CHAPTER IV

FURTHER
DEVELOPMENTS

All that has been said so far about probability and prob-
ability distributions has established a foundation on
which we can now build several techniques of great
practical importance in handling experimental data.
This chapter contains several very powerful tools which
are developed from the principles we have learned so far.

12 | Standard Deviation of the Mean

We return to an important question which was raised
in Sec. 3. This is: What is the relation between the
standard deviation of a set of measurements and the
precision of the mean of the set?

We answer this question by a straightforward exten-
sion of the ideas which have already been introduced.
First, suppose that we take N measurements having
random errors which follow the Gauss distribution. We
calculate the mean and o of this set of measurements.
Now suppose we take another set of N measurements and
calculate the mean and o of this set. This mean will not
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in general be exactly equal to the mean of the first set,
although we expect intuitively that the difference of the
means on the average will be considerably smaller than
the difference between the individual measurements.
The values of ¢ will be somewhat different also. Another
way of saying the same thing is to say that the mean
and variance of a sample of N observations are not in
general equal to the mean and variance of the parent
distribution. We continue this process until we have
taken many sets, say M, each with its own mean and o.
We now ask: What is the standard deviation of the means?
It is clear that this standard deviation provides an indi-
cation of how reliable any one of the means is.

To facilitate our calculation of the standard devia-
tion of the means, for which we shall use the symbol g,
we introduce some new notation. We shall take M sets
of measurements with N measurements in each set.
There will then be MN readings in all. We use a Greek
index p to indicate which set of measurements we are
talking about and 7, as always, to designate a particular
measurement within a set. Let
X« = measurement 7 in set y
X, = mean of set u
X = mean of all measurements
dyi = %, — X = deviation of Xy
D, =%, — X = deviation of mean bR
The variance of the individual measurements is given by
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ot = f i 4 (12.1)
MN#=1 i=1 *

The variance of the means is given by

Ly (122)
gnl=— ) DS 12.2
) A
Now the deviations D, of the means can be expressed
in terms of the deviations d,; of the individual observa-
tions, as follows:
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Inserting Eq. (12.3) into Eq. (12.2), we obtain

M N M N 2
1 1 1 _
o = 3 (7\_7 z d‘“’) i) (z d“)
p=1 =1 p=1 Mi=]
(12.4)

Now let us squint for 2 moment at Eq. (12.4). The
double sum at the right side of this equation, when evalu-
ated, contains two different kinds of terms. There are
terms in which one of the d,; is squared, and other
terms containing products of two different d,;. Now,
because of the symmetry of the Gauss distribution func-
tion with respect to positive and negative deviations,
the ds are as likely to be positive as negative. So in the

limit, when we take a very large set of observations
9
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MN, the products of two different ds will tend to cancel

each other out. In Eq. (12.4) it is therefore legitimate
to replace

p=l =1
which contains only the 4? terms. This argument for
eliminating the cross terms is intended to be a plausi-
bility argument rather than a rigorous one. It is quite
possible but somewhat involved to put it on a more
firm mathematical basis.
Equation (12.4) now becomes

L1 M N ,
Im” = MN? z zdm‘ (12.5)

p=1i=1

This is closely related to Eq. (12.1). Combining Eq. |
(12.1) and Eq. (12.5), we obtain

%Vf or am=—\;77 (12.6)

The variance of the mean of a set of N measurements is
simply the variance of the individual measurements
divided by the number of measurements!

The standard deviation of the mean is used univer-
sally to describe the precision of the mean of the set of
measurements; we now have available a method of
calculating the standard deviation of the mean from the
measurements themselves. In the surveyor’s problem at
the end of Sec. 9, for example, we find that the standard
deviation of the mean is 0.026 ft/v/'10 = 0.008 ft. There
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is about a 68%, chance that the mean is within 0.008 ft
of the mean of the parent distribution, which is pre-
sumably the true value of the quantity.

A word of caution about Eq. (12.6) is in order. It
should not be thought that this equation is valid for
measurements taken from every parent distribution. We
have assumed that the cross terms in the sum used to
find ¢,.2 are negligibly small. This is true for the Gauss
distribution, as may be proved from a theorem known
as the central limit theorem. Because experimental meas-
urements so often obey the Gauss distribution, this is a
useful formula. But it is quite possible to dream up
strange distributions for which Eq. (12.6) is not true.
For the Cauchy distribution, which will not be discussed
here, 0,2 may be infinite!

13 | Propagation of Errors

We now return to the question raised in Sec. 2—the
effect which errors in measurements have on the error
of the result of a calculation which incorporates these
measurements. We consider a quantity Q which is to
be calculated from several observed quantities a, b, ¢, . . . :

Q = fla, by¢c,...) (13.1)
Suppose that @, b, ¢, . . . are all measured N times. We
can then calculate N different values of Q. We can
also calculate the mean and variance for the set of

measurements of a,
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E (Aay)?
ml (13.2)
wherc Aa; = a; — @, and i
i — @, and also the variance of Q,
1 N

t=1

where Q = f(z, F, . . .), Q; = f(a;, b & - ..),and AQ; =
Q: — 0. The AQ; can be approx1mated by the same
methods used in Sec. 2, Eq. (2.8):

aQ aQ
AQi o X A : — . .
o Qa + m Ab; +
Inserting Eq. (13.4) into Eq. (13.3),

N2<—QA +aQAb,-+---)2 (13.5)

When the quanflty in the parentheses in Eq. (13.5) is
squared, two kinds of terms appear. The first are
squares, a typical one of which is

(52

The other terms are cross terms of the form

9Q 3Q
oo gy Dai Ab;

(13.4)

Now, we use exactly the same argument as used in
Sec. 12 to obtain Eq. (12.5). The cross terms, since
they contain quantities which are equally likely to be
positive or negative, add up to very nearly zero, or at
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least something very much smaller than the sum of the
squared terms. We therefore drop them from the sum;
the remaining terms are

oot = —‘A-,i [(3&) (Ac)* + (%%) @b+ - |
- (13.6)

This can be rewritten:

N 2 1 &
aQ\? 1 _ (@_Q_) =V a2+ -
0o’ = (5;) Ni; dat+(55) ¥ 2

2
This important result gives us a relation betwcer} the
variances of the individual observations and the variance
of the quantity Q calculated from -these obse:rvatlons.

