Tt

Further Developments

sion of x on y, the line of regression of y on x, and the correla-
tion coefficient. Is the correlation significant?

22. Following are two sets of pairs of observations on
variables x and y:

®
x®

[€, JR0-N FURY S
B WN | e
[S 3 STCRE X R
(SIS WIS TR RN

Determine whether either of these sets exhibits a significant
correlation between x and y.
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APPENDIX A
SUMMARY OF FORMULAS

Following is a summary of important and useful formulas
which have been developed in the text. The numbered
equations are given the same numbers as in the text to
facilitate reference to appropriate parts of the text.

Approximations

If a quantity Q is determined from quantities 4, 5, . . . by
a relation Q = f(q, b, . . .), then the change AQ of the
quantity produced by changes Aa, Ab, . . . is

Y 9Q 9Q
AQ . Aag + 3 Ab + e Ac + (2.8)

The Mean and Dispersion

The mean (or arithmetic mean or average) of a set of
N numbers, of which a typical one is x;, is

< 1 &
x = N,Zl X (3.2)

‘The weighted mean of a set of N numbers, of which a
typical one is x; with weight w;, is
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N
WXz
- _ Wiy + wexe b - - waxy _ i=1
X = - N (33)
w+we + - + wy
- wi
i=1

The deviation of a number x; in a set of N numbers is
d; = x; — % ) (3.4)

The mean deviation of a set of N numbers x; is

a_—Eu{——-Epc, (3.8)

i=1

The standard deviation of a set of N numbers x; is

\/ 242—\/N2(x,—x)2 (3.9)

t=1
The wvariance is defined as the square of the standard
deviation.

Probability

If the probabilities for two independent events a and &
are P, and P, the probability for both to occur is the
product P.P,. If events 2 and & are mutually exclusive,
the probability for @ or & to occur is the sum P, + P.

Permutations and Combinations

The number of permutations of NV objects is
= NN~ 1D = 2)(N = 3) --- (9(3)(2)(1)
(5.1)
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Summary of Formulas

The number of combinations of N objects, taken =z at a
time, is

N!

which also defines the binomial coefficients.
The binomial theorem for expansion of the binomial

(a + 6)¥ is

N

N = N—nhn
(a + b) ’Zo (y) av b
) ,20 T 5.6)
The sum of the binomial coefficients for a given N is
N
14 1)7 =27 =
(1 +1) P ® 5.7)

Probability Distributions

"The condition for a discrete probability distribution to be
normalized is

DS =1 (6.1)
The mean of a discrete probability distribution is
7= nfln) (62)

'The variance of a discrete probability distribution is
= (v — 0¥ (6.4)
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The best estimate of the variance of a parent distribu-
tion, from a sample of this distribution, is

g = \/———-—- 2 (x; — x)2 (6.5)

t=1

Binomial Distribution

The binomial distribution gives the probability of #n suc-
cesses in NV independent trials, if the probability of suc-
cess in any one trial is . The binomial distribution is
given by

Fuoln) = (N)p (7.1)

where ¢ = 1 —
The mean of the binomial distribution is

N
= Y a(M)pra —pr = 759)
The variance of the binomial distribution is
0% = Np(1 — p) = Npq (7.7)
Poisson Distribution

The Poisson distribution is the limit of the binomial dis-
tribution as N =« and p — 0 in such a way that the

product ¢ = Np remains finite. The Poisson distribu- .

tion is given by

faln) = 2= (8.5)
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Summary of Formulas
The mean of the Poisson distribution is

n=a (8.6)
The variance of the Poisson distribution is
g% = q. (8.9)

Gauss Distribution

'The Gauss distribution, or normal error function, is

_ _L —h(z—m)2 .
Jo) = et = e

The index of precision h and the variance ¢* are related by

g~ @=mr/2e (9.9 9 16)

1
g2 = ﬁ (915)
The mean deviation for the Gauss distribution is given by
1 \/5
o= = Al— 0 9.18, 9.19
Vrh N ( )

The probability for a measurement to fall within 7o of
the mean is

P(T) = \/_ " g gy (9.22)

The Gauss distribution is approximately equal to the
binomial distribution with the same mean and variance,
if N is very large and p is finite. For very large N,

Nt -
Sro(n) = W=nim? e

e~ n—Np)»/2Npq C.25
V2w Npg ( 14?%
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Goodness of Fit

To compare a sample frequency F(n) with a frequency
Nf(n) predicted by a parent distribution f(n) for N trials,
a sultable index of goodness of fit is

Nf(n) — F(n)]?
Z[ Nf(n)()] (11.1)

In using a table of values of x2, » = K — 7, where K is
the number of frequencies of the two distributions com-
pared and r is the number of parameters of the parent
distribution which are determined from the sample.

Standard Deviation of the Mean

The standard deviation of the mean % of a set of numbers x; is
o? |

ol =% or am=4\/'ﬁ (12.6)

if the numbers are distributed normally with parent
standard deviation ¢.

Propagation of Errors

If a quantity Q is determined from quantities a, 4, . .. by

arelation Q = f(a, b, . . .), the variance of the mean of Q
is related to the variances of the means of g, b, . . . by

2
Ome? = (%%) Oma® + (%%) Cmp? + - (13.8)
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Summary of Formulas

Method of Least Squares

If N observations are made on a quantity, and their
errors are normally distributed, the most probable value
of the quantity is

- ]_1\} z (14.4)

and the variance of the most probable value is related to
the variance of the individual observations by

- z__ =7 (14.10)

If the observations x; come from different parent dis-
tributions, characterized by their variances ¢;% then
the most probable value of x is the weighted mean

— Ex,-/o’,-z

> 1/07 (14.13)
and the variance of this weighted mean is given by
1 1

In an equation y =-mx + &, the most probable values of m
and &, from a set of pairs of observations (;,;) in which
the x; have no errors and all the y; have errors belonging
to the same distribution, are
N2 xy: — (2 x)(Z p)

NZx?— (2 x)?

