PHYS 6213: Advanced Particle Physics, Spring 2022

Lecture 23, Apr 11, 2022 (Monday)

e Reading:
(a) Chap 12 in Collider Physics
(b) Chap 18 and Chap 19 in Quantum Field Theory

e Assignments:
(a) Problem Set 4 due Apr 12 (Tue)




Topics for Today:

Chapter 12 Dimensional Regularization and Renormalization
12.1 Loop Integral in N Dimensions
12.2 Dimensional Regularization

12.3 Mass Renormalization in \¢p*

Topics for Next Lecture:

12.4 Coupling Renormalization in \¢*




12.1 Loop Integral in N Dimensions

Let’s consider an integral in N dimensions®
Iy = / dNOF(0?)
dVe = |[e|Nd|¢|dg sin 6,dO; sin? O2ds...sinY T2 On_odOn_a, (1)
with the following values for the integration variables

0 | < o0,
0 ¢ < 2,
0 0, <m i=1,. N—2

Applying the well known formula
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aField Theory: A Modern Primer by Pierre Ramond




for Re a, Re B > 0, and I'(1/2) = /7, we obtain
_N/2

V=)

/ deaN =22 (),
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where x = |¢|* = (7.
In general, F'(z) will be of the form

Fla)= (e +M)™, A=172,..
that leads to
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0
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which is valid for Re(N/2) > 0 and Re(A — N/2) > 0.




Then, we have

T

at (A= N/J2) 1 -
[ =" < amen O

We have derived this expression for N integer, Re (A — N/2) > 0, and
Re (N/2) > 0. Now we can generalize it for non-integer N by analytic

continuation.

Now, by letting ¢ = ¢ + p we can write Eq. (5) in the following form,
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Next by successive differentiation of previous equation with respect to
Py, it is easy to obtain the formula

[ _ xpTA-N/2) (=2,

s

2420 p+ M2)A T(A) (M2 = p2)A-N/2

and
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N/
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4, the integral I becomes
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Representations of Beta Function

Here are some useful formulas for the beta function:

['(m)L'(n)
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The Gamma Functions

The following formulae are very useful for dimensional regularization.
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where v is the Euler constant, and
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Feynman Parametrization for Loop Integrals

L 1o /1 q !
= X
d1d2 d2 - dl) + dl]

1
dm/ d
d1d2d3 / y z(dy — dy) + y(ds — d2) + db]°
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12.2 Dimensional Regularization

In high energy theory, there are 3 types of divergences: (a) ultraviolet
(E — o0), (b) infrared ((F — ¢ — 0+), and (c) collinear divergence
(cosf — +1) between a quark and a gluon:

ultraviolet divergence can be removed by renormalization with a

hign energy cut off or dimensional regularization;

infrared divergence can be removed with real gluon or photon

emission and a low energy cut off or dimensional regularization;

collinear divergence can be removed by redefinition of parton

distribution functions.




Regularization is the procedure to isolate divergences and determine
the finite part for physical observables.

Example 1: For mass renormalization, we have

I‘(—1+e)=—[%+1—v+0( )]

Example 2: For coupling renormalization, we have

(€)= = — 7+ 0() .

€




12.3 Mass Renormalization in \¢* Theory

In N dimensions with N = 4 — 2¢, the Lagrangian density for the ¢*

theory becomes

1 1 A
_ = w242 7t 2e 4
Applying Feynman rules, we obtain the self energy as a one-loop
integral

dN ¢ i
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where S is the symmetry factor
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That leads to

£(m?) = 5 (A / (d L1

2m)N 02 —m2 4 de

Introducing Wick rotation with £, = i/ and (3, = —(%, = —(? we
obtain
—1
02 +m? — ie
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02 +m? —ie

5 (m2) %(z’)\)uze(%)_N / idN e
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This is similar to the following integral in the N-dimensional FEuclidean

space,
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with A = 1 and M? = m? — je. Thus the self energy becomes

oy _ A o N N2F(1—N/2) 1
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Choosing N = 4 — 2¢, we obtain
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We have applied
~N/2 N/2 B e
S = T = (4m) Y = (dm) 0

as well as

2
(4ﬂu2

and
I'(—1+4+¢)=(-1) % +1—~+ O(e)]

where v is the Euler constant and € is an infinitesimal parameter.




12.4 Coupling Renormalization in \¢* Theory

In N dimensions with N = 4 — 2¢, we need to define a new coupling
)\old — )\new ) ,LLQ6 — )\,LL2€

A = Anew 10 keep A dimensionless so this theory is renormalizable.

Then the Lagrangian density becomes

A

1 1
£:§a'u¢a,u¢_§m2¢2_ﬂlu2€¢4.

The Next-to-Leading-Order (NLO) vertex corrections have
contributions from s,¢ and u—channel diagrams. Applying Feynman

rules, we obtain the transition amplitude for the s—channel




contribution as
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with g1 = p1 + p2 and ¢% = s.




Introducing a Feynman parameter x, we obtain

1 1 1
dax
dids /0 | (

dy —di =20-q1 4 gi .

