PHYS 6213: Advanced Particle Physics, Spring 2022

Lecture 24, Apr 13, 2022 (Wednesday)

e Reading:
(a) Chap 12 in Collider Physics
(b) Chap 18 and Chap 19 in Quantum Field Theory

e Assignments:
(a) Term Paper 1: pp — H + X due Apr 28 (Thu)
(b) Term Paper 2: pp — VH + X due May 06 (Fri)




Topics for Today:

Chapter 12 Dimensional Regularization and Renormalization
12.1 Loop Integrals in N Dimensions
12.2 Dimensional Regularization
12.3 Self-Energy in A¢* Theory

12.4 Vertex Corrections in A\¢* Theory

Topics for Next Lecture:

12.5 Renormalization in A¢* Theory




12.1 Loop Integrals in N Dimensions

Applying generalized spherical coordinates in N-dimensions, we have

found
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Now, by letting ¢ = ¢ + p we can write Eq. (1) in the following form,
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Next by successive differentiation of previous equation with respect to
Py, it is easy to obtain the formula
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The Gamma Functions

The following formulas are very useful for dimensional regularization.
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Feynman Parametrization for Loop Integrals

L 1o /1 q !
= X
d1d2 d2 - dl) + dl]

1
dm/ d
d1d2d3 / y z(dy — dy) + y(ds — d2) + db]°

3)/0 dx/O W (s —dy) + y(ds — da)




12.2 Dimensional Regularization

In high energy theory, there are 3 types of divergences: (a) ultraviolet
(E — o0), (b) infrared ((F — ¢ — 0+), and (c) collinear divergence
(cosf — +1) between a quark and a gluon:

ultraviolet divergence can be removed by renormalization with a

high energy cut off or dimensional regularization;

infrared divergence can be removed with real gluon or photon

emission and a low energy cut off or dimensional regularization;

collinear divergence can be removed by redefinition of parton

distribution functions.




Regularization is the procedure to isolate divergences and determine
the finite part for physical observables.

Example 1: For mass renormalization, we have

['(—1+4+¢)=— %+1—7+O() .

Example 2: For coupling renormalization, we have

F(e)zl—v—i—O().
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12.3 Self-Energy in \¢* Theory

In N dimensions with N = 4 — 2¢, the Lagrangian density for the ¢*

theory becomes
1 1 A
_ = w22 2¢ .14
E—Qucb@qb zmgb i o .

Applying Feynman rules, we obtain the self energy as a one-loop

integral
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That leads to

£(m?) = 5 (A / (d L1
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Introducing Wick rotation with £, = i/ and (3, = —(%, = —(? we
obtain
—1
02 +m? — ie
1
02 +m? —ie

5 (m2) %(z’)\)uze(%)_N / idN e

gM%(Qﬂ_)—N / ng

This is similar to the following integral in the N-dimensional FEuclidean

space,
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with A = 1 and M? = m? — je. Thus the self energy becomes
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Choosing N = 4 — 2¢, we obtain

A m2 \ °©
Sioop (") 32772 ML (=14 ) <4wu2>

€

el 2o (35)

3272

A
3272

471
(m?) [—Ae —1+log (27’—22) — O(e)] .

1
Ac=——v+1In(4n).
€




We have applied
~N/2 N/2 B e
S = T = (4m) Y = (dm) 0

as well as

2
(4ﬂu2

and
I'(—1+4+¢)=(-1) % +1—~+ O(e)]

where v is the Euler constant and € is an infinitesimal parameter.




12.4 Vertex Corrections in \¢* Theory

In N dimensions with N = 4 — 2¢, we need to define a new coupling
)\old — )\new ) ,LLQ6 — )\,LL2€

A = Anew 10 keep A dimensionless so this theory is renormalizable.

