can write




> wilejlviles)
]
Zw;‘vxej\ei)
,J

N.B. <€j|€i> — 5@]

This is the orthonormal relation for basis vectors.




In addition, we have

‘/U> Zv’i|ei>7

i
(ej]v) > wilejles) = vidi; = ;.
i i
Thus, the components of a vector can be obtained by taking the inner

products with the appropriate dual bra basis vectors.
We now have a complete set of orthonormal basis vectors:

[v) D viles) =Y levi =) lei)(eilv) = C x |v),

(eile;) d;; (orthonormal relation),

C Z le;)(e;] =1 (completeness relation),

1

where I is the identity matrix or the identity operator.




2.4 Linear Operators

An operator denotes a mathematical operation transforms a vector into
another vector. Thus if |v) and |v") are two ket vectors and if 2 is an

operator which takes |v) to |[v), we write
Qv) = [v)

That means () acting on |v) transforms it to |v’).

Operators can also act on bra vectors to produce other bra vectors,

(v|Q = (v"].

However, an operator cannot act on a ket vector to generate a bra

vector or vice versa.




Linear operators are operators which obey the following rules:
(1) Qafvi)) = a(Qvs)),

(i) Q(cvi) + Blvy)) = a(Qvi)) + B(Q|v))),

(iii) (o(vi)Q = ({vi[Q)ev,

(iv) (e(ui| + B(v;[)2 = ((vi|Q2) e + ((v;£2) 3,

where o and [ are scalars.

The simplest linear operator is the identity operator I which leaves

every vector invariant. Thus
Ifv) [v),
(v| I (v].

The ket and bra vectors are column and row vectors respectively, the

operators would be represented by square matrices with N? elements.




A knowledge of the transformation properties of the basis vectors
determines the matrix elements of the operator completely. For

example, if

Qle;) = eq),

1

Qi = (e;]Qes) = (ejle]).

Thus if |e}) is known, this implies that all £2,;’s are known. These are
called the matrix elements of the operator {2 in this particular basis.
Once the €);;’s are known, the transformation of any vector under {2

can be easily found out. For example,

|U> Zvi‘ei>7

Qlv)




Then the transformed components can be obtained as

(i v),

(€] Zvﬂeg‘%

When two or more operators act on a vector, the order in which they
act is important. For example,

AQ|v)

stands for the operation of €2 on |v) followed by the action of the
operator A. In general,

AQ|v) # QA|v) .




This is clearly reflected in the fact that matrix multiplication is not

commutative. The object
AQ — QA = [A, Q]
is called the commutator of A with €2 and is in general nonzero. When

it vanishes, the operators are said to commute.

We can also define the inverse (Q271) of an operator  such that the
operation of {2 on any vector followed by the inverse leaves the vector

unchanged. Thus

Q~1Qfv) [0),
Q10 I = identity operator.




Example 1: The identity operator

Zv’i|ei>7
(ei]v),

identity operator, (The completeness relation.)

<€j\(Z ei){ei])lex)

Z<63|6@ (eiler) 259@5”“ = 0 -

1




Example 2: The projection operator

2 leieil =3 P,
i i
le;){e;| = projection operator,

> viles),

J

> vPile;)

j

> vjles)eiles)
j

> vjlei)ds;
j

Ui|€i> .




Thus, P;|v) i.e. the projection operator acting on a vector projects out

its component.

P, P; e;){eilej)(e;l
e;)0ij{e;]
ei)(€eildi
PZ5’I,] .

Physically, what this means is that since P; projects out the jth

component of a vector, operation of P; following P; would be zero

unless both 2 and § math. Symbolically, we can write
P?=P.

Operators with such properties are called idempotent operators.




Adjoint of an operator:

If an operator €2 acting on a ket vector |v) gives a new ket vector |v'),
then the adjoint of €2 is defined to be that operator which transforms
the bra (v| to (v/[,
Qo) = ) =),
(| = (W]= ()= (Qv)" = (v|Q,
O = {eile;)
= (Qeilej) = (e|Qe:)™ = (ej[Qes)™ =

where Q7 is the adjoint of 2 and (2%, is the hermitian conjugate of €2;;.




Exercise: We can show that the adjoint of a product of operators is
the product of the adjoint of the operators in the reversed order

(21 - Qn)t = ij . Q%QI

Hermitian operators

An operator is Hermitian if it is self adjoint, i.e.,
Q=Qf
An operator is anti-Hermitian if

Q=-0f

An operator is said to be unitary if
QO = QTQ = T = identity

This implies that the adjoint of a unitary operator is its inverse.




Exercise: Show that a unitary operator U can be written as
U=et
where H is a Hermitian operator.

Theorem

Unitary operators preserve the inner product between vectors they act

on.
Let

Ul) = [v'), and,
(w|UT (w'],

(w'|v') = (w|UTUv) = (wl|v) = (w]v).