(E}L,)(E x%) — (E xzya)(z Xs)
NZ i = ( 2))° (15.11)

m =
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The variances of the most probable values are given by
No?

2 YO

Tn A (15.16)
and

2 2

o = 25 (15.17)
where .

A= Nzxﬁ - (Exi)z
and

g2 = Al,z (mx; + b — ;)? (15.19)

where ¢2 is evaluated using the most probable values
of m and b.

Correlations
‘The definition of the linear correlation coefficient r is

T NIZxy—-2ZxZy
r mm INZx2— Z 2R [NZy — (2 )2

(16.8)
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APPENDIX B

EVALUATION OF n AND - FOR
BINOMIAL DISTRIBUTION

To evaluate the sum

7= fj n (N) =P (B.1)

we note that it is similar to an expression we have al-
ready encountered in considering the normalization of the
binomial distribution, namely,

i (N)ra —pr =1 (B.2)

The difference is that the sum in Eq. (B.1) contains an
extra factor of . But by means of a trick we can convert

- this into the form of the sum in Eq. (B.2).

From here on we drop the limits on the sums, as we
did in Sec. 3, remembering always that n ranges from 0
to N. Now we differentiate both sides of Eq. (B.2) with
respect to p, which is legitimate because the equation is
true for all values of p between 0 and 1, as observed
earlier. The advantage of doing this will appear shortly.
Taking the derivative,

Z<Ir\l]>[nﬁn—1(1 — PN — (N = (1 — )]

=0 (B3)
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This can be rewritten

2(2’) (1 — pyv
- Z(ﬂ:’ ) W — mpr(1 — pyy—-t
w3 ()t = e
= 3(5)wra -

3 (M=t = g+ 4ot — e
= vy (N)ra - @y
We now multiply both sides of the equation by p(1 — p):
yn (f)[(l — Pt = PV + (1~ p)V ]
=my(Nra-p— @9

Combining the two terms on the left side, and using
Eq. (B.2) in the right side

or

Z”(f)ﬁ"(l = o7 = Y tfvan) = Np (B.6)

Now the left side of this expression is just our original
expression for 7, Eq. (B.1); hence we conclude that

= Np (B.7)
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Evaluation of 7 and ¢ for Binomial Distribution

The calculation of ¢2 proceeds in a similar manner.
The variance is given by Eq. (7.6), which we give again
for convenience:

0? = 2 (n — Np)’fw »(n) (B.8)
To evaluate this sum we first rewrite Eq. (B.8) as
o =2 (n* — 2nNp + N*p*)fu,»(n)

= 2 n¥fx(n) — 2Np Z nfy o(n) + N2 2 f »(n)
(B.9)

"The sums in the second and third terms are already
known from Eqs. (B.6) and (B.2), respectively; using
these, we find

o2 = Z n’fwo(n) — (Np)* (B.10)
To evaluate Z n%y,,(n) we differentiate Eq. (B.6):

S (1:) (1 — p)r—

— (N —mp(1 —p)¥ 1] = N
(B.11)

We multiply by p(1 — p) and rearrange terms as before,
to obtain :

) (fzv) (1 — p)r=

=8 3 (M)t = pr = Hpta - p

(B.12)
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Finally, using Eq. (B.6) again,

St (M)t = o = @iy + Mot =)
n
(B.13)
or
2 n’fy(n) = Np(1 — p + Np) (B.14)
Now, inserting this result into Eq. (B.10), we obtain
o? = Np(1 — p + Np) — (Np)* = Np(1 — p) = Npgq
(B.15)

or
¢ = VNpg (B.16)

as stated in Sec. 7.
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APPENDIX C
DERIVATION OF GAUSS DISTRIBUTION

Following is a derivation of the Gauss distribution func-
tion from some plausible assumptions. It is not intended
as a substitute for empirical verification of this distribu-
tion, but as evidence that it can be derived from basic
considerations. To be honest we must state that the
mathematical derivation can be simplified considerably
by making use of an approximation formula for fac-
torials of large numbers (Stirling’s formula). The use of
this formula has been avoided here because, to a reader
who is not familiar with its derivation, the development
of the Gauss distribution using it is not likely to be very
convincing.

We begin by assuming that the random error in a
measurement is composed of a large number N of ele-
mentary errors, all of equal magnitude ¢, and each
equally likely to be positive or negative. With these
assumptions, we can calculate the probability of occur-
rence of any particular error in the range (—Ne) to
(4 Ne). Having done this, we take the limit of this dis-
tribution as the number N becomes infinitely large
and the magnitude ¢ infinitesimally small in such a way

that the standard deviation of the distribution remains
constant.

First, we note that the probability for n of the ele-
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mentary errors to be positive and the other N — n to be
negative is given by the binomial distribution with
¢ = q = }%. The corresponding error, which we shall
call y, is given by

y=ne — (N —n)e=(2n— Ne (C.1)
The probability of occurrence of this particular error is

N!

