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Probability

22. A machine cuts out paper rectangles at random.
Each dimension is between 1 and 2 in., but all values. l:?ctween
these limits are equally likely. What is the probability that
the area of a rectangle is greater than 2 in.??

CHAPTER III

PROBABILITY
DISTRIBUTIONS

We have seen in Sec. 4 how some simple probabilities
can be computed from elementary considerations. For
more detailed analysis of probability we need to con-
sider more efficient ways of dealing with probabilities of
whole classes of events. For this purpose we introduce
the concept of a probability distribution.

6 | The Meaning of a Probability Distribution

To introduce the idea of a probability distribution, sup-
pose that we flip 10 pennies at the same time. We can
compute in an elementary way the probability that four
will come down heads and the other six tails. But sup-
pose we ask: What is the probability for the appearance
of five heads and five tails, or seven heads and three
tails, or more generally, for n heads and (10 — n) tails,
where n may be any integer between 0 and 10? The
answer to this question is a set of numbers, one for each
value of n. These numbers can be thought of as forming
a function of n, f(n). That is, for each = there is a value
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Probability Distributions

of f(n) which gives the probability of the event char-
acterized by the number #. Such a function is called a
probability distribution. .

A probability distribution is always defined for a
definite range of values of the index n. In the above
example, n is an integer between 0 and 10. If, as will
usually be the case in our problems, this range of the
index includes all the possible events, then the sum
of all the probabilities must be unity (certainty). In
this case,

3 fm) =1 @

where the sum extends over the entire range of values
of n appropriate to the particular problem under con-
sideration. :

An example of a probability distribution which can
be obtained using the methods of Sec. 4 is the probability
of various results from rolling two dice. The total may
be any integer from 2 to 12, but these numbers are not
all equally likely. We saw in Sec. 4, in fact, that the
probability for 7 was %, while the probability for 11
was ¥s. Expressing these facts in the language just in-
troduced, we let n be the total on the two dice, and
f(n) be the probability for this number. We have found
that f(7) = % and f(11) = ¥s. The other values for
this distribution can be obtained similarly; the whole

distribution is as follows:
40
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f(=)
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According to Eq. (6.1), the sum of all the values of Sf(n)
should be unity. The reader is invited to verify that
this is in fact the case. The distribution f(n) can be

represented graphically by means of a histogram, as
shown in Fig. 6.1.

f(n)

020
015¢
0.10

005

2 3

4 5

6 7 8 9 10 11 12 n
Fig. 6.1, Probability distribution for two dice.
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Probability Distributions
Of course, the probability distribution may have

more than one index. If we flip 10 pennies and 4 dimes,

we can compute the probability that among the pennies
there will be n heads, and that among the dimes there
will be r, where # is an integer between 0 and 10, and
r is an integer between 0 and 4. We can call the result
F(nz) to indicate that the probability depends on both
n and . We shall not discuss such probability distribu-
tions in this text; they are treated by straightforward
extensions of the methods to be discussed here.
Returning to the 10-penny problem, suppose that
we want to find the average or mean number of heads in
a large number of trials. Suppose we flip the pennies
Z times, where Z is a very large number. By definition
. of the probability distribution, the number of times we
obtain n heads is Zf(n). To compute the mean value
of n, we should multiply each value of » by the number
of times it occurs, add all these products, and divide
by Z. That is,

1

n= z nZf(n) = (6.2)

Y nf(w)
The fact that Z cancels out of this expression means, of
course, that for a large number of trials, the value 7 is
independent of Z.

The expression for 7, given by Eq. (6.2), can be
thought of as a weighted mean of the values of n, with
weights equal to the corresponding probabilities. The

sum of the weights in this case is unity.
42
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As an illustration of the meaning of Eq. (6.2), we

use the distribution for two dice to compute the mean

value of the total, in a large number of rolls. We mul-

tiply each value of n by its probability and add the
results:

n f(n) nf(n)
2 Y6 Us
3 s Hs
4 %2 % or %8
5 % % or 10 8
6 V; 6 % or 1518
7 % 7/6 or 2%8
8 %6 104 or 20{4
9 }6 1or 1818
10 i2 % or 13{g
11 Us 1Y g
12 36 3% or Hs

n= 2 nf(n) = 128{, =

The average value of n is # = 7. This should not
be surprising; the probabilities are distributed symmet-
rically about n = 7 so that, roughly speaking, a value
of n greater than 7 is as probable as a value smaller
than 7 by the same amount.

