
PHYS 3803: Quantum Mechanics I, Spring 2021

Week 1: January 25 (M)–January 29 (F)

Lecture 1, January 26, 2021 (Tuesday)

• Handouts: Syllabus (Check your OU Email)

• Midterm Exam: March 12 (Friday), 1:30 p.m.–3:30 p.m.

• Final Exam: May 11 (Tuesday), 1:30 p.m.–3:30 p.m.

• Reading: Study Lagrangian and Hamiltonian Dynamics with your

favorite Classical Mechanics textbook.

• Assignment: Problem Set 1 due February 03 (Wednesday).

Make a pdf file and send it to our grader: jmderkacy@ou.edu
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Topics for Today: Review of Classical Mechanics

A The Hamiltonian and Quantum Mechanics

1.1 The Lagrangian, the Action, and Hamilton’s Principle

1.2 Functional Derivatives

1.3 Back to Hamilton’s Principle

1.4 More Degrees of Freedom

1.5 The Euler-Lagrange Equation

1.6 The Lagrangian and the Sum Over Paths
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Topics for Quantum Mechanics I

1 Review of Classical Mechanics [Taylor 7, 13]

2 Mathematical Tools [Griffiths 3]

3 One-dimensional Schrödinger Equation [Griffiths 1 and 2]

4 Harmonic Oscillator [Griffiths 2.3]

5 Angular Momentum [Griffiths 4.1 and 4.3]

6 Hydrogen Atom [Griffiths 4.2]

7 BONUS: Path Integral

8 Symmetries and Conservation Laws [Griffiths 6]
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Canonical Momentum and the Hamiltonian

Recall that T (q, q̇, t) = the kinetic energy, U(q, q̇, t) = the potential

energy, and the Lagrangian is defined as

L(q, q̇, t) ≡ T (q, q̇, t)− U(q, q̇, t) .

With the conjugate momentum or the canonical momentum

pi ≡ ∂L/∂q̇i, the Legendre transformation takes L(qi, q̇i, t) to

H(qi, ∂L/∂q̇i, t) = H(qi, pi, t).

The Hamiltonian is defined as

H(q, p, t) ≡
∑
i

q̇i

(
∂L

∂q̇i

)
− L(q, q̇, t) =

∑
i

q̇ipi − L(q, q̇, t) .

Physical momentum (~p = m~v) and canonical momentum (Pi ≡ ∂L/∂q̇i)
are different if the potential energy depends on q̇i.
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Formalism in Quantum Mechanics

A. The Hamiltonian and Quantum Mechanics

The most common formalism in Quantum Mechanics is Canonical

Quantization or Operator Formalism.

A quantum system is described with a state vector |ψ(t)〉 that becomes

a wave function ψ(~x, t) in coordinate basis, and the equation of motion

is the Schrödinger equation

H|ψ(t)〉 = E|ψ(t)〉 , (Hilbert space) ,

Hψ(~x, t) = Eψ(~x, t) , (Coordinate space) ,

H =
P 2

2m
+ U , P ≡ −ih̄∇ , and E ≡ ih̄ ∂

∂t
,

where H = Hamiltonian, and

ψ(~x, t) = the wave function in the coordinate basis.
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In addition, the quantum operators of every coordinate and its

conjugate momentum satisfy the canonical commutation relation

[X,P ] ≡ XP − PX = ih̄,

and the uncertainty principle

∆X∆P ≥ h̄

2
,

where h̄ = h/(2π), and h ≡ Planck’s constant.

Let us consider classical observables as continuous functions of

generalized coordinates and conjugate momenta: ω(q, p), ω1(q, p) and

ω2(q, p) where q and p are vectors with components qk and pk,

k = 1, · · · , N . The Poisson brackets are defined as

{ω1, ω2} ≡
N∑
k=1

(
∂ω1

∂qk

∂ω2

∂pk
− ∂ω1

∂pk

∂ω2

∂qk

)
.
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Quantum correspondence principle is the relation between

quantum commutators and Poisson brackets:

[Ω1,Ω2] = ih̄{ω1, ω2} .

That means, the commutation relation of two quantum operators is ih̄

times the value of the classical Poisson bracket.

It is clear at this point that the Planck’s constant h̄ measures the

non-classical nature of systems. More commonly we say that we recover

classical mechanics in the limit h̄→ 0.

Exercise: Let us consider X,P as quantum operators, show that

[X,P ] = ih̄{x, p} = ih̄ .
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1 Review of Classical Mechanics

1.1 Lagrangian, Action, and Hamilton’s Principle

Let us consider one dimensional motion of a particle with coordinate

x(t) and velocity v(t) = ẋ(t) in a potential U(x). The kinetic energy is

T (x, ẋ) =
1

2
mẋ2

and the potential energy is U(x, ẋ).

