
PHYS 6213: Advanced Particle Physics, Spring 2022

Lecture 15, Mar 09, 2022 (Wednesday)

• Reading:

(a) Chap 7 in Collider Physics

(b) Chap 25–27 in Quantum Field Theory

• Assignments:

(a) Problem Set 3 due Mar 11 (Fri)

• Make-up Class on Mar 11 (Fri) 09:30 AM–10:30 AM (On Zoom)
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Topics for Today:

Chapter 10 Quantum Chromodynamics (QCD)

10.2 QCD Lagrangian and Feynman Rules

10.3 The DeWitt-Faddeev-Popov Formalism

10.4 e+e− → hadrons

Topics for Next Lecture:

10.4 e+e− → hadrons

10.5 The parton model

10.6 The strong coupling parameter
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10.2 QCD Lagrangian and Feynman Rules

The QCD Lagrangian can be written as

L = LYM + LGF + LDFP + LM

= −1

4
F aµνF

aµν − 1

2ξ
(∂µG

aµ)2

+(∂µχ̄
a)
(
δab∂µ + gsf

abcGcµ
)
χb + ψ̄(i D/ +m)ψ

= −1

4
(∂µG

a
ν − ∂νGaµ)(∂µGaν − ∂νGaµ)− 1

2ξ
(∂µG

aµ)2

+∂µχ̄
a∂µχa + ψ̄(i ∂/ +m)ψ + LI

LI = +
1

2
gsf

abc(∂µG
a
ν − ∂νGaµ)GbµGcν − 1

4
g2
sf

abcfadeGbµG
c
νG

dµGeν

+gsf
abc(∂µχ̄

a)Gbµχc

−gsGaµ
(
ψ̄γµT aψ

)
where YM = Yang-Mills, GF = gauge fixing, M = matter = quark,

and DFP = DeWitt-Faddeev-Popov.
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In addition,

• F aµν ≡ ∂µGaν − ∂νGaµ − gsfabcGbµGcν , a = 1, 2, ..., 8,

• Gaµ = gluon fields, a = 1, 2, ..., 8,

• ψi = Dirac spinor fields of quarks, i=1,2,3,

• χa = DeWitt-Faddeev-Popov ghost fields, a = 1, 2, ..., 8,

• gs = strong coupling constant,

• T a = generators of SU(3), a = 1, 2, ..., 8, and

• fabc = antisymmetric structure constant of SU(3).

The SU(3) gauge transformation is

ψ′(x) = U(θ)ψ(x) with U(θ) = e−(i/~)θa(x)Ta

where T a = λa/2 and λa are 3× 3 Gell-Mann matrices.

The covariant derivative is Dµ = ∂µ + igsG
a
µT

a.
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Feynman Rules

Figure 1: QCD Feynman rules.
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Gauge boson propagator in the Rξ gauge

For massive gauge bosons, the propagator is

∆µν(k) = ∆F (k) =
i
∑
λ εµ(k, λ)ε∗ν(k, λ)

k2 −M2 + iε
=
i[−gµν + (ξ − 1)kµkν/(k

2 − ξM)]

k2 −M2 + iε
.

For massless gauge bosons, the propagator is

∆µν(k) = ∆F (k) =
i
∑
λ εµ(k, λ)ε∗ν(k, λ)

k2 + iε
=
i[−gµν + (ξ − 1)kµkν/k

2]

k2 + iε
.

The value of ξ fixes the gauge:

• ξ = 1, Feynman gauge,

• ξ = 0, Landau gauge,

• ξ =∞, Unitary gauge for massive gauge bosons.
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qq̄ → tt̄

Figure 2: Feynman diagram for qq̄ → tt̄.
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Gauge Boson Propagator in the Axial Gauge

Gauge invariance leads to unwanted degrees of freedom from self

interaction of gauge bosons.

There are two ways that we can remove unwanted degrees of freedom

and to make observables physical:

(a) applying the axial gauge, and

(b) introducing spin-0 DeWitt-Faddeev-Popov ghosts that follow

Fermi-Dirac statistics,

The axial gauge is defined by the conditions

nµGaµ = 0 and n2 = nµnµ = −1

where n is a space-like vector. For example, nµ = (0, 0, 0, 1).