In the same manner one could calculate the mean
value of 72, which is

7= Y nfln)

n

(6.3)
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Probability Distributions

More commonly, one is interested in the average value
of (n — )%, which is of course the variance of the values
of n which occur. This is given in general by

=Y (=) (4

As an example of the use of Eq. (6.4), we compute the
variance of the two-dice distribution. The calculation is
conveniently arranged in tabular form as follows:

o | G=m | e-mr|  f@) A
2 —5 25 %6 2%6

3 —4 16 s 3%%6

4 _3 9 }{2 27, 6

5 -2 4 % 19 6

6 -1 1 e Yo *
7 0 0 }(/5 0

8 1 1 ;éB %6

9 2 4 % ] 1%6
10 3 9 }'12 27 6
1 4 16 s %46
12 5 25 ¥ %o

ot = Z (n— B)H(n) = 19%6 = 2'H

Thus the root-mean-square spread of the values of n
about the mean is ¢ = (3%2)"/? = 1.71, which is about
what we would guess from looking at the distribution.

So far we have discussed probability distributions
based on the definition of probability given in Sec. 4,
which in turn is based on the idea of making an indefi-
a4
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nitely large number of trials, counting the number of
favorable events, and taking the ratio of the two. Our
discussion of the mean and standard deviation is based
on the assumption that a very large number of trials
has been made.

It may not be immediately clear, therefore, how
these quantities are related to the results which would
be obtained if we made an experiment consisting of a
relatively small number of trials. If there is only one
trial, for example, the mean is clearly not very likely to
equal the mean for an infinite number of trials. The
mean 7 for a small number of trials cannot be expected
to correspond exactly with the value obtained with an
infinite number of trials. The same is true for the stand-
ard deviation of a small number of trials.

To describe the distinction between the infinitely
large number of trials used to define f(n) and any small
number of trials in an actual experiment, we call f(r)
the infinite parent distribution and the results of any group
of trials a sample of this distribution. It is clear that the

.mean of a small sample is only an estimate of the mean

of t}'xe infinite parent distribution. For some types of
distributions it can be shown that the precision of this

estimate increases with the size of the sample, but it is

1m¥>ortant to remember that it is never more than an

.estlmate.. Similarly, the standard deviation of a sample

is an estfmate of the standard deviation of the infinite
parent distribution.

Moreover, there are good theoretical reasons, which
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we shall not discuss in detail, for stating that Eq. (3.9)
does not even give the best estimate of the parent dis-
tribution standard deviation which can be obtained
from a given sample. It turns out that a somewhat
better estimate is given by

N

o= \/7\/'1—“1; (x; — %)? (6.5)
which differs from Eq. (3.9) in that the sum of the 4;? is
divided by (N — 1) instead of N. Roughly speaking,
the reason for this is that the deviations are not all inde-
pendent; the same data have been used previously to
compute the sample mean which is used to compute the
di%, and so the number of independent deviations is only
(N = 1). Although this modification is of some theoret-
ical significance, it is not usually of any practical im-
portance. Ordinarily & is sufficiently large so that the
sample standard deviation is affected very little by the
choice between N and (¥ — 1).

Because we shall sometimes want to learn as pre-
cisely as possible the characteristics of the infinite parent
distribution, it is important to know how well the mean
and standard deviation of the sample approximate the
mean and the standard deviation of the infinite parent
distribution, and how the precision of these approxima-
tions depends on the size of the sample. We return to
these questions in Chap. IV.

A related question arises if we have a number of

trials of some kind and want to ascertain whether the
46
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results of these trials can or cannot be regarded as a
sample of some particular infinite parent distribution.
The distribution of results of a small sample, as we have
just pointed out, will not be identical to that of the
infinite parent distribution in any case; but how close
should we expect the sample distribution to be to the

f(n)
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Fig. 6.2. Comparison of parent and sample distributions for two
dice. The solid bars represent the parent distribution, the shaded
bars the distribution which resulted from a sample of 100 rolls.
The mean of the parent distribution is exactly 7, while the mean of
the sample is 7.15.

infinite parent distribution in order to conclude that
the sample is in fact a sample of this parent distribution?
A partial answer to this question is given in Sec. 11.

A very practical example of this kind of question
arises in connection with the probability distribution for
two dice, shown in Fig. 6.1. Suppose we want to deter-
mine whether the dice of a particular pair are loaded.
If they are loaded, their parent distribution will not be
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Probability Distributions
that of Fig. 6.1, but something different. We roll the
dice several times, recording the results. We then need
a means of comparing this sample distribution with the
parent distribution characteristic of unloaded dice. How
much difference between the sample and parent dis-
tributions should be expected if the dice are not loaded?
How much difference should we require as evidence
that they are loaded? A partial answer to this sort of
question is given in Sec. 11.

If some of the above discussion seems somewhat
vague and abstract, take heart! It will become clearer
as more examples are discussed in the following sections.