Then the amplitude becomes
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In N dimensions with dimensional regularization, we can switch the




order of integration and express M as

1 1 !
M, — 2(,.2\2¢ 2 —N/ d /ng
My =5 ()77 | de 2 +20- qur — m? + wq7)?

The integral in M; can be simplified with a shift ¢ = ¢ + xq; or

¢ = q — xq;. Then the amplitude becomes

1
2)2€(2m) /d /dN .
™ ' 2+ o(l - 2)g} — m??

Introducing Wick rotation in the complex ¢° plane with £° = /% and
(8 € R, we obtain

dN0y =idV0g and 3, = (00)2 — |02 = (LN — 0] = =02, = 12
Then the s-channel amplitude becomes
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Recall that in the N —dimensional Euclidean space, we have

vl npTA-Nj2) 1
= [ = G e

Thus we now have

1 1
a” = [ aY =
/ M@=z —2)@ + m?]? / T+ M2

with A =2 and M? = —x(1 — x)q% + m?.

Then the s-channel diagram becomes
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with T'(2) = 1! = 1.
We often choose N =4 —2¢. Then 2— N/2=¢,['(2— N/2) =T(e), and
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Then the amplitude becomes
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Now let us consider
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= —vy~—-0.5772,

~ is the Euler constant and € is an infinitesimal positive parameter

¢ — 0+4. Then the amplitude becomes
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(P ey (£ (14 ).
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Applying the following integral

1
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we obtaln
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Then the s-channel diagram with ¢ = s becomes
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Similarly, the {— and u—channel diagrams become
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with g3 = (p2 +p3)* =t and ¢35 = (p1 +p3)* =

Thus the total one-loop contribution at the order of \? is

G\ = i(My + M, + M3)

. )\22u2e [3 (l _ 1n(47r)) - F4] +O(e)

€




To the order of the \?, the 4-point vertex function or the 4-point Green
function becomes

*[3A. + F4] + O(e) with
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The divergent part




needs to be removed by renormalization with counter terms.




Loop Integrals in the Minkowski Space
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All these integrals can be evaluated with dimensional regularization,

N = 4 — 2¢ and € is infinitesimal.




10.1 12.5 Large Mass Expansion

For z? < 1, we have
(1+z) ' =1F2+2°+0(°).

For (¢?/M?)? < 1, we can expand the propagator® as

I+ +M*]7Y = [P+M*+20-q+¢°]7}
20 - q+ q°
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@M. Veltman, Acta Physica Polonica B8 (1977) 493.




Three-point Scalar Integral
Now let us calculate the 3-point scalar integral

/ dN 1
(27T)N d1d2d3

0> —m? +ie

(¢ —|—p1)2 + 1€

(£ + pq +p2)2—m2+ie

with p§ = m? = p3 and k% = (p; + p2)? = s as an integral in = and v.

Let us introduce Feynman parameters for the denominator of Cy:

d d
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where

do — dy 20-p1 +pi+m”,
ds —dy = 2(0+p1)-p2+p;—m® = 20 -py+2p1 - pa+p5 —m?>.

Then the denominator becomes
v(dy —di) +y(ds —do) +di = 02 +20-(xp1 + yp2)
+x(pi +m?) +y(2p1 - p2 +p3 —m?) -

Applying dimensional regularization, we can switch the order of the ¢

and the x,y integrals and express Cy as
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Let us shift the integration momentum with ¢ = ¢ + zp; + yps or




¢ =q— xp1 — yps. Then Cy becomes
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Introducing Wick rotation with ¢ = i¢} and ¢5, = —q¢% = —¢?, we
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in the Euclidean space. Recall that in /N dimensional Euclidean space
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For A = 3, the 3-point scalar integral becomes

“N/2) 1
G X
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where

M? = pix® + p3y® + 2p1 - paxy — x(p] + m?) — y(2p1 - p2 + p3 —

Choosing N = 4 — 2¢, we obtain

r(s-%) —T(1+e) =1+0().

Since it is finite, we may set N = 4. Then C;y becomes




where

M? = pia® + p3y® + 2p1 - pexvy — x(py + m?) — y(2p1 - p2 + p5 — m?>) + m7|— ie.

For p? = m? = p? and s = (p1 + p2)? = 2p1 - p2 + 2m?, we have
M? = m?z® + m?y* + (s — 2m?)zy — 2m°z — (s — 2m?)y + m” — ie.

In general, Cy is expressed in terms of Spence functions.
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10.2 The Gamma Functions

The following formulae are very useful for dimensional regularization.
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where v is the Euler constant, and

PR L1C)

1
1+=-+...4+——7
2 n




Divergence Cancellation

Here are some identities for divergence cancellation:
ey B 1 1 T(A-1-N/2)
I'(A) Qm“/ (M2)A-1-N/2

1 1
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10.3 Dirac Matrices

Useful Formulae:

YEAY 4 Py

D™

Yy g™

T ?i h’yu
Y ¢i % ¢”Y“

where N = 4 — 2e.
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