Usually, we are interested not in the variance of the
individual observations, but in the varianc.e o.f the mean.
Assuming that the errors are normall'y 'dxstrlbl'xted, we
can convert Eq. (13.7) into one containing variances of
the means by using Eq. (12.6). The result is

2 9Q\? e )
Tma® = (%%) Tma® + (—(%) Tmp? + (13.8)

where o.e? Is the variance of the mean of Q, on.? the
variance of the mean of ¢, and so forth. N

This is the result referred to at the end of Sec. 2; '1t .15
of much greater usefulness than Eq. (2.8) becau§c .1t is
the correct formula to use when the standard deviations
98
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of the means of ¢, 4, . . . are known. The corresponding
formula for the fractional standard deviation of the
mean, obtained by simply dividing Eq. (13.8) by Q2, is

() - () (55

(13.9)
A further remark needs to be made concerning
Eq. (13.8), the truth of which is not exhibited clearly
by the nonrigorous derivation which we have given.
Equation (13.8) can be shown to be true even if different
numbers of observations are made on the quantities q, b, ¢.
So Eq. (13.8) actually has a much wider range of ap-
plicability than has been demonstrated. In the case of
unequal numbers of observations, however, Eq. (13.7)
must be modified, and the derivation of Eq. (13.8)
is a little more involved. In what follows we shall make
use of this more general validity of Eq. (13.8), although
the proof has not been given here.
Here is an example of the foregoing analysis. Sup-
pose the quantity Q is the area of a rectangle, whose

dimensions are a and 4; then Q = ab. Using Eq. (13.8),
we find

0o = b2g,2 4+ g%,? (13.10)

In Eq. (13.10) and in the remainder of this section the
subscript m is dropped from the standard deviations, but
it is understood that each standard deviation is that of

the mean, unless otherwise noted. Thus, ¢, is the standard
deviation of the mean of 4.
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Introducing the fractional standard deviations of the
means, 0¢,/a, etc., we obtain

-+

More generally, if Q = a™b", then it is easy to show that

@) =)+ 1312
This Pythagorean sort of addition of fractional standard
deviations makes them very convenient for practical
calculations.

It is important to note the difference between
Eq. (13.8) derived in this section and the much more
naive result, Eq. (2.8). If even crude estimates of the
standard deviations of the means of the measurements
are available, Eq. (13.8) alwaps gives a more réliable
estimate of the precision of the result than Eq. (2.8);
therefore Eq. (13.8) should always be used in such cases.
Only if the actual errors are known is Eq. (2.8) used.

Here is an example of the methods developed in
this section. Suppose we have a horizontal beam of
length /, supported at its ends and loaded in the center
with a weight w. It can be shown that the deflection ¥
at the center of the beam is given by

w3

Y= %

where E is an elastic modulus and 7 is the moment of

inertia of the cross section about its center of area.

Now it may happen that the characteristics of the
100
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beam, £ and I, are known very well, but that one has
only crude measurements of w and /:

w = 100 tons == 1 ton
{= 50ft 0.5t

where the “-£” in each case refers to the standard devia-
tion of the mean. What is the resulting fractional stand-

ard deviation of ¥? This is just the question answered
by Eq. (13.12). We have

() -+

(0.01)? 4 32(0.01)2 = 0.001

gy

72 0.032
Note that although » and / have equal fractional stand-
ard deviations, ¢; has a much more mmportant effect
because ! appears to the third power. Also, the frac-
tional standard deviation in Y is considerably larger
than that in either w or /.

14 | Method of Least Squares

We now come to a very powerful method for obtaining
the most reliable possible information from a set of
experimental observations. We first state the principle of
least squares for a set of measurements on one quantity,
and then discuss how the principle can be derived from

- the principle of maximum likelihood if the errors follow the
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Gauss distribution. In the next section we discuss appli-
cations of the principle to observations of more than
one unknown quantity.

The principle of least squares can be stated as
follows: The most probable value of a quantity is ob-
tained from a set of measurements by choosing the value
which minimizes the sum of the squares of the devia-
tions of these measurements. For a set of measurements
x: the most probable value of x is that which minimizes
the quantity ‘

i (x — x))° (14:1)

in which x is regarded as a variable which can be varied
to obtain the minimum value of the function (14.1).
We note in passing that expression (14.1) is just

N times the variance of the x;, computed on the basis -

of the most probable value x. Thus an equivalent state-
ment of the principle of least squares is: The most
probable value of a quantity is that value which min-
imizes the variance (or alternately the standard devia-
tion) of the measurements.

We know that the condition which must be satisfied
for the function (14.1) to be a minimum is

N
%c 2 (x —x)2=0 (14.2)

i=1

This is a derivative of a sum of terms; we evaluate it by

differentiating each term in turn: :
102
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d Sd
i3 —_ )2 = .
Y

i=1
N N

= Z 2(x — x;) = 2Nx — 2 Z x:  (14.3)
1=: i=1

The condition which must be satisfied is therefore

N
2Nx—2zx,.=o

i=1

or

N
x=12m

N2 i (14.4)

The proper value of x to use is Jjust the average of the

observations! This is the result which we guessed to be
correct in Sec. 3.

Now, why should it be desirable to minimize the
sum of the squares of the deviations® To answer this
question, let us consider first the probability of occur-
rence of the set of measurements x; which we obtained.
Assuming that the measurements are distributed nor-
mally (according to the Gauss distribution), the prob-
a?ility of obtaining a measurement within an interval dx
of x; is

1
oV 2r

P =

e‘(ﬂ:—z;)’/&r’ dx (14.5)

where o characterizes the parent distribution from which
X; 15 obtained. The probability of obtaining the whole
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set of N measurements is the product of the separate
probabilities:

P=P1P2...PN

—_ 1__ e—(z—zl)2/2a2 dx>
oVar
R 1_ e~ (x—2N)2/202 dx>
ocVlr

Now the plot is beginning to thicken! The probabil-
ity P of observing the whole set of measurements x;
depends upon the value of x, of course. If x is a number
vastly different from any of the x;, then the exponent in
the last form of Eq. (14.6) is a very large negative quan-
tity, and P will be very small. That is, it is very unlikely
that we obtain a set of measurements all of which are
very far from the true value of the quantity.

