PHYS 3803: Quantum Mechanics I, Spring 2021
Week 1: January 25 (M)-January 29 (F)

Lecture 1, January 26, 2021 (Tuesday)

Handouts: Syllabus (Check your OU Email)
Midterm Exam: March 12 (Friday), 1:30 p.m.—3:30 p.m.
Final Exam: May 11 (Tuesday), 1:30 p.m.—3:30 p.m.

Reading: Study Lagrangian and Hamiltonian Dynamics with your

favorite Classical Mechanics textbook.

Assignment: Problem Set 1 due February 03 (Wednesday).
Make a pdf file and send it to our grader: jmderkacy@ou.edu




Topics for Today: Review of Classical Mechanics

A The Hamiltonian and Quantum Mechanics
1.1 The Lagrangian, the Action, and Hamilton’s Principle
1.2 Functional Derivatives
1.3 Back to Hamilton’s Principle
1.4 More Degrees of Freedom
1.5 The Euler-Lagrange Equation

1.6 The Lagrangian and the Sum Over Paths




Topics for Quantum Mechanics I

Review of Classical Mechanics [Taylor 7, 13|
Mathematical Tools [Griffiths 3]

One-dimensional Schrodinger Equation [Griffiths 1 and 2]
Harmonic Oscillator |[Griffiths 2.3]

Angular Momentum [Griffiths 4.1 and 4.3]

Hydrogen Atom |Griffiths 4.2]

BONUS: Path Integral

Symmetries and Conservation Laws [Griffiths 6]




Canonical Momentum and the Hamiltonian

Recall that T'(q, ¢,t) = the kinetic energy, U(q, ¢,t) = the potential
energy, and the Lagrangian is defined as

With the conjugate momentum or the canonical momentum

p; = 0L/0q;, the Legendre transformation takes L(q;, ;,t) to
H(q;,0L/0¢;,t) = H(qi,pi,t).

The Hamiltonian is defined as

= Z Gipi — L(q, ¢, t).

7

Physical momentum (p = mt) and canonical momentum (P; = 0L/0q;)
are different if the potential energy depends on g;.




Formalism in Quantum Mechanics

A. The Hamiltonian and Quantum Mechanics

The most common formalism in Quantum Mechanics is Canonical

Quantization or Operator Formalism.

A quantum system is described with a state vector |¢(t)) that becomes
a wave function 1 (Z,t) in coordinate basis, and the equation of motion

is the Schrodinger equation

Ely(t)), (Hilbert space),

Ey(Z,t), (Coordinate space),
P? , G,
%—FU, P:—Zhv, and E:Zha,

where H = Hamiltonian, and

(T, t) = the wave function in the coordinate basis.




In addition, the quantum operators of every coordinate and its

conjugate momentum satisfy the canonical commutation relation
X,P|=XP—- PX =ih,

and the uncertainty principle

AXAP > g

where h = h/(27), and h = Planck’s constant.

Let us consider classical observables as continuous functions of
generalized coordinates and conjugate momenta: w(q,p), wi(q,p) and

wa(q, p) where q and p are vectors with components ¢ and pg,
k=1,---,N. The Poisson brackets are defined as

N
{w17w2} _ Z ((9(4)1 50)2 6’w1 5602) .

£\ dqi, Ipr Ok O




Quantum correspondence principle is the relation between

quantum commutators and Poisson brackets:
[Ql, QQ] = ih{wl, (.UQ} .

That means, the commutation relation of two quantum operators is ¢h

times the value of the classical Poisson bracket.

It is clear at this point that the Planck’s constant h measures the
non-classical nature of systems. More commonly we say that we recover

classical mechanics in the limit 7 — O.

Exercise: Let us consider X, P as quantum operators, show that

X, P| =1ih{x,p} =ih.




1 Review of Classical Mechanics

1.1 Lagrangian, Action, and Hamilton’s Principle

Let us consider one dimensional motion of a particle with coordinate
x(t) and velocity v(t) = ©(¢) in a potential U(z). The kinetic energy is

1
T(x,2) = §mx'2

and the potential energy is U(x, ).

In general, the Lagrangian is defined as
L(z,2) =T (x,2) — U(x,2).
For a system with a conservative force, the Lagrangian becomes
L(x,2)=T(z) — V(x).

It is a scalar, i.e., it is invariant under Lorentz transformation.