7 ‘ Binomial Distribution

We now consider a problem in which we will use all
the things we have learned so far about probability and
statistics. Suppose that we have N independent events
of some kind, each of which has probability ¢ of suc-
ceeding and probability (1 — p) of not succeeding. We
want to know the probability that exactly z of the events
will succeed. ' '
An example may help clarify the situation. Suppose
we light five firecrackers. They are supposedly identical,
but because of some uncertainty in their manufacture
only % of them explode when lighted. In other words,
the probability for any one to explode is p = %, and
the probability that it will fizzle is 1 —p = 4. In
this case the number of independent events, N, is 5.
48 '
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We now ask for the probability that, of these 5, n will
explode when lighted, where n is an integer between
0 and 5.

A few particular cases are easy. If the probability
of success in one of these events is p, the probability
that all N of them will succeed is p¥. The probabil-
ity that all N will fail is (1 — p)¥. In our example,
the probability that all five firecrackers will explode is,
(%)° = 0.237. The probability that none will explode
is (4)5 = 0.00098. In other words, neither of these is
very likely; probability favors the other possibilities in
which some of the firecrackers explode. The various
probabilities are shown graphically in Fig. 7.1.

The in-between possibilities are not so simple. If
we select a particular group of n events from N, the
probability that these n will succeed and all the rest
(N — n) will fail is p»(1 — p)¥ ™. We can shorten the
notations slightly by abbreviating 1 — p = g¢.

This is not yet the probability that exactly n events
will succeed, because we have considered only one partic-
ular group or combination of 7 events. How many
combinations of n events can be chosen from N? Just
t%lc number of combinations of N things taken # at a
time. So the probability that exactly n events will suc-
ceed from the group of N, which we denote by fi ,(n), is

Fral) = (2’)1""4”,"” (7.1)

which we can call the probability of n successes in N
49
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one trial is p. This kflo‘,v that the probability for 5 to come up on a singll:
dfe is %. What is the probability of 5 coming up on n
dice, where z can be 0, 1, 2, or 3> We see that this is

Probability Distributions

trials if the probability of success.in
expression fr p(n), defined by Eq. (71), is palled the
binomial distribution because of its close relation to the

fn) frp(?)
odo}
' 020
0301 i
015
020} I
¢ 0.10 -
; -
R 010} , i
B 0.08 1 0.05 |-
i 0.06 0.04
: 004 003 |
002 0.02 |
. 001 |
T 0 1 2 3 4 5 n
C 0123458678 91011121
: : 3 314 15 1
SN Fig. 7.1. Probability that n firecrackers will explode Fig. 7.2 6 17 18 19 20 p
; S ' in a group of five, if the probability for any one to ex- b tl‘ib:lti;na.f Exainll)le of binomial distribution, with ¥ = 20. Dis-
ChoE plode is %. This is a binomial distribution with N = 5, K or p = Y5 is symmetric about the mean, # = 10
s = %. e )
5 xactly the problem solved by the binomial distribution

g S binomial theorem. A few examples of binomial distribu- The probability of success in a single trial is % in thi
s 1 tions, computed from Eq. (7.1), are shown in Fig. 7.2. B case, so that p = 3. We are asking for the p %bm 't%lls
o What is the binomial distribution good for? Here Of n successes in three trials. This is, a ;ro 2Lty
is another example. Suppose we roll three dice. We binomial distribution, » ccording to the

SIE 50
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it - (YO (-5

The probablhtles of 0, 1, 2, and successes in three trials

are then
fnp(m)

020

N=20
015} p="ho

010t

0.05 |-
0.04
003
0.02
0.01

0 123 456 178 91011121‘314151617181920

Fig. 7.2b. Example of binomial distribution, with N = 20. Distri-
bution for p = 3/10 favors smaller values of n, close to 7 = 6.

5) _ 125
0)| 10! = 216

i (6) ) -

Sfs.as(0) =

Zero successes:

Sous(l) =

One success:
52

n

7 | Binomial Distribution

Two successes:  fs,15(2) = (3—3;)—@-; (l)z <§> 15
—2)121\6

6 216

Three successes: f3,1/5(3) = ZS—% (1—)3 =1
— 3)1 3! 2

fN,p(n) 16

040}

0.30

N=20

0.20 =10

0.10

01234586789
Fig. 7. i i
1g. 7.2c. Example of binomial distribution, with N = 20. Distri

bution is strongly as H
ymmetric. =
2> 6 are negligibly anall ere 7 = 1, and probabilities for

As i
: c;k}e'ck on these calculations we note that the total
ro
fher ability for 0, 1, 2, or 3 successes must be one since
¢ are no other possibilities. Thus, the four prob-
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abilities which we have calculated above must total
unity; this is in fact the case.