We now make a basic assumption, called the prin-
cple of maximum likelihood; we assume that the set of
measurements which we obtain is actually the most prob-
able set of measurements. According to this assumption,
the proper value of x to choose is that which gives P
the largest possible value. We want to maximize the
probability of obtaining the particular set of measure-

ments which we actually obtained. We then call the

value of x so obtained the most probable value of x.

Clearly, the way to maximize P is to minimize the
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value of the exponent in Eq. (14.6). We shall refer to

the sum in this exponent as the leasi-squares sum and
denote it by M(x). Thus

M(x) = EK"T;Z"—V (14.7)

The principle of maximum likelihood thus leads to the
conclusion that we should minimize M(x), which is of
course equivalent to minimizing Z (x; — x)?, in accord-
ance with our original statement.

'To summarize what has been said so far: We have
assumed that the best value of the observed quantity
which we can obtain is the value which maximizes the
probability of the set of observations which we have
obtained, and we have called this the most probable value.
If the observations are distributed normally, we max-
imize the probability by minimizing the sum of the
squares of the deviations. For the case of observations
on one quantity, this leads to the conclusion that the
most probable value of the observed quantity is simply
the arithmetic mean of the series of observations. Saying
the same thing in slightly different language, we want
to find the mean of the infinite parent distribution,
which we regard as the true value of the quantity. The
best estimate we can make of this mean is the mean of
the sample of N measurements.

The standard deviation of the most probable value
of x obtained above can be found easily by using the
propagation of errors formula, Eq. (13.8). The quan-
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tity x is regarded as a function of all the x; each of
which has a standard deviation equal to that of the
parent distribution, that is, 0. Therefore,

N

Ox\? Ox\?2 (ax)z .
t=(ZYV et (ZEY ez ... = E: o9x

Tm -(6x1> T <6x2) 7 & Ox; v

( (14.8)
From Eq. (14.4) we find
Ox 1
o9x 2 14.9
6x,- N ( )
S0
2=V _ 2 14.10

This result should not be surprising; it is the same con-_

clusion we reached in Sec. 12, Eq. (12.6), from a slightly
different point of view. The difference between Eq.
(14.10) and Eq. (12.6) is that Eq. (14.10) contains the
variance of the infinite parent distribution, while Eq.
(12.6) contains the variance of a sample of N measure-
ments, which is used as an estimate of the variance of the
parent distribution. The error of this estimate is thrown
away when we discard the cross terms in Eq. (12.4).
The variance of the parent distribution is of course
not known. All that can be done is to estimate it by
computing the variance of the sample, and this is ordi-
narily sufficient. In extremely critical work it is occa-
sionally desirable to inquire into the precision of the
sample variance, that is, to ask how well it is likely to

approximate the variance of the parent distribution.
106

14 | Method of Least Squares
This can be investigated in a straightforward way by
computing the variance of the variance. We shall not
discuss this calculation here; it is rarely needed.

In the foregoing discussion we have assumed that
all the x; belong to the same infinite parent distribution
and that this is a normal distribution. But one can
easily think of cases where this is not true. If one makes
a series of measurements with an ordinary meter stick,
and then measures with a good-quality steel scale, the
random errors will in general be distributed differently
in the two cases. There may of course also be systematic
errors; we assume here that these have been either
eliminated or corrected.

How shall we handle the case when the X; come
from different parent distributions? Specifically, sup-
pose that x; comes from a normal parent distribution
characterized by variance o2 Referring to Eq. (14.6),
we see that the probability of the set of measurements
must be written as

P = (dx)¥ [_Z (x ~ xi)z:l

ex
0103 - -+ ox(V2m)¥ P 202

(14.11)
‘The ““least-squares sum” in this case is 2 (x — x:)%/20 2.
To maximize P, according to the principle of maximum
likelihood, we minimize this sum, leading to the con-
dition
4y x—x)?_ :
= s =0 (14.12)
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Carrying out the differentiation and rearranging the
result, we find _

x = 2Xi/0 (14.13)

2 1 / g ,'2
We have found that the most probable value of x in
this case is not the simple mean of the x;, but a weighted
mean, in which each weight w; is the reciprocal of the
variance of the corresponding parent distribution.

We have thus obtained an important and very
useful result: In computing the average of several quan-
tities whose variances are known, the most probable
value is a weighted average in which each weight w; is
given by

1

w; = ;—;" (14.14)

The variance of the value of x obtained from Eq.
(14.13) can be found by exactly the same procedure used
to derive Eq. (14.10). From the propagation-of-errors
formula, Eq. (13.8), we have, using Eq. (14.14),

6x>2 w; .
U-mz o —_ 0-.2 — —_— T,
JE <6xj ’ ;z <2 wi>2 ’
1 1
= Eije z v (14.15)
Thus we find
1
L=y (14.16)

Clearly, the variance of the weighted mean is smaller
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than any of the individual variances. We note also
that in the special case where all the variances are equal
1/0,* = N/o* and Eq. (14.16) reduces to Eq. (14.10).

As an example of the use of the methods just out-
lined, suppose that two experimenters have measured

the velocity of light in vacuum and have obtained the
following results:

1. ¢ = 299,774 & 2 km/sec
2. ¢ = 299,778 & 4 km/sec

where the errors are standard deviations of the means.
What is the most probable value of ¢, based on these
two determinations, and what is its standard deviation?
According to Eq. (14.13), we should weight each ob-
servation according to 1/0% Clearly, it is immaterial
whether the weights are equal to their respective values
of 1/ or simply proportional to them. Thus it is correct
to give the first determination a weight of 4, and the
second a weight of unity. The most probable value is
then

.= 4X299,774 4 1X299,778

441

Its standard deviation is given by Eq. (14.16):

1 1 1

@ (2 km/sec)? + (4 km/sec)?

