
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 2, January 28, 2021 (Thursday)

• Midterm Exam: March 16 (Tuesday), 1:00 p.m.–3:00 p.m.

• Reading: Mathematical Tools (Chapter 3 in Griffiths)

• Assignment: Problem Set 1 due February 03 (Wednesday).

Make a pdf file and send it to our grader: jmderkacy@ou.edu
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Topics for Today: Review of Classical Mechanics

1.6 The Hamiltonian Dynamics

1.7 The Hamiltonian and Energy

1.8 Poisson Brackets and Hamilton Equations

1.9 Quantum Correspondence Principle

Topics for Next Lecture: Mathematical Tools

2.1 Linear Vector Spaces

2.2 Inner Product and Inner Product Spaces

2.3 Dirac Notation

2.4 Linear Operators

2.5 Eigenvectors and Eigenvalues
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1.6 The Hamiltonian Dynamics

Recall that T (q, q̇, t) = the kinetic energy, U(q, q̇, t) = the potential

energy, and the Lagrangian is defined as

L(q, q̇, t) ≡ T (q, q̇, t)− U(q, q̇, t) .

With the conjugate momentum pi ≡ ∂L/∂q̇i, the Legendre

transformation takes L(qi, q̇i, t) to H(qi, ∂L/∂q̇i, t) = H(qi, pi, t).

The Hamiltonian is defined as

H(q, p, t) ≡
∑
i

q̇i

(
∂L

∂q̇i

)
− L(q, q̇, t) =

∑
i

q̇ipi − L(q, q̇, t) .
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Applying the Euler-Lagrange equation, we obtain

dH = d

[∑
i

q̇ipi − L(q, q̇, t)

]
=
∑
i

[q̇idpi − ṗidqi]−
∂L

∂t
dt .

with ṗi = (d/dt)(∂L/∂q̇i) = ∂L/∂qi.

On the other hand, the total differential of H = H(q, p, t) is

dH(q, p, t) =
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
+
∂H

∂t
dt

=
∑
i

(−ṗidqi + q̇idpi)−
∂L

∂t
dt .

Identifying the coefficients of dqi, dpi, and dt, we obtain

∂H/∂t = −∂L/∂t, and Hamilton equations of motion

q̇i = +
∂H

∂pi
, and ṗi = −∂H

∂qi
,

which are also called the canonical equations of motion.
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Example 1:

Let us consider a particle of mass m constrained to move on the surface

of a cylinder defined by x2 + y2 = R2 = constant. This particle is

subject to a force

~F = −k~r = −krr̂ .

With R = constant, Ṙ = 0, the kinetic energy is

T =
1

2
m(ẋ2 + ẏ2 + ż2) =

1

2
m(R2φ̇2 + ż2) .

The potential energy is

U(r) = −
∫ r

0

~F (~s) · d~s

=
1

2
kr2 =

1

2
k(R2 + z2) ,

where we have applied r̂ · dr̂ = 0, since r̂ · r̂ = 1.
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The Lagrangian can be expressed as

L = T − U

=
1

2
m(R2φ̇2 + ż2)− 1

2
k(R2 + z2).

The generalized coordinates are φ and z for a cylinder

with R = constant, and the generalized momenta are

pφ =
∂L

∂φ̇
= mR2φ̇,

and

pz =
∂L

∂ż
= mż.

Applying the expressions for the generalized momenta, we have

φ̇ =
pφ
mR2

, and

ż =
pz
m
.
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The Hamiltonian is

H(φ, pφ, z, pz) = φ̇pφ + żpz − L(φ, φ̇, z, ż)

= φ̇pφ + żpz −
[

1

2
mR2φ̇2 +

1

2
mż2 − 1

2
k(R2 + z2)

]
=

pφ
mR2

pφ +
pz
m
pz

−
[

1

2
mR2

( pφ
mR2

)2
+

1

2
m
(pz
m

)2
− 1

2
k(R2 + z2)

]
=

p2φ
2mR2

+
p2z
2m

+
1

2
k(R2 + z2).