More generally, it must be true, for the same reason,

that

S fiala) = i(ﬂf) g =1 (7.2)

n=0
To show that this is in fact the case, we note that

N

P & ) (7.3)

n

is exactly equal to the binomial expansion of (g + p)¥,
as seen from Eq. (5.6). Butp + ¢ = 1,50 (g + ¥ =1,
and Eq. (7.2) is established. Note, incidentally, that it
is true for any value of p, which is a number between 0
and 1.

Now that we have calculated the probability for any
number of successes in N trials, we can calculate the
mean (or average) number of successes in N trials. The
meaning of this mean is the same as in Sec. 6. We make
the N trials, observing a certain number n of successes.
We make N trials again, finding in general a different
number of successes. We do this a large number of
times, say Z (where Z may stand for a zillion), and then
compute the mean of all the numbers of successes which
we observe,

To do this, we multiply each number of successes n
by the number of times Zfy ,(n) that it occurs, and then
divide by the total number of sets of trials, Z. The
54
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average number of successes, which we denote by 7, is
N

_ N\, S
n—-nzon(n)[) (1 = p)r—n (7.4)
The sum ranges from n = 0 to N because in every one
of the sets of trials some number of successes between 0
and N must occur. To summarize, we have obtainéd
Eq. (7.4) directly from Eq. (6.2) by inserting the expres-
sion for the binomial distribution function, Eq. (7.1).

We can calculate the value of 7 if we know the
number of trials N and the probability p for success in
any one trial. In the example of three dice, we have
used the values of N and p given (N = 3, p = 1%) to com-
pute the values of the probability distribution f;,i6(r).
Using these values, we proceed as follows:

n Ss6(n) nf3,116(n)
0 12516 0

! e "%16
2 %16 %16
3 Y16 %16

3
fi= nzofa'm(n) =108, — 1

If we average the numbers of 5s in all the trials, the
re.sult is %. This is not equal to the result of any single
trial, of course, and there is no reason to expect it to. be.
The most probable number is zero, and the probabilities
for the others are just such as to make the average 4.
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This calculation can be done more simply, but to
do it more simply we have to derive an equation which
expresses the result of performing the sum in Eq. (7.4)
in a simple way. Deriving the equation requires some
* acrobatics, the details of which are given in Appendix B.
The result is

= Y a(N)pa - pr - 3 75)

n=0
This remarkably simple and very reasonable result says
that the average number of successes in NV trials is just
the probability of success in any one trial, multiplied
by the number of trials. If we had had to guess at a
result, this is probably what we would have guessed!

Applying this result to the three-dice problem, we
see that with N = 3 and p = %, the average number of
5s can be obtained immediately: 7 = Np = 3 X % = 4,
in agreement with our previous result. '

Just as the mean 7 is defined in general for any dis-
tribution f(n), by Eq. (6.2) the variance is obtained by
calculating the mean of the squares of the deviations,
Eq. (6.4). For the binomial distribution, the variance
is given by

N N
ot =Y (1= DYrs0) = ) (0= Np)Fw(n),
n=0 =0
| " 1 (7.6)
in which we have used 7 = Np, Eq. (7.5).
Evaluation of this sum, as with the evaluation of 7,

requires a bit of trickery. The details are again given
56
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in Appendix B so as not to interrupt the continuity of
the present discussion. The result of the calculation is

o? = Np(1 — p) = Npq (1.7)
or
o = V Npq

(7.8)

another remarkably simple result. ;‘
As an illustration of the properties of the binomial
distribution just obtained, we return to the example of
three dice, for which we have computed the probabilities
for the occurrence of any number of 5s between 0 and 3.
In this case, N = 3, p = %. The mean number of 5s

was found to be }$. Similarly, we may compute the
standard deviation:

o= VNpg = V3 X% X% = 0.646

which means that the root-mean-square deviation of the
values of n about the mean (7 = 34) is somewhat less
than unity. The deviations of the few events for which
n=2o0rn=3 are, of course, larger than this.

8 | Poisson Distribution

\A"c c‘onsider next a particular application of the binomial
distribution which is important in nuclear physics. Sup-
pose that we have N radioactive nuclei. Suppose also
tha? the probability for any one of these to undergo a
f'adloactive decay in a given interval of time (T, for
Instance) is p. We want to know the probability ’that
57
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n nuclei will decay in the interval 7. The answer is of
course the old familiar binomial distribution function
fu.»(n). This is, however, somewhat unwieldy for prac-
tical calculations; N may be a very large number, such
as 102, and p may be the order of 1072 or so. With
numbers of these magnitudes, there is no practical way
to evaluate the binomial distribution, Eq. (7.1).
Fortunately, we can make considerable simplifica-
tions by using approximations which are valid when ¥
is extremely large and p is extremely small. We there-
fore consider the &mit of the binomial distribution func-
tion as N grows very large and p grows very small in
such a way that the mean of the distribution, which is
Np, remains finite. We denote this product by

Np =a (8.1)

We shall introduce the approximations in a manner
which will make them seem plausible, but no attempt
will be made to attain mathematical rigor.