= 299,774.8 km/sec -

or
o = 1.7 km/sec

In using Eqs. (14.13) and (14.16), one should keep
in mind that the variance associated with each x; also
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provides a means of testing whether the values are
consistent in a statistical sense. Suppose, for example,

that on two different days one makes measurements on
the melting temperature of a certain alloy. One day’s
result yields the value 736 == 1°C, and the other day’s
result is 749 == 2°C, where in each case the figures after
the =+ sign are standard deviations. The difference is
very much larger than the standard deviation in either
result; and the probability of this occurring by chance is
infinitesimally small. Thus we suspect that in one or
both determinations there is a systematic error. Perhaps
the composition of the alloy has changed. Considera-
tions of this sort are an important weapon in detecting
systematic errors. Of course, one can devise more quan-
titative tests of consistency; we shall not go into any
further detail here.

The result given by Eq. (14.16), and some other
results to be derived later, can be obtained somewhat
more simply if one is willing to accept a statement
which can be put on firm theoretical ground but which
we cannot discuss in detail. The statement is this: In
Eq. (14.11), which gives the probability of the set of
observations as a function of x, P is approximately a
Gauss function of x if the number of observations is large.
That is, P can be represented by

P = const X ¢~ @—a*/20m (14.17)

in which x is the value of x which maximizes P, which
we have shown to be equal to the weighted mean,

Eq. (14.13), and ¢,? is the variance of the mean, which
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we should like to find. To find ¢.? we compare Eq.
(14.17) with Eq. (14.11). The sum in Eq. (14.11) is
again called the least-squares sum and denoted by M(x).
We make a Taylor series expansion of M(x) about the
most probable value x,:

M) = M) + = x) (2)

+ %(x — x@?(ﬁfﬁ) + .-+ (14.18)

The derivatives are evaluated at the most probable value,
and thus (dM/dx),, = 0. Comparing Eq. (14.18) with
the exponent in Eq. (14.17), we see that they are equal
only if
1M 1
2T = P (14.19)

Thus we conclude that the variance of the mean is
related to the least-squares sum by the simple equation
1M

Ol dx?

(14.20)

where the derivative is evaluated at the point x = xo.
This result can also be used to simplify some derivations
in which the maximum likelihood principle is used for
the determination of several unknowns.

We conclude this section by considering another
application of the method of least squares in a situation
slightly different from the simple one of making a series
of measurements on a single observable. This example
deals instead with determining an unknown quantity
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indirectly from pairs of observations on two other quan-
tities.

Suppose we want to determine the force constant of
a spring (or Young’s modulus of a wire). Suppose also
that there is reason to believe that the spring obeys
Hooke’s law, so that the relation of force F to elongation
yis (

F=F (14.21)
where £ is the spring constant to be determined. We
apply several different forces F; to the spring by hanging
accurately calibrated weights on the end. For each, we
measure the elongation y;. The observations are shown
graphically in Fig. 14.1.

The y; all have random errors; we assume that the
errors all have the same distribution and thus the same
variance. If there were no errors in y;, we would have
yi— Fi/k = 0. As it is, the quantity d; = y; — F;/k
represents the error in y;. Therefore in the principle of
maximum likelihood, the correct least-squares sum to
use is

M@#) =Y U—‘zdf—/“ (14.22)

Taking dM/dk and setting it equal to zero,

dM _ 1 N poo — pp =
e a%zzza( 9 — Fi/k) =0 (14.23)
or
S F2
k=g . (14.24)
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It is enlightening to compare this result with the pro-

cedure one might naively be tempted to use, namely,
the average of the ratios F;/y;, or

p o LV E

N4y,

The correct least-squares result, Eq. (14.24), is quite
different.

F
§2
Filb——— . ,
. di |
|
|
» hd |
|
1
0 ¥ v

Fig. 14.1. Each point represents a pair of ob-
servations of F and y. The deviation d; corre-
sponding to (F;,y;) is shown. The line represents
the result of the least-squares calculation.

‘The variance 62 of £ may be found by use of Eq.
(14.20). The derivative of the left side of Eq. (14.23)
is d>M /dk?; this is

M _ 2 ypf F\, 1
= ﬂiﬂ@'ﬁ+ﬁﬂw<mw

The first sum in this equation is just (2/k) times the
first derivative, and this is zero. . Thus
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1 1

The value of £ used is, of course, the most probable value
just found.

The variance ¢? of the measurements y; can be
estimated in various ways.

The most straightforward procedure is to compute
the deviation d; = y; — F;/k for each pair of observations,
using the most probable value of % as given by Eq.
(14.24). Then the variance of the y; is given by

o = ]%/,20'52

1 2F.y; | F?
= ]-Vz<yi2 - —/'C‘L + k_") (14.27)

Inserting Eq. (14.24) into Eq. (14.27),
1 (2 F;p)?
2 = L 2 A& LY
7 N[Z" zF? ]
or

o* = 1%;(2 i — };ZF}:) (14.28)

Since Z F;p; has already been computed, evaluation of
Eq. (14.28) involves relatively little additional work. In
fact, when such calculations are done by machine, it is
usual to compute Z F?, 2 F,y;, and Z y;? simultaneously.

A direct estimate of o2 can be obtained, of course,
by repeating the observation several times with the

same force. In practical cases, if one wants only a rough
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estimate of 0% an estimate or shrewd guess of ¢2, based
on inspection of the instruments, may suffice.

15 | Least Squares with Several Unknowns

The method of least squares is also useful when more
than one quantity is to be determined from a series of
measurements. We start with an example. We know
that for an object moving in a straight line with constant
acceleration the velocity varies with time according to
the relation )

v=1u+ at (15.1)
where 1 is the velocity at time ¢ = 0. Now suppose that
in a particular situation we want to determine the values
of »p and a by measuring the velocity v; at each of a suc-
cession of times ¢;. The measurements might be made,
for example, with a speedometer and a stop watch.
Furthermore, suppose that the times can be measured
very accurately, so that the principal experimental errors
are in the velocity measurements.

If we merely measure the velocity at two times,
obtaining two pairs of observations (v1,f1) and (vs,%), we
obtain two simultaneous equations:

n = v -+ ah
v = vy + aly

(15.2)

which can be solved to determine v, and 2. But now
suppose that, in order to increase the precision of our

results, we take a series of pairs of observations, say N
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pairs in all, of which a typical pair is (v;,t;). The result-
ing set of equations is

v =0y + aty

v = vy + aty (15.3)

Un

Uz

Uz

Uy

P

t

Fig. 15.1. The line which fits observations (u;,4)
and (zy,t5) has, in general, a different slope () and
intercept () from that which fits (v1,t:) and (vs,4s).
There is no straight line which fits all three points.

