PHYS 6213: Advanced Particle Physics, Spring 2022

Lecture 15, Mar 09, 2022 (Wednesday)

e Reading:
(a) Chap 7 in Collider Physics
(b) Chap 25-27 in Quantum Field Theory

e Assignments:
(a) Problem Set 3 due Mar 11 (Fri)

e Make-up Class on Mar 11 (Fri) 09:30 AM-10:30 AM (On Zoom)




Topics for Today:

Chapter 10 Quantum Chromodynamics (QCD)
10.2 QCD Lagrangian and Feynman Rules
10.3 The DeWitt-Faddeev-Popov Formalism

10.4 ete~ — hadrons
Topics for Next Lecture:

10.4 eTe~ — hadrons
10.5 The parton model

10.6 The strong coupling parameter




10.2 QCD Lagrangian and Feynman Rules

The QCD Lagrangian can be written as

L Lym + Lar + EDFP + Ly
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where YM = Yang-Mills, GF = gauge fixing, M = matter = quark,
and DFP = DeWitt-Faddeev-Popov.




In addition,
o [, =0,G) —0,G], — gsf“bCGZG,C/ , a=1,2,...,8,
G, = gluon fields, a = 1,2,..., 8,
)* = Dirac spinor fields of quarks, i=1,2,3,
x¢ = DeWitt-Faddeev-Popov ghost fields, a = 1,2, ..., 8§,
gs = strong coupling constant,
T = generators of SU(3), a=1,2,...,8, and

o f9%¢ — antisymmetric structure constant of SU(3).

The SU(3) gauge transformation is

UO)(x) with U() = e~ @/MO"@)T*

where T% = A\%/2 and \* are 3 x 3 Gell-Mann matrices.

The covariant derivative is D, = 9, +igsG, 7.




Feynman Rules
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Figure 1: QCD Feynman rules.




Gauge boson propagator in the R gauge

For massive gauge bosons, the propagator is

i3 3 eu(k, N)ep (kA i[—guw + (§ — Dkuky /(K* — €

Auy(k):AF(k): k2 — M2 4+ e - k2 — M? + jc

For massless gauge bosons, the propagator is

- i)y Eulk, ey (R, A)  il—gu + (§ — 1)kuk1//k2] .

B (k) = Ap (k) = k2 + ie a k2 + ie

The value of £ fixes the gauge:
e £ =1, Feynman gauge,
e £ =0, Landau gauge,

e ¢ = 00, Unitary gauge for massive gauge bosons.




-pZ’B

(s channel)

Figure 2: Feynman diagram for qq — tt.




Gauge Boson Propagator in the Axial Gauge

Gauge invariance leads to unwanted degrees of freedom from self
interaction of gauge bosons.

There are two ways that we can remove unwanted degrees of freedom
and to make observables physical:

(a) applying the axial gauge, and

(b) introducing spin-0 DeWitt-Faddeev-Popov ghosts that follow
Fermi-Dirac statistics,

The axial gauge is defined by the conditions

n“GfL —0 and n’= ntn, = —1

where n is a space-like vector. For example, n* = (0,0,0,1).

The relevant Lagrangian becomes
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After partial integration, the corresponding quadratic part of the action

becomes
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5/ G (DgW — 0,0, — gnuny> GY™ d*x .

In the momentum space, the operator in brackets becomes

1
D — —ngW + Kk, — Enuny .

It is straightforward to check that this has the inverse
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Note that the two-point Green function for a gluon field is
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Db —9) = OTGL@ICLWI0) = [ Afb(k) e ™0 £




In the limit & — 0, we have the axial gauge propagator

i6b kun, +n,k, nZkukV
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It is easy to show that
b b
n“Afw(k) = n”Af’W(k) =0
and there is no ghost gluon interactions.

In the s-channel diagram for g(p1)g(p2) — tt with trilinear gluon

interactions, we often choose
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for the polarization sum, where ¢ = p; or ps, k = p; + p2 and k? = s.