The Hamilton equations of motion are

ṗφ = −∂H
∂φ

= 0 , and φ̇ =
∂H

∂pφ
=

pφ
mR2

,

ṗz = −∂H
∂z

= −kz , and ż =
∂H

∂pz
=
pz
m
.
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Combining

ṗz = −∂H
∂z

= −kz, , and ż =
∂H

∂pz
=
pz
m
,

we obtain

z̈ =
ṗz
m

= −(k/m)z,

i.e.

z̈ + ω2
0z = 0,

where ω0 =
√
k/m.

Note that

(a). For T = T (q, q̇) and U = V (q), the Hamiltonian H = T + U = E.

(b). In this example, ṗφ = −∂H/∂φ = 0, then pφ = mR2φ̇ = constant.

(c). The motion of the particle in the z direction is simple harmonic.
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1.7 The Hamiltonian and Energy

For a system with generalized coordinates qi, the Lagrangian is

L = L(qi, q̇i, t) , i = 1, 2, · · · , N ,

and the Hamiltonian is

H ≡
N∑
i=1

q̇i
∂L

∂q̇i
− L(q, q̇, t) =

N∑
i=1

q̇ipi − L(q, q̇, t) ,

where q is a vector.
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The time derivative of the Hamiltonian is

d

dt
H =

d

dt

[
N∑
i=1

q̇ipi − L(q, q̇, t)

]

=
N∑
i=1

(
q̈ipi + q̇i

d

dt

∂L

∂q̇i

)
−

[
N∑
i=1

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)
+
∂L

∂t

]
.

Applying Euler-Lagrange equations ∂L/∂qi − d/dt(∂L/∂q̇i) = 0,

we obtain

dH

dt
= −∂L

∂t
.

If the Lagrangian L does not depend on time explicitly, then the

Hamiltonian is a constant of the trajectory.

If dH/dt = 0 then H = constant.

Exercise: Find the Hamiltonian H(p, x) with the Lagrangian

L = (1/2)mẋ2 − U(x).
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For a Lagrangian of the form

L(x, ẋ) =
1

2
mẋ2 − U(x),

the conjugate momentum is

p =
∂L

∂ẋ
= mẋ, ẋ =

p

m
,

and the Hamiltonian is

H = ẋp− L(x, ẋ)

= ẋp−
[

1

2
mẋ2 − U(x)

]
=

( p
m

)
p− 1

2
m
( p
m

)2
+ U(x)

=
p2

2m
+ U(x),

which is the energy E = T + U .
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1.8 Poisson Brackets and Hamilton Equations

Poisson brackets provide a formal way to get the quantum mechanical

commutation relation for systems that can be described classically.

Let us consider classical observables A(p,q,t) and B(p,q,t) that are

functions of the coordinates, the momenta, and perhaps time. The

Poisson bracket between two observables is defined as

{A,B} ≡
N∑
i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

The Poisson bracket product is like vector cross products and matrix

commutators, satisfies the anticommutativity

{B,A} = −{A,B} ,

and the Jacobi identity

{{A,B}, C}+ {{C,A}, B}+ {{B,C}, A} = 0 .
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Here are some important relations:

{qi, qj} = 0 = {pi, pj} , and {qi, pj} = δij = −{pi, qj} ,

where δij is the Kronecker’s δ symbol.

Furthermore, we recognize conserved quantities quite easily in the

Hamiltonian formalism. Let’s consider an observable ω as ω(q, p).

We can show that

dω

dt
= {ω,H}+

∂ω

∂t
, (Homework) .

For ∂ω/∂t = 0, we have

dω

dt
= 0, if {ω,H} = 0.

Since {H,H} = 0, this shows that the Hamiltonian of the total energy

of the system is a constant in time.
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1.9 Quantum Correspondence Principle

The commutation relation of two operators A and B is defined as

[A,B] ≡ AB −BA .

Quantum commutators satisfy the following relations:

(i) [A,B] = −[B,A]

(ii) [A+B,C] = [A,C] + [B,C]

(iii) [AB,C] = A[B,C] + [A,C]B

(iv) [A,BC] = B[A,C] + [A,B]C

Exercise: Let us consider X, P , and H as quantum operators, find

• (a) [X,P 2], and

• (b) [X,H], with

H =
P 2

2m
+ V (X) .
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