The relevant Lagrangian becomes

L0 + LGF = −1

4
F aµνF

aµν − 1

2ξ
(nµGaµ)2 .
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After partial integration, the corresponding quadratic part of the action

becomes

1

2

∫
Gaµ

(
�gµν − ∂µ∂ν −

1

ξ
nµnν

)
Gaν d4x .

In the momentum space, the operator in brackets becomes

D → −k2gµν + kµkν −
1

ξ
nµnν .

It is straightforward to check that this has the inverse

i

k2

[
−gµν +

kµnν + nµkν

n · k
+

(n2 + ξk2)kµkν

(n · k)2

]
.

Note that the two-point Green function for a gluon field is

Dab
µν(x− y) ≡ 〈0|TGaµ(x)Gbν(y)|0〉 =

∫
∆ab
µν(k) e−ik·(x−y) d4k

(2π)4
.
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In the limit ξ → 0, we have the axial gauge propagator

∆ab
µν(k) =

iδab

k2 + iε

[
−gµν +

kµnν + nµkν
n · k

+
n2kµkν
(n · k)2

]
.

It is easy to show that

nµ∆ab
µν(k) = nν∆ab

µν(k) = 0

and there is no ghost gluon interactions.

In the s-channel diagram for g(p1)g(p2)→ tt̄ with trilinear gluon

interactions, we often choose

Rµν =
∑
λ

εµ(q, λ)ε∗ν(q, λ) = −gµν +
2

s
(pµ1p

ν
2 + pµ2p

ν
1)

for the polarization sum, where q = p1 or p2, k = p1 + p2 and k2 = s.
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gg → tt̄

Figure 3: Feynman diagrams for |M |2(gg → tt̄).

11



Color Factors

In the fundamental representation, the generators (T a) are N ×N
matrices, and the su(N) algebra is defined by

[T a, T b] = ifabcT c ,

where fabc is anti-symmetric structure constants. In addition, we have

{T a, T b} =
δab

N
+ dabcT c

where dabc are symmetric structure constants. Thus

T aT b = [T a, T b] + {T a, T b} =
1

2

[
δab

N
+ (ifabc + dabc)T c

]
.

With this choice, the color matrices obey the following relations:

Tr(T aT b) = TRδ
ab , TR =

1

2
,
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and

(T a)ml (T
a)ln = CF δmn , CF =

N2 − 1

2N
.

In matrix formalism, that is

T aT a = CF · I and Tr(T aT a) = CFTr(I) .

Taking trace on both sides, we have

Tr(T aT a) =
1

2
δaa =

N2 − 1

2
= CFTr(I) = CF ·N and CF =

N2 − 1

2N
.

The structure constants have the following sum rules:

fabcfabd = CAδ
cd , CA = N and dabcdabd =

N2 − 4

N
δcd .

For SU(3), we have

CF =
4

3
and CA = 3 , .
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10.3 The DeWitt-Faddeev-Popov Formalism

A. Yang-Mills Fields

Yang-Mills fields are more complicated than the Maxwell field, because

of the non-linear relation

F aµν = ∂µA
a
ν − ∂νA1

µ − gCabcAbµAcν .

This makes the Lagrangian density more complicated

L(x) = −1

4
F aµνF

aµν = L0(x) + LI(x) ,

where the kinetic term is

L0(x) = −1

4

(
∂µA

a
ν − ∂νAaµ

)
(∂µAaν − ∂νAaµ)

= −1

2

(
∂µA

a
ν − ∂νAaµ

)
(∂µAaν) ,
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and the interaction Lagrangian becomes

LI(x) = −gCabc (∂µA
a
ν)
(
AbµA

c
ν

)
− g2CabcCade

(
AbµA

c
ν

) (
AdµAeν

)
.

The kinetic term L0 contributes to the action in the same form as that

of the Maxwell theory

S0[A] ≡
∫

d4x L0(x)

=
1

2

∫
d4xAaµ (gµν�− ∂µ∂ν)Aaν .

However, the interaction Lagrangian makes the path integral

non-Gaussian and not calculable in a closed form.
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One way to proceed is to consider

Z[J ] = eiW [J]

= N

∫
DAeiS[A]+i〈J|A〉G[fA]∆[A]

= exp

[
i

∫
d4xL1

(
−i δ

δJ(x)

)]
eiW0[J]

where

eiW0[J] = N

∫
DAeiS0[A]+i〈J|A〉G[fA]∆[A] .