Fean(®) = et

For future reference, we compute the standard
deviation of y. Because each elementary error is as
likely to be positive as negative, the mean value of y is
zero. Therefore the standard deviation is given simply by

o? = 2 yYuap(n) = 2 (2n — N)?%fy1p(n)  (C.3)

This sum is easily evaluated with the help of Egs. (B.1),
(B.2), and (B.14), setting p = % in all these:

o? = 4€* 2 n’fy(n) — 4Ne*Z nfy(n) + N2 2 fu(n)
N 1 N
= 2 _ = - - 22Y 22
4e2<1 2+]§> 4Ne2+Ne

= €N (C4)
o =eVN (C.5)
To simplify notation in the following developments,
we introduce a new index , defined by the equation
2r=2n—~ N (C.6)
One immediate advantage of this change is suggested
by Eq. (C.1), which now becomes simply

y = 2re - (CT)
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(C.2)

Derivation of Gauss Distribution

Note that since the range of n is 0 to N, the range of r
is from —N/2 to +N/2, in steps of unity. Furthermore,
if N is even, r is always an integer, while if N is odd, r is
always a half-integer. In either case, the quantities
N/2 4 r and N/2 — r which appear below are always
integers.

We now express the probability for the error y = 2re
in terms of the index 7, using Eq. (C.6) in the form
n =r 4+ N/2. Equation (C.2) then becomes

!
Juan(r) = 7 N];,
22 1 oN
( > r). ( 5 + r). 2
The next larger possible value of the error y results from
replacing 7 in Eq. (C.7) by (r 4+ 1). This error is then
larger by an amount 2¢; so we call it y + 2¢. The cor-

responding probability is obtained by inserting (r 4 1)
for r in Eq. (3.8):

Suwapr +1) =

(C.8)

N
(%’—r—l)!(]-;—’+r+1>!zzv

(C.9)

Thus if we call f(y) the probability of occurrence of
error y, we have

SO) =

N!

_ N
=N N
(E—r—1>!<§+r+l>!2”’
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These expressions are both rather complicated, but we
note immediately that their gquotient is fairly simple.
That is,

fyt+2) _ _(N2—1n)! (/2 + !
fO) (N2 =1 = DVN/2 + 71+ 1)!

_ N/2 =7
N2+ 41
Next it is necessary to perform a somewhat tricky
maneuver. Keeping in mind that we are eventually
going to let N— o and €e— 0 at the same time, in
such a way that the product ¢2 = €2N remains constant,
we now regard y as a continuous variable and f(y)
as a function of this variable. Because € is small, we can

approximate f( » -+ 2¢) as follows:

Fr + 20 = f(5) + 2e %f(y) (C.12)

(C.11)

Also, to facilitate taking the limit, it is convenient to

express 7 and € in terms of y, &, and o, using Egs. (C.5)
and (C.7) as follows:

2N o .
=2 e € v (C.13)

Inserting Eqs. (C.12) and (C.13) into Eq. (C.11),
f0) + @o/VNF () _ _N/2 = yVN/20

S N/2 + yVN/2¢ + 1
(C.14)
where we have introduced the abbreviation f' = df/dy.
Rearranging,
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Derivation of Gauss Distribution

26 f'(49) _ _N/2 — yV'N/2q

VN3 N2+ yVN/26 +1 @'15)
and

£ - __y/e*+1/VNe (C.16)

) 1+ (y/V'No + 2/N)

Now, at last, we are ready to consider the limit of
Eq. (C.16) as N— o while ¢ is constant. Clearly, in
both numerator and denominator, the second term be-
comes very small compared to the first, if V is sufficiently
large. So in the limit the terms containing 1/v'N and
1/N both vanish, and we have simply

f}i((yl)l = -2 (C.17)

This is a differential equation for the desired function
Sf(9); it is easily solved by noting that

o _4d
S dy fG)

Making this substitution and integrating both sides of
the equation, we find

2
Inf(y) = —é{; + const (C.18)
We represent the integration constant by In 4, where 4

is another constant, and take antilogs of both sides, to
obtain

f(9) = Ade~viiee (C.19)

The value of the constant 4 is determined by re-
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calling the interpretation of f(y) discussed in Sec. 9.
The quantity f(y) dy is the probability that a single error
will fall in the range y to y - dy. Since the total probabil-
ity for the error to fall somewhere in the range of values
of y (which is now, strictly speaking, — to 4w) is
unity, we must insist that

f_: Ae—v/2" = 1
or

1
A= ——-__fw — (C.20)
e o

Making the substitution z = y/V/2¢, we obtain
A~ = V3¢ j_"; e dz (C.21)

‘The integral in this expression is evaluated in Ap-
pendix D and has the value V. Hence

1

4= Vs (C.22)
and

£(3) = «/%“;a emvi2e (C.23)

Finally, we express the function in terms of the observa-
tions rather than their errors. If y is the error correspond-
ing to an observation x, and the true value of the observed
quantity is m, then y = x — m. In terms of x,

1
f(x) __\/2——

e

¢ (a2 (C.24)
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Derivation of Gauss Distribution

This form is usually called the Gauss distribution, or
normal error function. :

In the preceding discussion, the Gauss distribution
has been shown to be an approximation of a distribution
closely related to the binomial distribution, valid when
the number N of independent events becomes very
large. By similar methods it can be shown that any
binomial distribution approaches the Gaussian form if
N is very large and p is finite. Thus for large N we can
represent a binomial distribution (which is very un-
wieldy for large N) by a Gauss distribution with the
same mean and standard deviation as the binomial,
namely, m = Np and o = (Npg)'/?, respectively. Thus
for large N we have approximately

]

firae) = s
1
V2w Npq

It should be noted that this is not a suitable approxima-
tion if p is extremely small. If p grows small as N grows
large, then the appropriate approximations lead instéad
to the Poisson distribution, discussed in Sec. 8.