In general, the Lagrangian is defined as

L(x, ẋ) ≡ T (x, ẋ)− U(x, ẋ) .

For a system with a conservative force, the Lagrangian becomes

L(x, ẋ) ≡ T (ẋ)− V (x) .

It is a scalar, i.e., it is invariant under Lorentz transformation.
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The action (S) of a particle moving along along a trajectory [x(t)] is

S[x] ≡
∫ tb

ta

L(x, ẋ) dt .

Hamilton’s principle is the statement that the action (S) for a particle

moving from xa at ta to xb at tb

S[x] ≡
∫ tb

ta

[T (x(t), ẋ(t))− U(x(t), ẋ(t))] dt

along a path x(t) is stationary (minimum or maximum) for the actual

classical trajectory x(t) = x0(t) that follows Newton’s law of motion.

Note that

(a). L ≡ T −U ≡ the Lagrangian is a function of two variables: x and ẋ.

(b). S[x] ≡ the action is a function whose argument is itself a function.

A function of function is sometimes called a functional.

(c). The action S[x] is stationary for the classical trajectory x0(t).
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Taylor Expansion: Taylor expansion is the most useful mathematical

formula for physicists.

• A function can be approximated by polynomials in the

neighborhood of a point (x0) in terms of its value and derivatives

using Taylor expansion about x0 with f(x) = f(x0 + ∆x):

f(x0 + ∆x) = f(x0) + ∆x
df

dx
(x0) +O[(∆x)2] =

∞∑
n=0

(∆x)n

n!

dnf

dxn
(x0) .

• For a function of two variables the Taylor expansion becomes

f(x, y) = f(x0 + ∆x, y0 + ∆y)

= f(x0, y0) + ∆x
∂f

∂x
(x0, y0) + ∆y

∂f

∂y
(x0, y0)

+
1

2

[
(∆x)2

∂2f

∂x2
+ (∆y)2

∂2f

∂y2
+ 2∆x∆y

∂2f

∂x∂y

]
+O(∆3) .
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1.2 Functional Derivatives

For the functional

W [x] =

∫ tb

ta

F (x(t), ẋ(t)) dt,

the functional derivative of W [x] with respect to x(t) is defined as

δW [x]/δx(t) ≡ the coefficient of the linear term in δx(t) in W [x+ δx].

The functional derive becomes

δW [x]

δx(t)
≡ lim
δx→0

W [x+ δx]−W [x]

δx(t)
=
∂F

∂x
− d

dt

(
∂F

∂ẋ

)
.

We can write

δW [x]

δx(t)
|x=x0

=
δW

δx(t)
[x0]

for the path with x0(t).
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For

W [x] =

∫ tb

ta

[x(t)− t]2dt ,

we have

δW [x0]

δx(t)
= 2[x0(t)− t],

where we should have applied a useful identity

δxa(τ)

δxb(t)
= δabδ(τ − t) .

In terms of the functional derivative, the functional Taylor series has

the following form

W [x+ δx] = W [x] +

∫ tb

ta

δW [x]

δx(t)
δx(t)dt+ · · ·

= exp

(∫ tb

ta

δ

δx(t)

)
W [x]δx(t)dt .
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For functionals that have the form of an integral of an ordinary function

W [x] =

∫ tb

ta

F (x) dt ,

the functional derivative of W [x] is related to the ordinary derivative

dF/dx

δW [x]

δx(t)
=
dF (x)

dx
.

Here are some examples:

(a) F (x) = x3(t) , W [x] =

∫ tb

ta

x3(t)dt

(b) F (x) = sinx(t) , W [x] =

∫ tb

ta

sinx(t)dt

(c) F (x, y) = x3(t)y3(t) , W [x, y] =

∫ tb

ta

x3(t)y3(t)dt .
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Here are some examples:

(a) F (x) = x3(t) , W [x] =

∫ tb

ta

x3(t)dt

δW [x]

δx(t)
= 3x2(t),

(b) F (x) = sinx(t) , W [x] =

∫ tb

ta

sinx(t)dt

δW [x]

δx(t)
= cosx(t) ,

(c) F (x, y) = x3(t)y3(t) , W [x, y] =

∫ tb

ta

x3(t)y3(t)dt

δW [x, y]

δx(t)
= 3x2(t)y3(t) .
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1.3 Back to Hamilton’s Principle

The action is defined as

S[x] ≡
∫ tb

ta

L(x, ẋ) dt

=

∫ tb

ta

(T (x, ẋ)− U(x, ẋ)) dt

= ST − SU ,

with

ST [x] =

∫ tb

ta

T (x, ẋ) dt ,

and

SU [x] =

∫ tb

ta

U(x, ẋ) dt .
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Then the functional derivative of the action becomes

δS[x]

δx(t)
=
δST [x]

δx(t)
− δSU [x]

δx(t)
.