The action (S) of a particle moving along along a trajectory [z(t)] is

Hamilton’s principle is the statement that the action (.5) for a particle

moving from z, at t, to xp at

along a path x(t) is stationary (minimum or maximum) for the actual
classical trajectory x(t) = x¢(t) that follows Newton’s law of motion.
Note that

(a). L =T —U = the Lagrangian is a function of two variables: x and #.

(b). S|x] = the action is a function whose argument is itself a function.

A function of function is sometimes called a functional.

(c¢). The action S|x| is stationary for the classical trajectory xo(t).




Taylor Expansion: Taylor expansion is the most useful mathematical
formula for physicists.

e A function can be approximated by polynomials in the
neighborhood of a point (xg) in terms of its value and derivatives
using Taylor expansion about zg with f(x) = f(xo + Ax):

df = (Az)* d" f

flxo +Ax) = f(xo) + Aa;%(mo) + O[(Ax)*] = Z

n! (o)
n=0

e For a function of two variables the Taylor expansion becomes

f(x,y) = f(zo+ Az, yo + Ay)
f(xo,y0) + Aﬂ?ﬁ(ﬂfo,yo) + Ayg—i(ﬂfoayo)

0
9 f O f

i1 (Aa:)262—f + (Ay)* == + 2AzA
Y y(?a:(?y

2 Ox? 0y?

+ O(A?).




1.2 Functional Derivatives

For the functional

the functional derivative of W x| with respect to x(¢) is defined as
OW x| /dx(t) = the coefficient of the linear term in dx(t) in Wx + dx|.

The functional derive becomes

oWlz] . Wiz +dx] - Wlz] OF d (OF
Sr(t)  sas0 5(1) T or  di <aj:> |

We can write
W
Sx(t) T

for the path with xq(?).




we have
5W[£Uo]
ox(t)

where we should have applied a useful identity

02 (T)
5:135 (t)

— 2[:130(t) o t]a

— 5ab5(7_ — t) .

In terms of the functional derivative, the functional Taylor series has
the following form

b SW ]

Sa(p) Oedt

Wlx + 0x] = W]x] +/

a

— eap ( /t t 5;@)) W] oa(t)dt




For functionals that have the form of an integral of an ordinary function

the functional derivative of W x| is related to the ordinary derivative

dF'/dx




Here are some examples:




1.3 Back to Hamilton’s Principle

The action is defined as

S[a] /t " L d) di

a

/tb(T(x,j:)  Ulx, #)) dt

a




Then the functional derivative of the action becomes
0S[z]  dSr[z]  ISulz]
Sx(t)  dx(t) ox(t)

Let’s consider U = U (x) for a conserved energy. Since U(z) is an

ordinary function of x,

55(] [ZE] o
dx(t)

The functional derivative of the St term can be evaluated from

ty 1
Sylw + ba] / Sl + 02)? di
t

a

ty ty
/ %m:tQ dt + / miad dt + O(6x?)
t ta

a

tp
Srlz] + / madi dt + O(5z2).
ta




The linear term in dz becomes
ty
mxox dt
tq

() 0a(ty) — ma (£,)0z (L) — /t bm%(j;)ax(t) dt

i (t,)0a(ty) — ma (£,)0z (L) — /t Y nise(t) di

a

We note that




Therefore, we have

T, = constant

Tp = constant.

Now we have

mxdox(t) dt




0

which is just Newton’s second law of motion.




1.4 More Degrees of Freedom

Let us consider a system with N particles moving in one dimension

with coordinates x1,xs, -, xn. The Lagrangian is

L=T-U = Z — ;& U(xi, T2, -, TN),

where T' is the total kinetic energy and U is the potential energy.

It is easy to see that

)
Slz] = —m;Z; — Ui(x1, -, xN) = —m;T; — 0
8:@

5$z’ (t) B

and —U; is the force on particle 7.

U(xla"'axN):Fi7

For S|z] to be stationary, we must have
5Sla] _
(5:131(?5) N

for each 7, which gives F; = mx; = ma; for every particle.

—m;&; — Ui(x1, -,




Kronecker delta Symbol and Dirac delta Function
The Kronecker delta symbol (§;; for discrete variables is defined as
1, fori=j, ando;; =0, fori##j,

such that

N
> Siigi =g
i—1

The Dirac delta function for continuous variables is defined as
d(x —xg) =00, forx=x9, andd(x—x9) =0, forx+#xg,

such that

Z2
/ f(xO), for r1 < xg < xo.
x




Review of Coordinates
Cartesian Coordinates

The displacement of a particle in Cartesian coordinates is described as
r=r=xx+yy+ 22

where z, ¢, y are unit vectors.