First of all, we note that if p is a very small quantity,
the average number of events will be very much smaller
than N so that the values of » which are of interest will
be extremely small compared to N. Guided by this
observation, we make two approximations in the expres-
sion

Sron) = (—]V'TN%L)—!ﬁpn(I - p)¥

Consider first the factor
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"(N—n+1)
(8.2)
This is a product of n factors, none of which is signifi-

cantly different from N. We therefore replace Eq. (8.2)
by N*. We then have approximately

fope) 2 LB (1 — gy = DO (1 = P
nt (1 —p)
(8.3)
Second, we notice that the factor (1 — p)* is very nearly
equal to unity because it is a number very close to unity
raised to a not terribly large power. We therefore drop
this factor. We also eliminate N from the expression,
using ¢ = Np, and rearrange it to obtain

NI

(N =1 =NN-~1)(N-2).

fla) = 551 = p)eie = L1 ~ s (8.4)

All that remains now is to evaluate the limit
lim (1 — p)u»
p—0

This limit is discussed in many books on elementary
calculus and is shown to have the value 1/¢. Using this
fact in Eq. (8.4), we obtain

Jolw) = L& | 8.5)

This form is known as the Poisson distribution function.
Note that while the binomial distribution contained two
independent parameters (N and p), the Poisson dis-
tribution has only one (a). The other one disappeared

59




Probability Distributions
when we took the limit of the binomial distribution as
N-—> oo,

Using the definition of a, Eq. (8.1), and the general
expression for the mean of the binomial distribution,
Eq. (7.5), we find that the mean value of 7 is

i=a (8.6)
That is, if we observe the radioactive material for a
series of time intervals T, recording the number of dis-
integrations taking place in each interval, we find that
the average number of disintegrations is a.

As with the general form of the binomial distribu-
tion, if we add the probabilities for all possible values
of n, we must obtain unity (certainty). That is,

Y falm) = 1 (8.7)
n=0
We extend the summation from zero to infinity because
we have let the number of independent events N become
indefinitely large. To establish that Eq. (8.7) is in fact
true, we insert Eq. (8.5) in Eq. (8.7):

i Ja(n) = e i Z—’: (8.8)

n=0 n=0
But the sum in Eq. (8.8) is nothing but the Maclaurin
series expansion of the quantity ¢*. Thus the sum in
Eq. (8.7) does equal unity, as required.

Any probability distribution which is constructed
so that the sum of the probabilities of all possible events

is unity is said to be rormalized. It is quite possible to
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define a probability distribution differently so that the
sum of all the probabilities is 2 number different from
unity. In this case, certainty is represented not by
unity, but by some other number. It is usually con-
venient, however, to construct the probability distribu-
tion in such a way that the sum of all the probabilities
is unity. This practice is followed everywhere in this
book.

As has been stated in Eq. (8.6), the mean value of
n for the Poisson distribution is simply # = 4. The
standard deviation for the Poisson distribution can also
be obtained easily from the expression for the standard
deviation of the binomial distribution, Eq. (7.8), by
using Np = a and the fact that ¢ is very nearly unity;
the result is simply

c=Va or g =aq (8.9)

Here is an example of the use of the Poisson distribu-
tion in radioactive decay. Suppose we have 102 atoms
of Shakespeareum, a fictitious radioactive element whose
nuclei emit a particles. Shakespeareum might be, for ex-
ample, a rare unstable isotope of one of the rare-earth
elements, with an atomic weight in the vicinity of 150; in
this case 10? atoms correspond to about 25 mg of the ele-
ment. Suppose that the decay constant is 2 X 10~2° per
second, which means that the probability for any one
nucleus to decay in 1 sec is 2 X 10~2°. This corresponds
to a half-life of about 10?2 years, rather long but not
impossibly so.
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Now suppose we observe this sample of material
for many 1-sec intervals. What is the probability to
observe no o emissions in an interval? One? Two? The
answers are given simply by the Poisson distribution.
We are given N = 102 and p = 2 X 10~%; s0 we have
a = 2. Substituting this value in Eq. (8.5), we obtain
the following values:

fo(n)

0.135
0.271
0.271
0.180
0.090
0.036
0.012
0.003
0.001

XN DALVNR O X

These results are shown graphically in Fig. 8.1. The
mean number of counts in this case is exactly 2, and
the standard deviation is V2. For comparison, Fig. 8.2
shows a Poisson distribution with ¢ = 10.