Let’s consider U = U(x) for a conserved energy. Since U(x) is an

ordinary function of x,

δSU [x]

δx(t)
=
dU(x)

dx
= U ′(x(t)).

The functional derivative of the ST term can be evaluated from

ST [x+ δx] =

∫ tb

ta

1

2
m(ẋ+ δẋ)2 dt

=

∫ tb

ta

1

2
mẋ2 dt+

∫ tb

ta

mẋδẋ dt+O(δx2)

= ST [x] +

∫ tb

ta

mẋδẋ dt+O(δx2) .
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The linear term in δẋ becomes∫ tb

ta

mẋδẋ dt =

∫ tb

ta

mẋ
d

dt
(δx) dt

=

∫ tb

ta

m
d

dt
(ẋδx) dt−

∫ tb

ta

m
d

dt
(ẋ)δx(t) dt

= mẋ(tb)δx(tb)−mẋ(ta)δx(ta)−
∫ tb

ta

m
d

dt
(ẋ)δx(t) dt

= mẋ(tb)δx(tb)−mẋ(ta)δx(ta)−
∫ tb

ta

mẍδx(t) dt .

We note that

ẋ+ δẋ =
d

dt
(x(t) + δx(t))

= ẋ+
d

dt
(δx(t)).
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Therefore, we have

δẋ =
d

dt
(δx(t)).

The initial conditions demand

x(ta) = xa = constant

x(tb) = xb = constant.

Thus

δx(ta) = δxa = 0

δx(tb) = δxb = 0.

Now we have

ST [x+ δx] = ST [x]−
∫ tb

ta

mẍδx(t) dt
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and so

δST [x]

δx(t)
= −mẍ(t).

The extremization condition for S[x] is

0 =
δS[x]

δx(t)

=
δST [x]

δx(t)
− δSU [x]

δx(t)

= −mẍ(t)− U ′(x)

or

mẍ(t) = −U ′(x) = F (x),

which is just Newton’s second law of motion.
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1.4 More Degrees of Freedom

Let us consider a system with N particles moving in one dimension

with coordinates x1, x2, · · · , xN . The Lagrangian is

L = T − U =

N∑
i=1

1

2
miẋ

2
i − U(x1, x2, · · · , xN ) ,

where T is the total kinetic energy and U is the potential energy.

It is easy to see that

δS[x]

δxi(t)
= −miẍi − Ui(x1, · · · , xN ) = −miẍi −

∂

∂xi
U(x1, · · · , xN ) = Fi ,

and −Ui is the force on particle i.

For S[x] to be stationary, we must have

δS[x]

δxi(t)
= −miẍi − Ui(x1, · · · , xN ) = 0,

for each i, which gives Fi = mẍi = mai for every particle.
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Kronecker delta Symbol and Dirac delta Function

The Kronecker delta symbol (δij for discrete variables is defined as

δij = 1 , for i = j , and δij = 0 , for i 6= j ,

such that

N∑
i=1

δijgi = gj .

The Dirac delta function for continuous variables is defined as

δ(x− x0) =∞ , for x = x0 , and δ(x− x0) = 0 , for x 6= x0 ,

such that∫ x2

x1

δ(x− x0)f(x) dx = f(x0) , for x1 < x0 < x2 .
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Review of Coordinates

Cartesian Coordinates

The displacement of a particle in Cartesian coordinates is described as

~r = ~x = xx̂+ yŷ + zẑ

where x̂, ŷ, ŷ are unit vectors.

Cylindrical Coordinates

The cylindrical coordinates are (ρ, φ, z), where

ρ =
√
x2 + y2

and 0 ≤ φ ≤ 2π

φ = tan−1
(y
x

)
, for x > 0 , and φ = − sin−1

(y
x

)
+ π , for x < 0 .
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Spherical Coordinates

Figure 1: Spherical coordinates

The spherical coordinates are (r, θ, φ), where

r =
√
x2 + y2 + z2 , and θ = cos−1

(z
r

)
,

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

φ = tan−1
(y
x

)
, for x > 0 , and φ = − sin−1

(y
x

)
+ π , for x < 0 .
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1.5 The Euler-Lagrange equation

The action (S) is defined as

S[q] ≡
∫ tb

ta

L(q, q̇)dt .