Then the Lagrangian density becomes

A

1 1
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The Next-to-Leading-Order (NLO) vertex corrections have
contributions from s,¢ and u—channel diagrams. Applying Feynman

rules, we obtain the transition amplitude for the s—channel




contribution as
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Introducing a Feynman parameter x, we obtain
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Then the amplitude becomes
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In NV dimensions with dimensional regularization, we can switch the

order of integration and express M as

1 1 !
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iMy = 32 (2m) ™ | de (2120 qro —m? + oq])?

The integral in M; can be simplified with a shift ¢ = ¢ 4+ xq; or

¢ = q — xq;. Then the amplitude becomes
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Introducing Wick rotation in the complex Y plane with £° = i/ and
(% € R, we obtain
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Then the s-channel amplitude becomes
My =

i(—1) :
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Recall that in the N—dimensional Euclidean space, we have
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The s-channel diagram becomes
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Then the amplitude becomes
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Now let us consider

A = (A7) = o) — 1 eI (A) + O(e?)

1 1
l+-++—=—7,
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—vy ~ —0.5772,

v is the Euler constant and € — 0+ is an infinitesimal positive

parameter.




Then the amplitude becomes
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Applying the following integral
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Then the s-channel diagram with ¢ = s becomes
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Similarly, the t— and u—channel diagrams become

A, +2+ln<”2
m

with g5 = (p2 +p3)° =t and ¢5 = (p1 +p3)* =

Thus the total one-loop contribution at the order of \? is

G\Y = i(My + My + M3)




To the order of the \?, the 4-point vertex function or the 4-point Green

function becomes
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The divergent part
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needs to be removed by renormalization with counter terms.




12.5 Renormalization of the ¢* theory

Renormalization is the procedure to remove ultraviolet (UV)
divergences systematically in order to evaluate finite physical quantities.

A. One loop structure of ¢* theory

In N —dimensions the action of the ¢* theory is

S:/dN:IJEB with N =4 — 2¢

and the bare Lagrangian density is
1 " 1 5o 1.5y
Lp = 5((%@50)(6 $o) — §mo¢o - J)‘o%

where

e ¢o = the bare field with [¢g] =1 — €,




e my = the bare mass with [mg] =1,
e )\ = the bare coupling with [A\g] = 2e.
We often define

M—EZ;/2¢

Z%{Qm

12675\
where
e ¢ = the renormalized field with [¢] = 1,
e m = the renormalized mass with [m]| =

e )\ = the renormalized coupling with [A] = 0.




Then the action becomes

1
41

g M—Qe/ JA—2¢ [(qu)%(ﬁuqb)(a”qb) _ (ZmZCb)%m?gb? — (szci)
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where LR is the renormalized Lagrangian density
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with the kinetic energy or the unperturbed Lagrangian

1

Lo = 5(0,0)(0"6) — 5m*¢*

and the ordinary perturbation or the interaction Lagrangian

1
L= —ﬂ)\ng‘l.




And the counter term Lagrangian is

Lot = (Zs — V)3 0u0)(0"0) — (ZnZ0 — 1) gm*6” — (1223~ 1) 3

Now the complete set of Feynman rules become:
e propagator: i/(p? — m? + ie),
o vertex: —iA,
e counter term propagator: i[(Zy — 1)p? — (ZmZy — 1)m?,

e counter term vertex: —i)\(Z,\Zq% —1).

2€ / ng
H N
(27)

for all momentum integration.

There is a factor




Let us consider the various Z’s in the following form
Z=1+Y 2ZM\"
n=1
then choose the coefficient Z(™ to remove the infinities.

Example:

At the one-loop order,

,@z;=1+<

>A+OQ%.
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Then we can remove the pole order A\?. In the minimal subtraction
scheme, we remove exactly the pole with 1/e.

In Section 7.1 of Peskin and Schroeder’s book, we learned that the

exact two-point function has the following form
A
P2 — m2

+ (regular terms atp® = m?) .
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we can eliminate the awkward residue Z from this equation by

rescaling the field

b0 = Z'2¢R
That means, we may set Z, = Z.