Figure 3: Feynman diagrams for |[M|?(gg — tt).




Color Factors

In the fundamental representation, the generators (7%) are N x N

matrices, and the su(N) algebra is defined by
[TCL7 Tb] _ ifabCTC ’

where f?%¢ is anti-symmetric structure constants. In addition, we have

a b 5ab abcrpc
(T, TP} = — + qobeT

N

where d®*¢ are symmetric structure constants. Thus

1 5ab '
TaTb _ [Ta,Tb] + {Ta,Tb} _ 5 W + (Zfabc + dabC)Tc

With this choice, the color matrices obey the following relations:

1
Tr(TT?) = Tré, Tgr= 5




N2 -1

(T )ml (T >ln — CF5mn7 CF — 9N

In matrix formalism, that is
TT*=Cp-1I and Tr(TT*)=CpTr(1).

Taking trace on both sides, we have

N? -1 N? -1
5 — CFTI'(I> = CF -N and CF — ON .

1
To(TT") = 56 =

The structure constants have the following sum rules:

abc rabd cd abc jabd N2 —4 cd
f f — CA(S , CA = N and d d = T(S .

For SU(3), we have




10.3 The DeWitt-Faddeev-Popov Formalism

A. Yang-Mills Fields

Yang-Mills fields are more complicated than the Maxwell field, because

of the non-linear relation
F$, = 0,A% — 0,A), — gCapc A} A,

This makes the Lagrangian density more complicated

1 Qa aur
L(x) = —ZFWF W= Lo(z)+ L1(x),
where the kinetic term is

1
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and the interaction Lagrangian becomes
Lr(z) = —gCape (0,A%) (A% AS) — g°CapeCadge (A} AS) (AMA™)

The kinetic term Ly contributes to the action in the same form as that
of the Maxwell theory

So[A] / d*xz Lo(x)

1
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However, the interaction Lagrangian makes the path integral

non-Gaussian and not calculable in a closed form.




One way to proceed is to consider

Z[J] e’iW[J]
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Let us choose the gauge fixing function as
fa(A) =0,A".

With the Lorenz condition 0, A% = 0, an infinitesimal gauge




transformation on A}, gives
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where x*(x) and x(z) are independent scalar fields obeying Fermi
statistics, with anti-commutation and integration rules for Grassmann
algebra. They are called DeWitt-Faddeev-Popov ghosts.




Choosing

we obtain

Z|J] :/DADX* Dy exp [z/ d*z (Eeﬂf(x)JrJauAa“] ,  Where

1 1 1
Lest(x) = S A, [g“’”D - (1 - 5) a“aV] A+ X DX + L1,

and

1
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+gCabc (Xa* ,LLXb) A

The system is described as gauge fields with extra interactions to
spinless DFP fields with derivative couplings.

Since there is no need to introduce sources for the DFP fields, they
only occur in closed loops in Feynman diagrams.




Feynman Rules
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Figure 4: QCD Feynman rules.




DeWitt-Faddeev-Popov ghosts in gg — ¢t
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FIG. 25. Gluon loop for polarization sum. FIG. 26, Ghost loops for polarization sum.

Figure 5: Gluon loop and DFP ghost loops for polarization sums.




B. DeWitt-Faddeev-Popov Formalism in The Weinberg Model

In the Weinberg model, the gauge fixing term is
1 1
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The DFP ghost Lagrangian can be derived as
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Considering an infinitesimal gauge transformation we can derive the

quantities 0V in terms of gauge parameters e
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where cy = cos Oy and sy = sin Oy .




To derive the DFP Lagrangian, we need to replace e by x™, e~ by x—,
€z by xz.

+

The gauge parameters €, e, ez and €4 are related to the pure

SU(2) x U(1) gauge parameters as follows

6:|: %(1:F7:€2)

€y cwes — syrel , and

€A Sw€3 + cWeB :

This is similar to the structure of equation for vector bosons.