R

¢~ m—Np)/2Npq (0.25)
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APPENDIX D

EVALUATION OF NORMAL ERROR
INTEGRAL

In developing the Gauss distribution, it is n(;ceséary to
know the value of the integral

I= f_: e dx

We denote the value of the integral by I. Then, since
the variable of integration has no effect on the value of
the result, we write

r= f " eTds [T e (D.1)

Now Eq. (D.1) can also be interpreted as the double
integral over the x — y plane of the function

e"-zze—'ﬂz = e—($2+y’)
That is,

I = /_“ f_“ e~ @ dx dy - (D2)
It may help to interpret this integral geometrically.
Think of a tent whose floor is the x — y plane and whose

height above the x — » plane at any point (x,y) is
o= @+

Then the integrand

e~ @t dx gy

represents the volume of a column above the element of
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Evaluation of Normal Error Integral
floor area dxdy. Thus the quantity I? is just the total
volume enclosed by the tent and its floor.

Now we transform Eq. (D.2) into polar coordinates,
using as the element of floor area dr (r df) instead of
dx dy, and using r* = x? + »2. We thus obtain

= /rr:ow /;:2’ e~ "rdrdf (D.3)

‘This integral now can be expressed in terms of two inte-

grals, each of which contains only one of the variables,
as follows:

I? = fowe"’r dr [/02" d0] (D.4)

"The integration on 6 is trivial and gives simply a factor

27. The r integral can be evaluated by making the
substitution 72 = u.

2 = Zw/;)” e *Ydu=1 (DS)
Thus
I= /_: e~Pdx = V7 (D.6)
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Table I. Values of the Gauss Function* Table Il. Integrals of the Gauss Function*

¢—#/2 are given for various values of ¢.

Values of the function i
2w |
|

. i [T
Values of the integral sz / e—#/2 dt are given for various values of
T Jo

Each figure in the body of the table is preceded by a decimal point. T. To evaluate Eq. (9.22) in the text, use the relation