Then the bare Lagrangian becomes

£B:/d4 [1 ( uﬁb)(a“@__moZQb ——!)\%Zng‘l

The bare mass and bare coupling can be defined as
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where 67, ém? and J\ are the divergent counter terms.




The counter term Lagrangian becomes

1

Lot = 5(02)(0,0)(0"6) — 5 (m)m?¢? -

1
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Now the complete set of Feynman rules become:
e propagator: i/(p* — m? + ie),
o vertex: —i\,
e counter term propagator: i[(6Z)p? — dm?],
e counter term vertex: —io\.

A good definition of A is that the value of A is equal to the magnitude
of the scattering amplitude at zero momentum. Thus we have the two
defining relations

e the full propagator is

1
p2 — m2

+ (termsregular atp® = m?),




e the amputated vertex is —i\ at s =4m?,t =u = 0.

These equations are called the renormalization conditions. The first
equation actually contains two conditions, specifying the location of the

pole and its residue.

B. Mass Renormalization in \¢* Theory

Suppose we have calculated the self-energy diagrams

—i%(p?) =




The full propagator is
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Therefore, the full propagator is
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In particular, if
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The term with bare mass is regularized to contain a finite renormalized

mas (mpg) and a divergent term (dm)

ms = m% + om?

such that the renormalized self-energy is

ER(pa mR) — Eloop + ZCT — Eloop + 5777,2




A o [ 1
om*= = 327T2(m ) (E —cm) :

The physical mass squared then becomes

2 _ 2
mpn = My + LR .

Let us consider two simple renormalization schemes at the first order in

A

(a) In the minimal subtraction scheme (MS), we choose ¢,, = 0.

The renormalized self-energy becomes

S(pn) = o) [~ log(a) — 1-+10g () + 000

"
s 1% ()




and the physical mass is

A
2 2 2
M —mph—32ﬂ2(m)[1—l—log<

The modified minimal subtraction scheme (MS) was

suggested by Bardeen et al. They found that the combination
1
A== —+log(4r)
€

always appears in the dimensional regularization. Thus it is

convenient to choose

Cm =7 — log(4m) .




Then the renormalized self-energy becomes

ER(])) m) Eloop + ZCT

A 5 m?
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and the physical mass is

A m?
2 _ 2 —1
mph—gzﬂz(m)ll—l—log(u2e )] :

The on-shell scheme

A third scheme is called the momentum subtraction scheme or the
on-shell scheme (OS).

Recall that the physical mass is the solution of

M? = mpy, = mp + %(p,mg) .




Let us define

Then near the pole we can expand

(%) ~ S(M?) + (5 — M2)E (7)o nro

p —m? = S(0) — (7 = )T ()

iA(p?)

(p? — M2 +ie)[1 — X' (M?)]

where we have chosen

M? =m3 + S(M?) .
In the on-shell renormalization scheme, we adjust the Z’s so that

m = Mphysical i-e. B(m?) =0




and the residue of the pole is one

Y (m?)=0.




C. Renormalization of Coupling in \¢* Theory

Recall that at the one-loop level the 4-point Green function is

GV i(M;y + Ms + M3)

DS 1
Z327T2 e [3 (E — 7+ 10g(47T)) + F4] + O(e)
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To the order of the A2, the 4-point Green function becomes

—iN+1 12 [BA. + Fy] + O(e)  with
3272
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Integrating over x, we obtain

2 4m2 \/ 4m2—|—1
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Then the renormalized vertex function becomes

iM = —i\+ (—i\)?[iV(s) + iV (t) + iV (u)] — 0\,

Applying the renormalization condition for the vertex function, we
need this amplitude to be equal to —¢\ at zero momentum with
s = 4m? and t = u = 0. Therefore, we must set

ON = — N[V (4m? 4 2V (0)]

That determines the counter term of the coupling constant in the




on-shell scheme as

2
o\ = A
3272

2
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Then the finite result becomes
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1
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F(s,t,u) = log (_x_(f(_lg)gjlj) "meQ) +log (

with on-shell renormalization.