Now these equations are not in general consistent;
if we take different pairs of equations, and solve them
for v and @, we obtain different values of », and a.
Graphical solutions for », and ¢ are shown in Fig. 15.1.
The reason for the various values of v, and «a, of course,
is that there are experimerftal errors in the v;. Equa-

tions (15.3) should be regarded therefore not as true
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equalities but as observation equations whose two sides are
not quite equal. We use the symbol 2, which is read
“observed to be equal to,” and write

v 2 v+ at; (15.4)

In actual fact the two sides of the equation are not, ex-
actly equal, but differ by an amount d;:

d; = v =+ at; — v; (155)

where d; is the deviation corresponding to equatlon i
and the pair of observations (v;,t;).

Since the d; are the results of the experimental er-
rors, we shall assume that they are distributed according
to the Gauss distribution function. The most probable
values of 2y and a can now be obtained from the principle
of maximum likelihood.

For a set of observations (v;,t;), they are the values
which make this set most probable. As in the previous
example, this probability is maximized when we minimize
the sum of the squares of the deviations.

Here is the princitle of least squares operating again.
That is, we want to minimize the quantity

2 di2 = 2 (Zlo + at,- — l)i)2 (15.6)

by choosing v and @ properly.

'To minimize a function of two variables, we take
the partial derivative of the function with respect to
each of the variables in turn and set each derivative
equal to zero. Thus the conditions which determine
and «a are

nz
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N O 9N g2
o zdz =0 and Zd, 0 (15.7)

When we evaluate these derivatives, we obtain two

. equations which then can be solved simultaneously to

find » and «. Notice that in general this procedure
always gives us as many equations as we have unknown
quantities to determine. These equations, of which
Egs. (15.7) are examples, are sometimes called normal
equations.

Inserting Eq. (15.6) into Eq. (15.7),
’a—?};zdiz = ZZ(Z}O + at; — I)i) =0

or

2N + a z t; = 2 2 (15.84)

and

%Zd# = zzti(vo -+ at; — vi) =0

or
2 z ti+a Z 1R = Evgti (15.86)

We now have a pair of simultaneous equations for
and a:

N +aZt; =3Zu,; »

Vo = t: + a ) tiz =2 vty (15.8)

These equations are the normal equations for this problem.
The number of normal equations is equal to the number
of unknowns. Equations (15.8) can be solved in a

straightforward manner for v and ¢, using determinants:
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2z U; ] i;
29 = Zut; 2 2 - (2 Ili) (2 t,;z) - (E v,-t,-)(E ti)
N =z NZ 12— (T 1)t
Zt, Zt2
(15.9)
N E Vg
o = 2t 2 vty - NZ vt — (E Ui) (E h‘)
N 2t NZt2 — (E ti)z
2t 2

Before proceeding further, it is worthwhile to stop
to consider what we have done. If there had not been
.any experimental errors, all the pairs of observations
(v3,¢:) would have obeyed Eq. (15.1). A graphical rep-

0 t: t

Fig. 15.2. Graph illustrating least-squares calcula-
tion of 2 and a. Each point represents a pair of ob-
servations; a typical one is labeled (u:,t;), with its de-
viation. The line is drawn with the values of 2, and
given by Egs. (15.9). In general this line need not pass
exactly through any of the points.
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resentation of this statement is that if there were no ex-
perimental errors, all the points represented by the co-
ordinates (v;¢;) would lie on a straight line whose slope
is @ and whose intercept on the v axis is v). Such a line
is shown in Fig. 15.2,

Because of the random errors in the 2;, the actual
observations are represented by points which lie some-
what above and below the line, as shown in the figure.
Reference to Eq. (15.5), which defines the deviations,
shows that the graphical significance of d; is that its
magnitude is the vertical distance between point (,t,)
and the line. The method of least squares selects a line
which minimizes the sum of squares of these vertical dis-
tances. We have used vertical distances rather than
horizontal distances or some combination because of the
assumption that only the »;, not the ¢;, contain errors. ‘

For reference, we restate the results just obtained,
in slightly more general language. If two variables x
and y are known to be related by a linear equation of
the form y = mx + b, where m is the slope of the line
and & is its y intercept, if a series of NV observations
(x:,9:) are made, in which random errors occur only in
the »; measurements, and if these errors all belong to
the same parent distribution, then the normal equa-
tions are

mZx; +bN =2y;

mZ x4+ b2 x; = Zxy; (15.10)

and the most probable values of m and & are given by
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m = NZ XiYi — (2 xz)(Ey,)
"NZx?— (2 x)?

p = 229(Zx8) = (2 x:95) (2 x2)
NZ xf’ - (2 x,-)”

(15.11)

These expressions have been obtained directly from
Egs. (15.9) by appropriate substitution of symbols.
The next logical step is to try to calculate the
standard deviations of the values of m and & which have
been obtained from the method of least squares. This
can be done by exactly the same methods as used for
the case of one unknown. Errorsin m and 4 are produced

by errors in the y;, which we assume are taken all from

the same parent distribution with variance 2. Thus we
may use Eq. (13.8) to compute the variances of m and b
in terms of the variance of the parent distribution. Then
the y; themselves can be used to estimate the variance
of the parent distribution.

We proceed as follows: From Eq. (13.8) we obtain

) 6m>2
O = —) o2 15.12
,Z (6)’7' (15.12),
The partial derivatives are evaluated by use of Eq.

(15.11), in which we abbreviate the denominators by
the symbol A = N2 x2 — (2 x,)%. To evaluate

d
:9__);:- in)’i

1

we note that there is only one term in the sum in which
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i is the same as y;, the variable we are differentiating.