Cylindrical Coordinates

The cylindrical coordinates are (p, ¢, z), where

p=Va?+y?

and 0 < ¢ <27

qb:tan_l(g), forx >0, and gb:—sin_1<g)+7r,

X X




Spherical Coordinates

Figure 1: Spherical coordinates

The spherical coordinates are (r, 6, ¢), where

r:\/xQ—l—yQ—l—zQ, and 0 = cos™! (E) :
-

with 0 <O <mand 0 < ¢ <27

gb:tan_l(g), forx >0, and gb:—sin_1<y)+7r,
x

i




1.5 The Euler-Lagrange equation

The action (5) is defined as

Slq] /tbL(qyd)dt-

The Lagrangian (L) is defined as the difference of the kinetic energy
(T) and the potential energy (U), L(q,q) =T (q,q) —U(q,q), and it is a
function of generalized coordinates (¢;) and time derivatives of the
generalized coordinates (¢;), where ¢ can be a vector with components
qi,t=1,2,---, N.

The functional derivative of the action S[q| with respect to ¢;(t) is

dSlg] _ 0L(¢,q) d laL(q,d)]
0qi(t)  Oqi(t)  dt | 0q¢i(t) |

The first term arises from the Taylor expansion of the ¢;(¢) dependence;

the second term arises from the Taylor expansion of the ¢;(t) followed
by an integration by parts which gives the minus sign.




In one dimension with ¢(t) = x(t), we have

ty
S|z + ox] / L(x + dx, & + dx) dt
t

a

ty
/ta [L(x, T) + 5$g—i + 5:1:2—5] dt + O(6z?)

oL d 5:138—L —5:1:i8—L] dt + O(6x?)

e T A% e T %t oa

_ tp
5:138—L — &Ci(‘?_L] dt + [5:1:0—11 + O(62%)

Ox dt Oz oz
9L d OL ,

ta

where dx(t,) = 0 = dx(tp) since x, and x; are fixed end points.




We have just found

W TOL d oL )
S[:I:+5:13]—S[x]+/ta [%—%%] dxdr + O(dx”) .

The functional derivative can be defined as the coefficient of the linear
term in dx(t):  0S[z]/dx(t) = OL/0x(t) — d/dt[OL /0 (t)],
and it should be derived as

0.5 |x] S|z + dx| — S|x]

lim

ox(t) ox(t)
0L d OL| dx(71)
Ox  dt 0| dx(t)

dT

[ OL B d OL ]
| Ox  dt 0z |

i oz

O(T —t)dr




If S[z] is stationary, the functional derivative with respect to z(¢) must

vanish, i.e.

6.5 |x] _(’9_L____0
6x(t) Ox dtox

N.B. The Hamilton’s principle implies that the solution for the motion

along the classical path with stationary action satisfies

8L_ d OL
Ox dt 0%

which is called the Euler-Lagrange equation. If  or ¢ has several

0.

components, the Euler-Lagrange equation must be true for each
component (q;) separately:

oL d[oL] _
dq¢; dt |0¢;|




Example: A Frictionless Table

Let’s consider a frictionless table in the x — y plane with a hole at the
origin. A mass m; slides on the surface of the table but it is attached
to a massless string of length ¢ that goes through the hole at the center
of the table and hangs straight down where it is attached to a mass ms.

z
05
|
]

>

Figure 2: Frictionless table.

This system can be described by the length r of the string on the table
and the angle 6 of the string on the table from the x axis.




The kinetic energy is

T(T’, ’f’, 6, (9) — 5(7711 -+ m2)7*2 —+ §m17“26’2

where the first term is the kinetic energy of translation and the second
term is the kinetic energy of rotation.

The gravitational potential energy is
U(r) = magr,
such that U(r =0) =0 = Upiy and U(r = £) = mogl = Upiax.

The Lagrangian is

L(r,7,0,0) = T—-U

1 .
§(m1 + Mg + ST

292 — Mogr.

The Euler-Lagrange equations are

OL dOoL
Oq¢ dtog

0.




The Lagrangian is

L(r,7,0,0) = 5(ml + Mg + §m1r292 — Mogr.

The Euler-Lagrange equations are

OL dOoL
Oq¢ dtog

0.

For ¢ = r, the equation of motion is

For ¢ = 0, the equation of motion is

oL B d OL
00  dt 90

d : OL :
——(m1r29) lLe. pp=— = m17“29 — constant .

dt 00