In many practical applications of the Poisson dis-
tribution the problem may be somewhat different, in
that the constant ¢ may not be known at the beginning.
The problem may be, for example, to determine the
value of ¢ from a distribution of experiméntal data. If
it is known that the parent distribution of which the
data are a sample is a Poisson distribution, then the

best estimate of a is just the mean of the sample distribu-
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fa(n)

0.250
0.200
0.150
0.100

0.050

0 1 2 3 4 5 6 7 8 n
Fig. 8.1. Poisson distribution with ¢ = 2.

fa(™

012345678 910111213141516171819202122232425 n

Fig. 8.2. Poisson distribution with ¢ = 10, 63
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tion. A little thought will show that the standard devia-
tion of this value is V.

Other cases may arise where it is not certain whether
the parent distribution corresponding to a given sample
is a Poisson distribution. For example, if one observes
the number of eggs laid by a flock of chickens on each
of several days, one may want to ascertain whether the
probability for a given number of eggs on a particular
day follows the Poisson distribution. In such a case
some test of goodness of fit, such as the test discussed in
Sec. 11, may be used.

9 | Gauss Distribution, or Normal Error Function

We now consider another probability distribution which
is of great practical importance, the Gauss distribution.
It is important for several reasons. (1) It describes the
distribution of random errors in many kinds of measure-
ments. (2) It is possible to show that even if individual
errors do not follow this distribution, the averages of
groups of such errors are distributed in a manner which
approaches the Gauss distribution for very large groups.
We may have, for example, a set of observations which
are distributed according to the xpz distribution, which
may be any distribution at all. If we take groups of N
observations and average them, then in the limit of very
large N the averages will be distributed according to the
Gauss distribution. The only condition is that the vari-

ance of the xyz distribution be finite. This statement is
PR
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known as the central-limit theorem; it is very important
in more advanced developments in mathematical sta-
tistics.

The Gauss distribution can be regarded in two
ways: as a result which can be derived mathematically
from elementary considerations or as a formula found
empirically to agree with random errors which actually
occur in a given measurement. Someone has remarked,
in fact, that everyone believes that the Gauss distribu-
tion describes the distribution of random errors, math-

‘ematicians because they think physicists have verified it

experimentally, and physicists because they think math-
ematicians have proved it theoretically!

From a theoretical point of view, we can make the
plausible assumption that any random error can be
thought of as the result of a large number of elementary
errors, all of equal magnitude, and each equally likely
to be positive or negative. The Gauss distribution can
therefore be associated with a limiting form of the bi-
nomial distribution in which the number of independent
events NV (corresponding to the elementary errors) be-
comes very large, while the probability p of success in
each (the chance of any elementary error being positive)
is }6. The derivation of the Gauss distribution from these
considerations is given in Appendix C.

Many people feel, however, that the real Jjustifica-
tion for using the Gauss distribution to describe distribu-
tion of random errors is that many sets of experimental
observations turn out to obey it. This is a more convinc-
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ing reason than any mathematical derivation. Hence it
is a valid point of view to treat this distribution as an
experimental fact, state its formula dogmatically, and
then examine what it means and what it is good for.

The Gauss distribution function is often referred to
as the normal error function, and errors distributed accord-
ing to the Gauss distribution are said to be normally
distributed. .

The Gauss distribution is

Sx) = de~Pemmr (9.1)

where 4, &, and m are constants and x is the value ob-
tained from one measurement. This distribution differs
from those we have considered previously in that we
shall regard x as a continuous variable, rather than an
integer as with the binomial and Poisson distributions.
‘This will necessitate some further discussion of the sig-
nificance of f(x); but first we plot the function f(x) to get
a general idea of its behavior.

Figure 9.1 is a graph of the Gauss distribution
function, Eq. (9.1). We note that 4 is the maximum
height of the function, m represents the value of x for
which the function attains this maximum height, and 4
has something to do with the broadness or narrowness of
the bell-shaped curve. A large value of 4 corresponds
to a narrow, peaked curve, while a small value of #
gives a broad, flat curve.

Now, what is the significance of the function S(x)?
We are tempted to say that f(x) represents the probabil-
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ity of observing the value x of the measured quantity.
But this is not really correct. Remembering that x is a
continuous variable, we realize that the probability for x
to have exactly any particular value is zero. What we
must discuss instead is the probability that x will have
a value in a certain region, say between x and x + Ax.-
fx)

Ry

1

Fig. 9.1. Gauss distribution function. The points x = m == 1/A, at
which the curve has 1/¢ of its maximum height, are shown.