: 1 o000 |o0t]o002]003]|004]005] 006|007 | 008|000 1 [T 1 [T
Vor e~t2dt =2 —= | ¢-t/24
0.0 39808 {39892 | 39886 | 39876 | 39862 | 39844 | 30822 | 39797 | 39767 | 39733 : 2 J-r1 27 Jo
01139695  |39654'| 39608 | 39559 | 39505 | 30448 | 30387 | 39322 | 39253 | 39181 2 A related function which i . i
0.2 | 39104 39024 | 38940 | 38853 | 38762 | 38667 | 38568 | 38466 | 38361 | 38251 i nciion which is sometimes used is erf 2, defined by .
03138139  |38023 | 37003 | 37780 37654 | 37524 | 37391 | 37255 | 37115 | 36973 ! .
0436827  |36678 | 36526 | 36371 | 36213 | 36053 | 35889 | 35723 | 35553 | 35381 z fr= L o
¥ : erf z v e dx
05 |35207  |35029 | 34849 | 3467 | 34482 | 34204 | 34105 | 33912 53718 | 33521 T
06133322 |33121 32918 | 32713 | 32506 | 32297 | 32086 | 31874 | 31659 | 31443 The values given h 5
07 131205 |31006 | 30785 | 30563 | 30339 | 30114 | 20887 | 29658 | 29430 | 29200 . Bach foumern e b equal to ¥ erf (T/V'2).
0.8 | 28969 28737 128504 | 28269 | 28034 | 27798 | 27562 | 27324 | 27086 | 26848 ch higure in e body of the table is preceded by a decimal point.
0.9 | 26600 | 26369 | 26129 | 25888 | 25647 | 25406 | 25164 | 24923 | 24681 | 24439
T 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.0 124197 |23955 23713 | 23471 | 23230 | 22988 | 22747 | 22506 | 22265 | 22025 o0 | 00000 00399 | 00798
1121785 |21546 | 21307 | 21069 | 20831 | 20594 | 20357 | 20121 | 19886 | 19652 o1 |o398s | 04380 | 04776 | 03172 | 03367 | 0063 | oRase | verey | ooiss | Saase
1.2 | 19419 19186 | 18954 | 18724 | 18494 | 18265 | 18037 | 17810 | 17585 | 17360 0.2 | 07926 08317 | 08706 | 09095 | 09483 | 09871 | 10257 | 10642 | 11036 | Lizo0
13117137 | 16915 | 16694 | 16474 | 16256 | 16038 | 15822 | 15608 | 15395 | 15183 o | 1353 15510 | 16576 | 1aes0 | 13005 | 1385 | 14008 | 14e31 | 14803 1519
1.4 | 14973 14764 14556 | 14350} 14146 | 13943 | 13742 {13542 | 13344 | 13147 f 05 | 10145 rou57 | 15847 17724 { 18082 | 18439 | 18793
y 20194 | 20450 { 20884 | 21226 | 21566 | 21904 | 2
15112052 |12758 12566 | 12376 | 12188 | 12001 | 11816 | 11632 | 11450 | 11270 07 | 33504 2007 | 2237 | 23009 | 2301 | 26215 | 2a0a7 | aaney | zorrs | 25400
16 |11002 110015 {10741 | 10567 | 10396 | 10226 | 10059 | 09893 | 09728 | 09566 08 | 28814 29103 | 20389 | 29675 | 30055 | 3094 | 5051; | s0ues | seacy | 2952¢
‘ 17109405  |09246 | 09089 | 08933 | 08780 | 08628 | 08478 | 08329 | 08183 | 08038 09 | 31594 51859 | 32121 | 32381 | 32630 | 32694 | 33147 | 9908 | ssess | ouoay
‘ 18 |0789s  |07754 | 07614 {07477 | 07341 | 07206 | 07074 | 06943 | 06814 | 06687 1.0 | 34134 54375 | 34614 | 34850 | 35083 | 35315
: 1906562  |06438 06316 | 06195 | 06077 | 05959 | 05844 | 05730 | 05618 | 05508 13| 8esss | 50050 | soscs | 3707 | 3726 | 37499 | 37605 | S7a00 | Saion | Jerde
_; - 877 | 39065 | 39251 39435 { 39617 | 39796 | 3997
20105309 |05202 05186 | 05082 | 04980 | 04879 | 04780 04682 | 04586 | 04491 VMR |doun | dos | soon | dcems | atias | atsos | aiees | sieat | 41172
] 21| 04398 | 04307 | 04217 | 04128 { 04041 | 03955 | 03871 | 03788 | 03706 | 03626 I D i 07 | 42647 | 42786 | 42922 | 43056 | 43189
{ 52103547 | 0347003394 03319 | 03246 | 03174 | 03103 | 03034 | 02965 | 02898 - 448 | 43574 | 43699 | 43822 | 43043 | 44062 | 44179 | 44
{ 23 02833 |02768 | 02705 | 02643 | 02582 | 02522 | 02463 | 02406 | 02349 | 02294 Dl e s | wee | o | ssess | 35 | 4o | 4003 | 2848
2402239 | 02186 | 02134 | 02083 [ 02033 | 01984 | 01936 | 01888 | 01842 } 01797 18 | 46407 48485 | 48562 | 46636 | 48712 | 40704 | seme | Aohod | 40245 | 6327
2.5 |01753  |01709 | 01667 | 01625 | 01585 | 01545 | 01506 | 01468 | 01431 | 01394 20 i 7L | 4TEOT | 47920 | 47801 | 47441 | 47500 | 47558 | 47615 | 47670
; . 0 | 47725
{ 26 |01358 0132301289 | 01256 | 01223 {01191 | 01160 | 01130 | 01100 | 01071 21 | s8212 36257 | da300 | 4a04; | $2953 | 47952 | 45030 | no7r | 4vize | 4eic
277|0t042 {01014 00987 | 00961 | 00935 | 00909 | 00885 | 00861 | 00837 | 00814 22 | 48610 | 48645 | 48679 | 48713 | 0745 | 48775 | 45800 | 4004o | 40870 | 46003
{ 2800792 |00770| 00748 | 00727 | 00707 | 00687 | 00668 | 00649 | 00631 | 00613 54 | 19180 40502 | 45357 | 43010 | 49035 | 4061 | 40086 | 49111 | 49134 | 40158
29100595 | 00578 | 00562 | 00545 | 00530 | 00514 | 00499 | 00485 | 00470 | 00457 o 5 | 49266 | 49286 { 49305 | 40324 | 49343 | 0361
‘§_ : : 49306 | 49413 | 49430 | 49446 | 49461 | 49477 | 40492 | 49
3.0 | 00443 28 | 3354 5087 | 4560 | 49573 | 49985 | 49508 | 49609 | 49621 43635 | 4943
| g hirna s 28 | 49734 49752 | 49760 | 49767 | 49774 | dorar | sores | deve | 49728 | 40736
? 2(‘51 gggg}?zg :-z :::;3 49819 | 49825 | 49831 | 49836 | 49841 | 49846 | 49851 | 49856 4936?
P . 2 5
; 5.0 | 000001487 3.5 | 4997674
i 4.0 | 4999683
i . 4.5 | 4999966
L * This table was adapted, by permission, from F. C. Kent, “Elements of 5.0 | 4999997133
: Statistics,” McGraw-Hill Book Company, Inc.;lNew Yorlk, 1924.
: A more complete table is “Tables of Normal Probability Functions,” * This table was adapted, b jssi : « i tics
National Burcau of Standards, Washington, 1953, Y Hill Book Gompany, Inc. N Yor, famg, o conts “Elementsof Statstics” McGra-
160 of Stamxi!;ﬁ,c\%gglllﬁ:g:::,lei353? ables of Normal Probability Functions,” National Bureau
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Table I1l. Maximum Deviations for Table IV. Values of x2*

Chauvenet’s Criterion The table gives values of x? which have various probabilities of being
-each value of N (N = number of observations) the table gives the excerded by a sample taken from the given parent distribution. ‘ The

F:lr eacf Z/; such that the probability of occurrence of deviations number of degrees of freedom is v. To illustrate: For a sample with

value of d;

) 10 degrees of freedom, the probability is 0.99 that it will have
i 2N. s
larger than the given value is 1/ x* > 2.558 and 0.001 that x? > 29.588.

N d; / o N dc/ o Probability
H 14
5 1.65 30 2.39 | 099 098 | 095 | 090 [ 080 | 0.20 | 010 | 0.05 | 0.02 | 0.0t |0.001
6 1.73 40 2.49 1| 00457 0.0%628/ 000393 0.0158; 0.0642] 1.642| 2.706| 3.841| 5.412] 6.635 ] 10.527
50 2.57 2 | 002011 00404} 0103 | 0.211 | 0.446 | 3.219] 4.605| 5.901] 7.824| 9.210|13.815
7 1.81 . 3 | 0115 | 0185 | 0352 | 0.584 | 1.005 [ 4.642| 6.251| 7.815| 0.837{11.341 | 15.268
8 1.86 60 2.64 410297 | 0429 | 0711 | 1.064 | 1.649 | 5.989] 7.779] 9.488 | 11.668 | 13.277 | 18.465
9 1 80 274 : 5] 055 | 0752 | 1.145 | 1.610 | 2.343 | 7.289( 9.236)11.070{ 13.388 | 15.086 | 20.517
10 96 100 2.81 610872 | 1134 | 1,635 | 2204 | 3.070 | 8.558(10.645 12,592 { 15.033 | 16.812 | 22.457
N 7| 1239 { 1.56¢ | 2167 | 2833 ] 3.822 | 9.803|12.017 | 14.067 | 16.622 | 18.475 | 24.322
12 2.04 150 293 8 | 1.646 | 2.082 | 2733 | 3.490 | 4.594 [11.03013.362 [ 15.507 | 18.168 | 20.090 | 26.125
2.10 200 3.02 9 | 2088 | 2532 | 3395 | 4.168 | 5.380 | 12.242 | 14.684 | 16.919 | 19.679 | 21.666 | 27.877
14 . 10 | 2.558 | 3.059 | 3.940 | 4.865 { 6.179 | 13.442]15.987 | 18.307 | 21.161 | 23.209 | 29.588
16 2.15 300 3.14 .