Therefore,
9

Similarly,

d
9; ,Zyi =1
Thus we find
dm  Nx; — 2 x;
om _ VXxj T A Xy
¥y A (15.13)
(6_m>2 o Nzsz -_— Zij z X3 + (2 x¢)2
dy; A?
Inserting Eq. (15.14) into Eq. (15.12),

=5 [N” 2= ZN(ij)(Exi)WLN(Zx,.)z]
= z%: [ ) 2 = N ()] (15.15)

where we have used the obvious fact that Z x; = 2 x;.
Finally, recalling the definition of A,
No?
ont = N
Using precisely the same procedure to find the variance
of b, we obtain
o2 x?
A

All that remains now is to estimate the variance ¢2
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(15.14)

(15.16)

0’(,2 =

(15.17)
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of the parent distribution, and this is easy to do. We
recall that the deviation of each observation equation is
given by

di =mx;+ b — y; ' (15.18)

The variance of the sample is then
1 1
2 = -— 2 == - : — )2 ¢
ot = E d; ¥ E (mx; + b — y)) (1519)

in which the values of m and & are those given by Eq.
(15.11).

We have now solved, at least in principle, the problem
of finding the variances of m and &, in that we have
shown how they may be computed from the observed
data by means of Egs. (15.16), (15.17), and (15.19).
In practice, the calculations are rather long and compli-
cated. For this reason it is important to ask, in any
particular problem, whether the variances are needed
badly enough to justify the labor of obtaining them. Ifa
large number of data are to be used in an all-out effort
to determine constants with the greatest possible pre-
cision, then of course one wants to know what the pre-
cision is. In this case, the necessary calculations are
often done with a high-speed digital computer.

The theory of least squares can be generalized in at
least four ways, which we shall discuss only very briefly.

1. It can be used to determine constants in equa-
tions when there are more than two unknowns. One has
an observation equation for each set of observations,
There is a deviation for each observation equation, and
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the most probable values of the constants are determined
by minimizing the sum of squares of deviations. This
procedure involves taking the partial derivative of the
sum with respect to each of the unknowns and setting
the derivative equal to zero. This gives a number of
normal equations equal to the number of unknowns.
Simultaneous solution of these equations then gives the
most probable values of the unknowns. The computa-
tional labor increases very rapidly, of course, as the
number of unknowns increases.

2. The theory can be used when the observations
are not all samples of the same parent distribution. In
this case, as with one unknown, the deviations are
weighted inversely as the variances of their parent dis-
tributions. For example, if the observation equations
are y; = mx; + b, and the various parent distributions
for the y; are characterized by their variances ¢;%, then
the correct procedure is to minimize the quantity

3 wid = 25—;’ = Y wi(me + b~ p)?  (15.20)

where we have again used w; = 1/02 It is then easy
to show (and is, in fact, almost obvious) that the normal
equations for this example are

mZwx; +bZw; = Zwy;

mZwixd + b wixi = 2wy (15.21)

As in the unweighted case, we can next calculate the
variances of m and & by straightforward extensions of

the methods already presented.
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3. The method of least squares can be used when

the observation equations are nonlinear. As a simple
example, consider a capacitor of capacitance C which is
initially charged to a potential V, and allowed to dis-
charge through a resistance R. It can be shown that
the potential difference across the capacitor is given by

V = Ve t/RC (15.22)’

Suppose we want to determine the quantity RC by
making a series of observations of V at various times.
Suppose further that we have very accurate time-meas-
uring instruments, so that the only significant random
errors are in V, and that we have carefully eliminated
any systematic errors in these measurements.

We write an observation equation for each pair of
observations:

Vi 2 Voemt/EC (15.23)
and a corresponding deviation
di = Vi — Ve /R (15.24)

Assuming that the errors in the V; are normally dis-
tributed, all with the same variance, we determine V,
and RC using the principle of maximum likelihood by
computing 2 d;* and minimizing it. The normal equa-
tions for ¥, and RC are, however, nonlinear, and can be
solved only by numerical methods.

If the voltmeter happens to have a logarithmic scale,
as some electronic voltmeters do, the problem becomes
much simpler. We take logarithms of both sides of

Eq. (15.23): 25
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° t;
ln Vi = ln Vo _ ,Ea (1525)

Introducing a new variable y, defined by y=InV, we
now have a linear observation equation in J: and ¢,
Furthermore, because of the logarithmic scale, it is
reasonable to assume that the errors in the y; all have
the same variance; so we may proceed with exactly the
same methods which led to Eqgs. (15.11). If the scale
is not logarithmic, the y; will not have the same. vari-
ance, however.

It is not always possible to reduce an equation to
linear form by a simple substitution. In more compli-
cated cases it may be expedient to calculate approximate
values of the unknown quantities and then represent the
nonlinear equations by linear approximations, using
Taylor series expansions.

4. It sometimes happens that we do not know the
form of the observation equations or, indeed, whether
the observed quantities are related at all. We then need
a systematic method of investigating whether there is any
relationship between two variables. This leads to the
theory of correlations, a simple example of which is
given in Sec. 16.

16 | Correlations

In Sec. 15, we discussed the problem of determining the
constants in a linear equation relating two variables (in

this case » and y) by using pairs of observations (xip2)
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of these variables; it was known in advance that such a
linear relationship existed.

Sometimes it happens, however, that we do not
know in advance whether two variables, say x and jy,
are related. Furthermore, if we make pairs of observa-
tions (x;,y;) as before, the data may be scattered so widely
because of experimental errors that it is not clear whether

Ay .

ny

0
Fig. 16.1. To what extent are x and y related?

or not there is any relation between x and y. Repre-
senting the observations (;,p:;) graphically, we might
obtain a picture similar to Fig. 16.1. Are x and »
related, or are they not? Is there a correlation between
x and »?

Of course, there is no end to the variety of possible
functional relationships between x and y. There is no

general way of investigating all possible relationships,
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but it is fairly easy to check some simple ones. The
simplest possible one, of course, is a linear equation.
So a reasonable place to start is to ask whether there is
a linear relationship between x and y or, in other words,
a linear correlation.