So the proper interpretation of the function f(x) is that
for a small interval dx, f(x) dx represents the probability
of observing a measurement which lies in the interval
between x and x + dx.

This statement has a simple graphical interpreta-
tion. In Fig. 9.2, the area of the shaded strip on the

graph represents f(x) dx. Therefore we can say that the
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area under the curve within the interval dx represents
the probability that a measurement will fall in this
interval. Similarly,

P(a,b) = /’ ® f(x) dx (9.2)

is the probability that 2 measurement will fall somewhere
in the interval ¢ < x S b.

()
7
-—/1-— dx \
0 x a b x

Fig. 9.2. Graphical representation of probabilities. Shaded areas
represent probabilities for an observation to fall in the corresponding
intervals.

The total probability for a measurement to fall
somewhere is of course unity; so the total area under
curve f(x) must be unity. Analytically, we can say
that it must be true that

[Cf@dx =1 (9.3)

This is analogous to Eq. (6.1). If this condition is satis-
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fied, the function f(x) is said to be normalized in the
same sense as the functions in Secs. 7 and 8 were nor-
malized, having a total probability of 1. We have
extended the range of integration from —o to 4w
because it is necessary to include all possible values of x
in the integration. '

The requirement that the function f(x) be nor-
malized imposes a restriction on the constants which
appear in the function. If we know % and m, then

f_: Ae—Pe—mt gy — (9.4)

will be satisfied only with one particular value of the
constant 4. To obtain this value of 4, we must actually
perform the integration. To simplify the integral we
make a change of variable, letting

b(x —m) = 2 (9.5)
Equation (9.4) then becomes

A /_"” e?dz = h (9.6)
‘The value of the integral in Eq. (9.6) can be shown to be

[_"; e?dz = Vi 9.7)

Obtaining this value requires a small chicanery, the
details of which are given in Appendix D. Inserting
Eq. (9.7) in Eq. (9.6),
h
= — 9.8
v | (9.8)

Thus, we find that in order to satisfy the normaliza-
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tion condition, Eq. (9.4), the constant 4 must have the

value 4 = 4/ V7. From now on, therefore, we write
the Gauss distribution function as

f(x) — __\;ze-—h?(:c—m)2 (99)
. w

which is normalized for every value of £.

Next, we find the mean value of x for this distribu-
tion. The meaning of mean is the same as always—
the average of a very large number of measurements of
the quantity x. We could go through the same line of
reasoning as in Sec. 6 by introducing the total number
of measurements Z and then showing that it divides out
of the final result. Instead, we observe simply that
Jf(x) dx represents the probability of occurrence of the
measurement in the interval dx and that the mean value
of x is found simply by integrating the product of this
probability and the value of x corresponding to this
interval. That is,

%= [_: xf(x) dx (9.10)
This expression is completely analogous to Eq. (6.2); we
use an integral here rather than a sum because x is a
continuous variable rather than a discrete one.

To compute * we insert Eq. (9.9) into Eq. (9.10)
and make the change of variable given by Eq. (9.5):

/-m xe~h@—me g,

f(i + m> e* dz (9.11)

x

S-S
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The first term of this expression integrates to zero be-
cause the contributions from negative values of z ex-

actly cancel those from positive values. The part that
survives is '

m ® 22 = ._.m_.
= Tw . e % dz = v Vr
=m ' (9.12)
a result which we could have guessed in the first place
simply by looking at the graph of the function.

The calculation of the variance proceeds in a similar
manner. The variance is given by

ot = /_ : (x — m)*f(x) dx

x

=" -j_— (x — m)%ett—m» g (9.13)
— T

To evaluate this integral we make the change of variable,
Eq. (9.5), to obtain

h"’\l/_ /n 2% % dz (9.14)
)

This is a convergent integral; at large values of z, 22 be-
comes very large, but ¢~% grows small so rapidly that
the product 2%~* also approaches zero very rapidly.
The integral in Eq. (9.14) can be integrated by parts
to convert it into the form of Eq. (9.7), whose value is
known. The final result is
1
2

a-=2_hi" or g =

o2 =

713; (9.15)
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The standard deviation is inversely proportional to 4.
'This should not be surprising, because larger values of 4
mean a more sharply peaked curve as well as smaller
values of o. Since 4 is large for sharply peaked curves,

——

X

0

Fig. 9.3. Gauss distributions for two values of £ with the same
m; hy = 2hy. Positions of ¢ and ¢ for the two curves are shown.

corresponding to small spread of errors, % is sometimes
called the measure of precision of the distribution. The
Gauss distribution is plotted in Fig. 9.3 for two values
of 4.