. 400 3.23 11 f 3.053 | 3609 | 4575 | 5578 | 6.989 |14.631|17.275 | 19.675 | 22.618 ] 24.725 | 31.264
18 2.20 . 12 | 8571 | 4.178 | 5226 | 6304 [ 7.807 | 15812 18.549 | 21.026 | 24.054 | 26.217 | 32.900
20 2.24 500 3.29 13 | 4107 | 4765 | 5892 | 7.042 | 8.634 |16.985]19.812 | 22.362 | 25.472 | 27.688 | 34.528

3.48 14 | 4660 | 5368 ) 6.571 | 7.790 { 9.467 | 18.151 | 21.064 | 23,685 | 26.873 | 29.141 | 36.123
25 2.33 1000 . 15 | 5.229 | 5985 | 7.261 | 8.547 |10.307 | 19.311 | 22.307 | 24.906 | 28.259 | 30.578 | 37.697

16 | 5.812 6.614 7.962 9.312 |11.152 120.465 { 23.542 | 26.296 | 29.633 | 32.000 | 39.252 -
17 1 6.408 7.255 8.672 110.085 | 12.002 | 21.615 ] 24.769 | 27.587 { 30.995 | 33.409 | 40.790
18 | 7.015 7.906 | 9.390 |10.865 |12.857 | 22.760 | 25.989 ] 28.869 | 32.346 | 34.805 42.312
19 | 7.633 | 8.567 110.117 }11.651 |13.716 | 23.900] 27.204 30.144 | 33.687 | 36.191 | 43.820
20 | 8260 | 9.237 110.851 |[12.443 |14.578 [25.038 | 28.412 | 31 410 { 35.020 | 37.566 | 45.315

{ bl . 3 21 8.897 9.915 111.591 }13.240 |15.445 | 26.171 | 29.615 | 32.671 | 36.343 | 38.932 46,797
22 | 9.542 110600 |12.338 |14.041 |16.314 | 27.301 | 30.813 33.924 | 37.659 | 40.289 | 48.268
23 110.196 |11.293 |13.091 |14.848 }17.187 | 28.429 32,007 | 35.172 { 38.968 | 41,638 | 49.728
‘ it 24 110.856 111.992 113.848 |15.659 | 18.062 | 29.553 | 33.196 36.415 | 40.270'| 42.980 | 51.179
I 25 |11.524 112,697 [14.611 [16.473 | 18.940 | 30.675 34,382 37.652 | 41.566 | 44.314 [ 52.620

26 112,198 [13.409 15379 {17.292 |19.820 | 31.795 | 35.563 38.885 | 42.856 | 45.642 | 54.052
27 112.879 114125 116.151 }18.114 |20.703 | 32.912 | 36.741 40.113 | 44,140 | 46.963 | 55.476
28 113,565 {14.847 |16.928 [18.939 §21.588 | 34.027 37.916 { 41.337 | 45.419 | 48.278 { 56.893
; 29 114.256 115.574 |17.708 |19.768 |22.475 | 35.139 | 39.087 | 42.557 46.693 | 49.588 | 58.302
[ 30 [14.953 |16.306 |18.493 |20.599 | 23.364 | 36.250 | 40.256 43.773 [ 47.962 | 50.892 | 59.703

- * This table is reproduced in abridged form from Table IV of Fisher and Yates, “Statistical
! ’ Tables for Biological, Agricultural, and Medical Research,” published by Oliver & Boyd,
Ltd., Edinburgh, by permission of the authors and publishers.
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Table V. Correlation Coefficients*

The table gives values of the correlation coefﬁcieflt r which.have
certain probabilities of being exceeded for observations of vam?bles
whose parent distributions are independent. The number of pairs of
observations is N. To illustrate: for a sample of 10 pairs of observa-
tions on unrelated variables, the probability is 0.10 that it will have
r > 0.549, and the probability is 0.001 that r > 0.875.

Probability

N :
0.10 0.05 0.02 0.01 0.001
3 0.988 0.997 0.999 1.000 1.000
4 0.900 0.950 0.980 0.990 0.999
5 0.805 0.878 0.934 0.959 0.992
6 0.729 0.811 0.882 0.917 0.974
7 0.669 0.754 0.833 0.874 0.951
8 0.621 0.707 0.789 0.834 0.925
10 0.549 0.632 0.716 0.765 0.872
12 0.497 0.576 0.658 0.708 0.823
15 |1 0.441 0.514 0.592 0.641 0.760
20 0.378 0.444 0.516 0.561 0.679
30 0.307 0.362 0.423 0.464 0.572
40 0.264 0.312 0.367 0.403 0.502
60 0.219 0.259 0.306 0.337 0.422
80 0.188 0.223 0.263 0.291 0.366
100 0.168 0.199 0.235 0.259 0.327