We can answer this question at least partially by a
slight extension of the method of least squares for two
unknowns, introduced in Sec. 15. We assume a linear
relationship between x and y in the form

y=mx+b (16.1)
and proceed to determine the constants m and 4 from
the observations (x;,»;) in exactly the same manner as

- in Sec. 15, Eq. (15.11). In particular,

_NZxy—2x2Zy
T NIZx— (Zx)?
In this expression, and in those which follow, we have
dropped the limits of the summation, which are always 1
to N, and also have omitted the summation indices on x
and y. Thus, Z xy is an abbreviation for
N
z X))
i=1
The graphical interpretation of the procedure just
described is as follows: We are trying to represent the
scattered points in Fig. 16.1 by drawing the best straight
line through the points. The slope of this line is m, and
its intercept on the y axis is 4. Since the deviations we
have used in the method of least squares are
d»; = mx; + b —Ji (16.3)
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d: represents the vertical distance between the point
(xy:) and the straight line described by constants m
and 4. In this case, then, the method of least squares
minimizes the sum of the squares of the vertical dis-
tances between the point and the straight line. The line
determined by this procedure is sometimes called the
line of regression of y on x.

If there is no correlation at all between x and y, this
sum of squares will be minimized by a horizontal line;
we shall find therefore in the case of ne correlation
that m = 0, a line with zero slope.

Now let us back up slightly. There is no particular
reason for writing our assumed linear relationship be-
tween x and y in the particular form of Eq. (16.1). We
might equally well have written instead

x=my+ ¥ (16.4)

in which the roles of x and y have been reversed. In
this case, the deviations we use in the method. of least
squares are given by

di' = m’y,- + b’ — X3 (165)
The method of least squares now minimizes the sum of
the squares of the horizontal distances between the line
described by Eq. (16.4) and the points (x;,;) represent-
ing the observations. The result is the line of regression
of x on y. The expression for m’ is obtained simply by
reversing the roles of x and y in Eq. (16.2) and is

' = NZxy—2ZxZy

N2y —(2Z))*

(16.6)
129




Further Developments

Note that m' is not the slope of the line given by
Eq. (16.4) but rather its reciprocal. This is easy to see
if we solve Eq. (16.4) for .
x b

We see that the slope of this line is 1/m’, and its intercept
with the y axis is —&'/m’."
Using Eq. (16.4), if there is no correlation between
x and y, the method of least squares will give the value
m’ = 0, a vertical line. If, on the other hand, all the
points lie exactly on the line, so that the correlation is
perfect, then this method must give us the same line as
the previous one, Eq. (16.1). That is, in the case of
perfect correlation, we must find that 1/m’ = m. Thus
if there is no correlation between x and y, mm’ = 0,
while if the correlation is perfect, mm’ = 1. Clearly, the
value of the product mm’ has something to do with the
extent to which the variables x and y are correlated.
It is therefore natural to define a correlation coeffi-
cient r as follows:
r = ! = NZxyy—2Zx2Zy
[NE x2 — (2 x)2]1/2 [Nzy2 —_— (Ey)2]1/2
(16.8)
Thus r = 1 means perfect correlation, and r = 0 means
no correlation. If there is imperfect correlation, we ex-
pect a value of r somewhere between 0 and 1. In fact,
it can be shown that Eq. (16.8) must always have a
value between —1 and 1.

Suppose now that we have calculated r for a set of
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observations. How do we interpret the result? In other
words, how large must r be in order to indicate a sig-
nificant correlation between the variables x and »?
Clearly, because of random fluctuations, we will not in
generai get exactly r = 0 even if there is no real connec-
tion between x and y. And if a linear relationship exists,
we will not get exactly r = 1, especially if the experi-
mental errors are large. Given a value of 7, then, the
question to ask is: What is the probability of obtaining
a value of r as large as this purely by chance from ob-
servations on two variables which are not really related?
This situation is similar to the one which arose in inter-
preting the results of a x? calculation in Sec. 11.

Tables have been calculated which give the prob-
ability of obtaining a given value of r for various num-
bers N of pairs of observations. Table V gives a few
values of this probability. A reference to more extensive
tables is also given.

Here is an example of the use of this table. Suppose
we make 10 observations; then N = 10. The table says
that there is a probability P = 0.10 of finding a correla-
tion coefficient of 0.549 or larger by chance, and a
probability P = 0.01 of finding r > 0.765, if the vari-
ables are not really related. If for our 10 observations
we find r = 0.9, we can be reasonably sure that this
indicates a true correlation and not an accident. But if
we find only r = 0.5 we cannot be sure, because there
is more than 109, chance that this value will occur by
chance.
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A commonly used rule of thumb in interpreting
values of r is to regard the correlation as significant if
there is less than 1 chance in 20 (P = 0.05) that the
value will occur by chance. According to this rule of
thumb, we find from Table V that for 10 sets of observa-
tions, any value of r greater than 0.632 should be re-
garded as showing a significant correlation. For five
sets, r must be greater than 0.878 to be significant.

The theory of correlations can be extended in sev-
eral directions. First, there may exist a functional rela-
tionship between x and y which is not linear and which
is not detected by our linear correlation coefficient. For
example, if the graph of x versus y is a circle, the correla-
tion coefficient will be zero even if there are no experi-
mental errors. To take such possibilities as this into ac-
count, we can assume a quadratic, cubic, or more com-
plicated functional relationship and use the theory of
least squares to determine the constants in the equa-
tions. Such an analysis gives us nonlinear correlations.

It is also necessary at times to consider correlations
among more than two variables, so-called multiple cor-
relations. These extensions of the theory of correlations
have rather specialized applications, and we shall not
consider them here.

PROBLEMS

1. Find the standard deviation of the mean in Prob. 18,

Chap. I.
132

. Problems

2. Find the standard deviation of the mean in Prob. 27,
Chap. III. Compare this value with the change in the mean
which results from the rejection of unlikely data.

3. A certain quantity was measured N times, and the
mean and its standard deviation were computed. If it is
desired to increase the precision of the result (decrease o) by
a factor of 2, how many additional measurements should be
made? ‘

4. In Prob. 3, discuss how the mean of the first N meas-
urements should be combined with the mean of the additional
measurements, and how the standard deviation of the result
should be computed from the standard deviations of the two
sets.

5. Show that the standard deviation of a weighted mean
is always smaller than any individual standard deviation. Is
this a reasonable result?

6. Two different measurements of the speed of light using
the same general method (a rotating mirror) yielded the fol-
lowing results:

299,796 =+ 4 km/sec

299,774 £ 2 km/sec
Are these results consistent? (Assume that the errors given
are standard deviations of the means.)