The Lagrangian (L) is defined as the difference of the kinetic energy

(T ) and the potential energy (U), L(q, q̇) ≡ T (q, q̇)− U(q, q̇), and it is a

function of generalized coordinates (qi) and time derivatives of the

generalized coordinates (q̇i), where q can be a vector with components

qi, i = 1, 2, · · · , N .

The functional derivative of the action S[q] with respect to qi(t) is

δS[q]

δqi(t)
=
∂L(q, q̇)

∂qi(t)
− d

dt

[
∂L(q, q̇)

∂q̇i(t)

]
.

The first term arises from the Taylor expansion of the qi(t) dependence;

the second term arises from the Taylor expansion of the q̇i(t) followed

by an integration by parts which gives the minus sign.
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In one dimension with q(t) = x(t), we have

S[x+ δx] =

∫ tb

ta

L(x+ δx, ẋ+ δẋ) dt

=

∫ tb

ta

[
L(x, ẋ) + δx

∂L

∂x
+ δẋ

∂L

∂ẋ

]
dt+O(δx2)

= S[x] +

∫ tb

ta

[
δx
∂L

∂x
+
d

dt
(δx

∂L

∂ẋ
)− δx d

dt

∂L

∂ẋ

]
dt+O(δx2)

= S[x] +

∫ tb

ta

[
δx
∂L

∂x
− δx d

dt

∂L

∂ẋ

]
dt+

[
δx
∂L

∂ẋ

]tb
ta

+O(δx2)

= S[x] +

∫ tb

ta

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
δx dt+O(δx2),

where δx(ta) = 0 = δx(tb) since xa and xb are fixed end points.
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We have just found

S[x+ δx] = S[x] +

∫ tb

ta

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
δx dτ +O(δx2) .

The functional derivative can be defined as the coefficient of the linear

term in δx(t): δS[x]/δx(t) = ∂L/∂x(t)− d/dt[∂L/∂ẋ(t)],

and it should be derived as

δS[x]

δx(t)
≡ lim

δx→0

S[x+ δx]− S[x]

δx(t)

=

∫ tb

ta

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
δx(τ)

δx(t)
dτ

=

∫ tb

ta

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
δ(τ − t)dτ

=
∂L

∂x(t)
− d

dt

[
∂L

∂ẋ(t)

]
.
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If S[x] is stationary, the functional derivative with respect to x(t) must

vanish, i.e.

δS[x]

δx(t)
=
∂L

∂x
− d

dt

∂L

∂ẋ
= 0 .

N.B. The Hamilton’s principle implies that the solution for the motion

along the classical path with stationary action satisfies

∂L

∂x
− d

dt

∂L

∂ẋ
= 0.

which is called the Euler-Lagrange equation. If x or q has several

components, the Euler-Lagrange equation must be true for each

component (qi) separately:

∂L

∂qi
− d

dt

[
∂L

∂q̇i

]
= 0 .
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Example: A Frictionless Table

Let’s consider a frictionless table in the x− y plane with a hole at the

origin. A mass m1 slides on the surface of the table but it is attached

to a massless string of length ` that goes through the hole at the center

of the table and hangs straight down where it is attached to a mass m2.

Figure 2: Frictionless table.

This system can be described by the length r of the string on the table

and the angle θ of the string on the table from the x axis.
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The kinetic energy is

T (r, ṙ, θ, θ̇) =
1

2
(m1 +m2)ṙ2 +

1

2
m1r

2θ̇2,

where the first term is the kinetic energy of translation and the second

term is the kinetic energy of rotation.

The gravitational potential energy is

U(r) = m2gr,

such that U(r = 0) = 0 = Umin and U(r = `) = m2g` = UMAX.

The Lagrangian is

L(r, ṙ, θ, θ̇) = T − U

=
1

2
(m1 +m2)ṙ2 +

1

2
m1r

2θ̇2 −m2gr.

The Euler-Lagrange equations are

∂L

∂q
− d

dt

∂L

∂q̇
= 0.
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The Lagrangian is

L(r, ṙ, θ, θ̇) =
1

2
(m1 +m2)ṙ2 +

1

2
m1r

2θ̇2 −m2gr .

The Euler-Lagrange equations are

∂L

∂q
− d

dt

∂L

∂q̇
= 0.

For q = r, the equation of motion is

∂L

∂r
− d

dt

∂L

∂ṙ
= 0

m1rθ̇
2 −m2g − (m1 +m2)r̈ = 0.

For q = θ, the equation of motion is

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0

− d

dt
(m1r

2θ̇) = 0 , i.e. pθ ≡
∂L

∂θ̇
= m1r

2θ̇ = constant .
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