* This table is adapted from Table VI of Fisher and Yates, “Statis-
tical Tables for Biological, Agricultural, and Medical Research,”
published by Oliver & Boyd, Ltd., Edinburgh, by permission of the
authors and publishers.
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ANSWERS TO PROBLEMS

CHAPTER |
1. (o) —8.02% 13. (@) 0.30 m/sec?;
‘ (6) —0.366% 0.10 m/sec?
. (a) 0.0402 ® T .
’ E‘Z; 8.5 X (172))~8 14. AF, = —Fsin 0 A8
3. Increases g,,/; Fcos zﬁfe A0
: no, 20 mph W/ Fy = —
4. 40 mph; no, 20 mp! AR = ot8 48
5 4% 15. {a) 0.005
6. 20.131b ) 2 x 10~
7. (a) 0.5 X 10~ © 104
(6) 0.005 @) 0.4
9. Yn(n — 1)(3/4)* (e) 0.04 ~
10. (a) 1.003 16. m=3,0=V2 a="5%
(&) 1.002 17. (a) 3.50
(¢) 1.002 (5) 4.17
11. (@) 0.2 cm, 0.2 cm (c) 3.50°
' EZ; 0.0019; 0.040 18. ¢ = 0.0024, a = 0.0018
‘12 (@ 6=0 20. Standard deviation
() 0 = 45° 2. a=e/2,0=eV3
CHAPTER 11
1. 8; ves, 3% 7. %9, 15303, 1
2. (a) % 8. ¥, 14, 1%; yes
&) (%6)* 9. %o
) (%)* 10. (a) 0.28
(@) 0 (6) 0.010
3.2,3,4,5,6; (c) 0.060
Y% %, As, %, %63 11. 0.349, 0.388, 0.263
4 3%4’ :@‘*’ 3%2’ 3%2’ }//i“’ 12. Roughly 20%
5 é%gsz, oo Yo Yo 13. ¥, %6, 2%16 (6)%6)"
6. Y06 14. 252
166

15. 27,405
16. 945

17. 231,525
18. 140, 725

Answers to Problems
19. 521/391131;
no, 4 X 521/39!131
20. }4165; no
22, 0.614

CHAPTER 11
L. Y64, %2, %4, He, 1964, 342, Ya; ves

2. 36; 5254296, ®°% 206, 15% 296, 2%{206, K296, 0

3. 0.887, 0.107, 0.006

4, 4Ns ZN, O: ZS: 4'S§ %6, %5 %5 %: %6
5. For m blocks north, P,, = N1/(N/2 + m/2)(N/2 — m/2) 128

6. 0; N1/2

7.4N,2N,0,28,45; Y56, 1356, 5456, 198455, 8456

8. For m blocks north,
N!

m

9. N/2 blocks south;

(3N/4)uz

10. () 7 = 73; ¢ = 27
(¢) 61

11. 7.8, 2.0

12. 0.135, 0.270, 0.270,
0.180, 0.090, 0.036,
0.012, 0.003, 0.001; 8

13. 1.78, 1.36; 1.33

16. 0.632

17. 1.3 X 107%; very unlikely

18. 0.0014; coin is probably
asymmetric

(5E2) (552), () @)

19. a = (2/m)12 ¢
20. 0.383
21. 0.674 o; no; 0
22. 3,1.22
23. (a) 0.175

(&) 0.338
24. (&) /7

€ m

(d) Infinite
25. (&) 2b/%w

(c) m

{d) 8(4/m — )12
26. 0, 4/V'2, 4 Af, V2 n4f

CHAPTER 1V

1. 7.6 X 10¢
2. 0.0114
3. 3N

4, ¥ = (5)1/4 + 3(5)2/4
1/0’,»2 = ]V/tf],2 + 3N/0’22
7. 0.22 m/sec?
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Answers to Problems

8. () 0.023in.,0.017 in.
(6) = 11.000 = 0.012 in., !

w = 8.500 % 0.006 in.

() 4 =93.50 % 0.11 in.

INDEX

Accuracy, 3

x? test, definition of, 82

9. No; difference is much larger than o N = % Answers to problems, 166-168 interpretation of, 83-84, 163
10. 0.83%; ¢ 5 S S Ze Approximations, and binomial Combinations, 30-33
11. (e) 0.900 :I:°0.09 S2 BB e theorem, 19-20 Compounding of errors (sec Prop-
(6) 64”-;1: 12 &= A using derivatives, 4-7 agation of errors)
13. (a/N) A Arithmetic mean (se¢ Mean) Consistency, tests for, 109-110
14. R =Z V2 Vili where A= |N Zt 2Z¢ Average (se¢c Mean) Correlation, 126-132
15. x = 0.96, = 0.015 Ze Zer Zp Average deviation (se¢ Mean de-  Correlation coefficient, linear,
16. a = 30%6° e Ze 3 viation) 130
5 = g;g/i 18, y = 1.34x — 0.29, interpretation of, 130-132, 164
if all errors have same if y errors are normal and Bibliography, 165 )
3 normal distribution x errors negligible Binomial, expansion of, 33-34 Data, rejection of, 76-80
o 17. ) B Tt Ze 19 NIILC; — (ZL)(ZC) Binomial coefficients, 32—34 Degrees of freedom, 84-85
st S I8 * NZI2 — (ZL)? sum of, 34, 54 Derivative, partial, 6-7
T2 B S . Binomial distribution, 48-57 Deviation, 12-13
i 20. 3ZiC/N(N + DN +1) _ examples of, 48-53 in fit of straight line, 120
N Oz e J mean o.f, 5‘.1, 147-148 in least-squares calculations,
E It st 2 normalization of, 54 112, 117, 123-125
T T S : ! standard deviation of, 56-57, of mean, 93-94
v = 148-150 Dispersion, measures of, 12-18
P ; variance of, 56-57, 148-150 Distribution of random errors,
1 i ‘ Binomial theorem, 33~34 64-66