7. In Prob. 13, Chap. I, suppose that the “errors”’ re-
ferred to are standard deviations of the means. Find the
standard deviation in g. Compare with the result of Prob. 13,
Chap. I. Which is more significant?

8. For some obscure reason an individual wants to make
an accurate determination of the area of a sheet of typewriting
paper. The following measurements are made on the length
and width:
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Length, in. Width, in.
11.03 8.51
11.00 8.48
10.97 8.49
10.98 8.50
11.02 8.53

8.48
8.51

a. Determine the standard deviation of each set of meas-
urements.

6. Determine the most probable value of each quantity
and its standard deviation. '

¢. Determine the most probable value of the area and
its standard deviation.

9. In a centripetal-force experiment the force exerted on
a body moving in a circle with constant speed is measured
directly and is also computed from the equation

mv? 4Ar:mR
F= R 1

The following data were obtained:

F, dynes T, sec R, cm
6.92 X 108 0.200 5.13
6.82 0.198 5.06
6.87 0.202 5.05
6.87 0.199 5.09
6.92 0.201 5.10

The mass is known very accurately: m = 140.00 g. Do the

measured and calculated values of F agree? Discuss.
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10. In the Bohr theory of the structure of the hydrogen
atom, the energies of the various quantum states are given by

1 me*

En = T2y
where m is the mass of the electron, e is its charge, 4 is Planck’s
constant divided by 2, and n = 1, 2, 3, --- . If the mass.is

known with a fractional standard deviation of 0.1%, the
charge with 0.29%, and Planck’s constant with 0.1%, what
is the per cent standard deviation in E, for the state for which
n = 1? For then = 2state? If the accuracy is to be improved,
which quantity (m, ¢, or %) should be determined more
accurately? ,

11. The phase angle ¢ between voltage V and current [
supplied to an electric motor (or any other device) is related
to the electrical power input P by the equation P = EI cos ¢.
The quantities P, E, and I are measured, with the following
results:

P = 515 & 50 watts

E = 110 & 2 volts

I = 5.20 & 0,20 amp

a. The quantity cos ¢ is called the power factor. Calculate
the power factor and its standard deviation.

b. Calculate ¢ and its standard deviation.

12. The number of radioactive decays occurring in a
given interval has been shown to follow the Poisson distribu-
tion. Often the parameter @ is not known in advance, but is
determined by counting for several intervals. Suppose N
intervals are used, and n; counts are observed in interval ¢
(where i = 1,2, --- , N). Apply the principle of maximum
likelihood to determine a. That is, find the value of 2 which
maximizes the probability of occurrence of the set of observa-
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tions- n;.  Specifically, show directly that the most probable |

value of ¢ is the average of the n;.

13. What is the standard deviation of the most probable
value of a obtained in Prob. 12?

14. The value of a resistor R is to be found by passing several
different currents I through it, measuring the correspond-
ing voltage drop V, and using the relation ¥V = IR. The values
of V' are measured very precisely with a potentiometer,
while I is measured with an ordinary ammeter, resulting in
normally distributed random errors. Using the method of
least squares, derive an expression for the most probable value
of R in terms of the pairs of observations (¥;1, ).

15. From the set of observation equations given, find the
most probable values of x and y, using the method of least
squares, assuming all the observational errors to belong to the
same normal distribution,

x4 =229
x—2y=209
2x — 3y 2 1.9

16. The three interior angles of a triangle were observed
to be
31° 62° 88°

Using the method of least squares and the fact that the sum -

of the angles must be 180°, find the most probable values of
the angles. Does your method make any assumption about
relative accuracies of the measurements of the angles? '

17. In an experiment to measure the acceleration of a
freely falling object, a tuning fork is set into vibration and
allowed to drop, scratching a wavy line on a strip of waxed

paper as it falls. From this trace, the positions at a succession
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of times separated by equal time intervals can be determined.
The theoretical relation between distance and time is
s = so + vt + Ygt?
Assuming that the times are known much more precisely
than the positions, use the method of least squares to derive
expressions for the initial position s, the initial velocity 2y, and
the acceleration g in terms of the pairs of observations (s;,t).

18. Use the method of least squares to find the best
straight line for the four points (4,5), (6,8), (8,10), (9,12).
Are any assumptions regarding the errors necessary?

19. An experimenter wanted to detérmine the ratio of
inches to centimeters by using a yardstick and a meter stick,
side by side. His procedure is to observe the centimeter cor-
responding to each of a succession of inch marks. Unfor-
tunately, the centimeters are not subdivided, so he reads
only to the nearest centimeter. Use the method of least
squares to derive a formula for the conversion factor.

20. In Prob. 19, the result is considerably simpler if an
odd number of inch marks are used, and if they are renum-
bered so that zero is in the middle. That is, if there are
2N + 1 marks, they are labeled from —N to N. Obtain the
simplified result, using this scheme. Useful information: The
sum of the first N integers is

1+2+...+N=M%1)

and the sum of their squares is

124204 .. 2= NI EDEN + 1)
6

21. Using the data of Prob. 18, calculate the line of regres-
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sion of x on y, the line of regression of y on x, and the correla-
tion coefficient. Is the correlation significant?

22. Following are two sets of pairs of observations on
variables x and y:

®
x®

[€, JR0-N FURY S
B WN | e
[S 3 STCRE X R
(SIS WIS TR RN

Determine whether either of these sets exhibits a significant
correlation between x and y.
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APPENDIX A
SUMMARY OF FORMULAS

Following is a summary of important and useful formulas
which have been developed in the text. The numbered
equations are given the same numbers as in the text to
facilitate reference to appropriate parts of the text.

Approximations

If a quantity Q is determined from quantities 4, 5, . . . by
a relation Q = f(q, b, . . .), then the change AQ of the
quantity produced by changes Aa, Ab, . . . is

Y 9Q 9Q
AQ . Aag + 3 Ab + e Ac + (2.8)

The Mean and Dispersion

The mean (or arithmetic mean or average) of a set of
N numbers, of which a typical one is x;, is

< 1 &
x = N,Zl X (3.2)

‘The weighted mean of a set of N numbers, of which a
typical one is x; with weight w;, is
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