Let us choose the gauge fixing function as

fa(A) = ∂µA
aµ .

With the Lorenz condition ∂µA
aµ = 0, an infinitesimal gauge
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transformation on Aaµ gives

fa(A′) = ∂µ

(
Aaµ +

1

g
∂µηa + Cabcε

b

)
Acµ

=
1

g
�ηa + Cabc(∂µε

b)Acµ .

Hence

δfa
δεb

=
1

g
δab� + Cabcε

bAcµ∂µ .

and

∆[f(A)] =

∫
Dχ∗Dχexp

[
i

∫
d4xLDFP(x)

]
LDFP(x) = χ∗a(x)

[
δab� + CabcA

c
µ∂µ

]
χb ,

where χ∗(x) and χ(x) are independent scalar fields obeying Fermi

statistics, with anti-commutation and integration rules for Grassmann

algebra. They are called DeWitt-Faddeev-Popov ghosts.
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Choosing

G[fa] = exp

[
i

2ξa

∫
d4x f2

a

]
= exp

[
i

2ξa

∫
d4x (∂µA

aµ)

]
we obtain

Z[J ] =

∫
DADχ∗Dχ exp

[
i

∫
d4x (Leff(x) + JaµA

aµ

]
, where

Leff(x) =
1

2
Aaµ

[
gµν�−

(
1− 1

ξ

)
∂µ∂ν

]
Abν +

1

2
χa∗�χb + LI ,

and

LI = −gCabcAaµAbν∂µAcν −
1

4
g2CabcCadeA

bµAdµA
cνAeν

+gCabc
(
χa∗∂µχ

b
)
Acν .

The system is described as gauge fields with extra interactions to

spinless DFP fields with derivative couplings.

Since there is no need to introduce sources for the DFP fields, they

only occur in closed loops in Feynman diagrams.

18



Feynman Rules

Figure 4: QCD Feynman rules.
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DeWitt-Faddeev-Popov ghosts in gg → tt̄

Figure 5: Gluon loop and DFP ghost loops for polarization sums.
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B. DeWitt-Faddeev-Popov Formalism in The Weinberg Model

In the Weinberg model, the gauge fixing term is

LGF = − 1

ξW
(f+f−)− 1

2ξZ
(fZ)2 − 1

2ξA
(fA)2 ,

where

f+ = ∂µW
+µ + iξMWG

+ ,

fZ = ∂µZ
µ + ξZMZG

0 ,

fA = ∂µA
µ .

The DFP ghost Lagrangian can be derived as

LLDFP = (∂µχ
∗
+)(δW+µ) + iξWMWχ

∗
+(δG+)

+(∂µχ
∗
−)(δW−µ)− iξWMWχ

∗
−(δG−)

+(∂µχ
∗
Z)(δZµ) + ξZMZχ

∗
Z(δG0) + (∂µχ

∗
A)(δAµ) .
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Considering an infinitesimal gauge transformation we can derive the

quantities δW a in terms of gauge parameters εa

δW+µ = igε+ (cWZ
µ + sWA

µ)− ig (cW εZ + sW εA)W+µ − ∂µε+

δZµ = −igcW ε+W−µ + igcW ε
−W+µ − ∂µεZ

δAµ = −igsW ε+W−µ + igsW ε
−W+µ − ∂µεA

δG+µ =
i

2
gε+G0 − i

2
g

(
c2W − s2

W

cW
εZ + 2sW εA

)
G+

−1

2
gHε+ − ξMW ε

+

δG0 =
i

2
g
(
ε+G− − ε−G+

)
− g

2cW
εZH − ξZMZεZ

δH =
1

2
g
(
ε+G− + ε−G+

)
+

g

2cW
εZG

0 ,

where cW = cos θW and sW = sin θW .
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To derive the DFP Lagrangian, we need to replace ε+ by χ+, ε− by χ−,

εZ by χZ .

The gauge parameters ε+, ε−, εZ and εA are related to the pure

SU(2)× U(1) gauge parameters as follows

ε± =

√
1

2

(
ε1 ∓ iε2

)
εZ = cW ε

3 − sW εB , and

εA = sW ε
3 + cW ε

B .

This is similar to the structure of equation for vector bosons.
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