Blunders, 3, 77 (Se¢ also Binomial distribution;

Gauss distribution; Parent

: . distribution; Poisson dis-
i Calibration errors, 2 tribution; Probability dis-
[ Cauchy distribution, 90, 96 tribution; Sample distri-
; Central-limit theorem, 64-65, 96 bution; Standard distri-
. Chance errors, 2-3 bution)

ool ' Chauvenet’s criterion, 78-80, 162

‘ “ X? test, 80-86, 163

; for continuous distribution,

Error function (see Gauss distri-
85-86 bution)

168 ; 169




Index

Errors, calibration, 2
fractional, 6
kinds of, 2-3
propagation of, 3-8, 96-101
random, 2
systematic, 2
true, relation to deviations, 13

Factorial, 30

zero, 32-33
Fractional standard deviation,

17-18

calculations with, 99-101
Frequency, 81, 84

(See also Probability distribu-

tion)

Gauss distribution, 64-76
derivation of, 151-157
examples of, 67, 72, 74-76
experimental basis of, 64—66
integrals of, 158-159, 161
mean of, 70-71
mean deviation of, 73
measure of precision of, 72-73
modified, 79-80
normalization of, 69-70, 158—

159
relation to binomial distribu-
tion, 157
standard deviation of, 71-72
values of, 160
variance of, 71-72
Goodness of fit, 80-86
170

Infinite parent distribution, 45
comparison with sample, 80~82

Least squares (see Method of least
squares)
Least-squares sum, 105, 107, 111
and variance of mean, 110-111
Line of regression, 129

Mean, 9-12
of binomial distribution, 55—
56, 147-148
definition of, 9-10
of Gauss distribution, 70-71,73
of Poisson distribution, 60-61
of a probability distribution,
42-43
standard deviation of, 92-96
variance of, 92-96
weighted, 10-12, 108-109
standard deviation of, 18,
108-109
Mean deviation, definition of,
14-15, 17
of Gauss distribution, 73
Measure of precision of Gauss dis-
tribution, 72-73
Method of least squares, 101-126
examples of, 103, 112-119
generalizations of, 123-126
observations of unequal weight,
107-109
one unknown, 101-103
several unknowns, 115-126
straight line, 117-123

CAOE

Mistakes, 3, 77
Most probable value; 104-105,
108-110
standard deviation of, 92-95,
105-109
for straight line constants, 120—
121

Normal distribution (se¢ Gauss

distribution)

Normal equations, 118-120, 124-
126

Normal error furiction (see Gauss
distribution)

Normalization, binomial distri-
bution, 54

Gauss distribution, 69-70, 158—
159

Poisson distribution, 60
probability distribution, 40,
60-61, 68—69

Observation equations, 116-117,
124-126
nonlinear, 125

Parameters of distributions, 59— ~

60, 66-73
Parent distribution, 45
comparison with sample distri-
bution, 80-82
Partial derivative, 6-7
Per cent standard deviation, 17-
18

Index

Permutations, 29-30
Poisson distribution, 57-64
examples of, 57-58, 61-64
mean of, 60-61
normalization of, 60
relation to binomial distribu-
tion, 58-59
standard deviation of, 61
variance of, 61
Precision, 3
of the mean, 95-96
Principle, of least squares, 102,
117
(See also Method of least
squares)
of maximum likelihood, 103—
104, 107-112, 117
Probability, balls in an urn, 27—
28
compound, 25-27
definition of, 23-25
for dice, 25-27
flipping pennies, 23-25
meaning of, 23-28
Probability distribution, for con-
tinuous variable, 66-71
examples of, 39-44
mean of, 42-43
meaning of, 39-42
normalization of, 40, 60-61,
68-69
standard deviation of, 44
variance of, 44
(See also Binomial distribution;
Gauss distribution; Pois-
son distribution)

17




Index

Probable error, 90
Problems, 18-22, 34-38, 86-90,
132-138
answers to, 166168
. Propagation of errors, 3-8, 96—
101
examples of, 99-101

Radioactive decay, 57-58, 61-62
Regression, line of, 129
Rejection of data, 76-80
Residual (see Deviation)
Root-mean-square (rms) devia-
tion (see Standard deviation)

Sample of a distribution, 45
mean from, 45-46
standard deviation from, 45-46
Sample distribution, comparison
" with parent distribution, 80-
82
Scatter or spread (sec Dispersion)
Standard deviation, 15-18
of binomial distribution, 56-57,
148-150
calculations with, 96-101
definition of, 15-18
fractional, 17-18
calculations with, 99-101
of a function of observables,
96-101
of Gauss distribution, 71-72
of least-squares results, 100,
108, 114, 121-123
172

Standard deviation, of mean,
92-96
and least-squares sum, 110-
111
significance of, 93, 95-96
per cent, 17-18
of Poisson distribution, 61
of probability distribution, 44
significance of, 74-75
Summation symbol, 10, 16-17

True value, 8, 13
existence of, 8-9

Variance, of binomial distribu-
tion, 56-57, 148-150
definition of, 15
of Gauss distribution, 71-72
of least-squares results, 106,
108, 114, 121-123
of mean, 92-96
of Poisson distribution, 61
of probability distribution, 44
of variance, 106-107
of weighted mean, 18, 108-109

Weight, unequal, observations of,
9-12, 107-110
Weighted mean, 10-12, 108-109
standard deviation of, 18, 108-
109
variance of, 18, 108-109
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