It is often useful to write the Gauss distribution in

terms of ¢ rather than 4. Using o, the function becomes
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f(x) . _\/21_1 . e~ @—m»/2q? (9.16)

The mean deviation for the Gauss distribution is even
easier to obtain than the variance. It is given by

<«
h h2( 2
a = X — m| —= ¢~ He—m)* gy
/—wl !\/;r

N \i/—}:?ﬁﬂ""”’@ | (9.17)

This integral can easily be evaluated by making the
substitution z = A%?2. It should not be necessary to give
the details of this substitution; the result is simply

1

xX = m (918)

Comparing this with Eq. (9.15), we see that for the
Gauss distribution the standard deviation and mean
deviation are proportional, since both are inversely pro-
portional to 4. The standard deviation is the larger of
the two; the relation is

g = \/zz-ra =125« 9.19)

This equation is quite useful when one wants a
rough estimate of the standard deviation of a set of ob-
servations whose errors are thought to be normally dis-
tributed. Instead of calculating ¢ from the data, one
calculates @ (which is generally easier since it is not
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hecessary to square all the deviations) and then uses
Eq. (9.19). It must be emphasized, though, that this
relationship holds only for the Gauss distribution; it is
not valid for other distributions.

The Gauss distribution may be used to find the
probability that a measurement will fall within any
specified limits. In particular, it is of interest to calcu-
late the probability that a measurement will fall within
o of the mean value. This will give a more clear under-
standing of the significance of the standard deviation.
"The probability P that a measurement will fall between
m — ¢ and m + ¢ is given by

P= L ":+ \/zl_we—@—m)*/zv’ dx (9.20)
Making a change of variable ¢ = (x — m)/e, we find
p=—1_ / T men g (9.21)
Vor |1 )

This integral cannot be evaluated except by making
numerical approximations. Fortunately, such integrals
are used sufficiently often so that extensive tables of
their values have been calculated. A short table of
values of the integral

T
vl R
wJo

for various values of 7" is given at the end of the book,

Table II. Also included for convenience is a table of
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values of the function (1/V/2m)e=%/2, Table I. References
to more extensive tables are also given.

In general, the probability for a measurement to
occur in an interval within T'¢ of the mean is
B S ey 1
Vs _Te dt (9.22)‘
The values of this probability for a few values of T are
as follows:

P(1) = 0.683 1 - P(1) = 0.317

P(2) = 0.954 1 — P(2) = 0.046

P(3) = 0.997 1 — P(3) = 0.003
These figures show that the probability for a measure-
ment to fall within one standard deviation of the mean
is about 68%; the probability that it will fall within
two standard deviations is about 95%,, and the probabil-
ity that it will be farther away from the mean than three
standard deviations is only 0.3%,.

Here is an example of the use of some of the ideas
just discussed. A surveyor runs a line over level ground
between two points about 1000 ft apart. He carefully
stretches his 100-ft tape to the proper tension for each
segment of the measurement and applies the proper tem-
perature correction, to eliminate systematic errors from
these sources. He repeats the measurement 10 times.
Supposing that the remaining errors are associated with
random errors in the individual measurements, and that
the resulting errors are randomly distributed, we can
make the following calculations:

PT) =
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Observation (x), ft |44, ft
1023.56 0.055
1023.47 0.035
1023.51 0.005
1023.49 0.015
1023.51 0.005
1023.48 0.025
1023.50 . 0.005
1023.53 0.025
1023.48 0.025
1023.52 0.015__

% = 1023.505 ft 0.210 ft

a = 0.021 ft

g = 1.25a = 0.026 ft

The probability for an individual measurement to fall
within 0.026 ft of the mean is 0.683, so we expect about
689, of the measurements to lie between 1023.48 and
1023.53 ft. The probability for falling within fwe stand-
ard deviations of the mean (1023.45 and 1023.56 ft) is
0.95, and so on. A more important question is: What
is the reliability of the mean” This question can be
answered with the methods introduced in Sec. 12.

10 | Rejection of Data

The question we consider next is a controversial one.
It concerns the problem of what to do if, among a set
of observations, one or more have deviations so large as
to seem unreasonable. If, for example, a set of measure-
ments made with a micrometer caliper has a standard
deviation of 0.001 in., but one measurement differs

from the mean by 0.010 in., then we are tempted to
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regard this large deviation as a blunder or mistake
rather than a random error. What shall we do with
this observation?

Such an observation creates an awkward situation
for the experimenter. If he retains the questionable
observation, it can have quite a large effect on the mean. -
It will also, of course, have an even greater effect on
the standard deviation. If on the other hand it is dis-
carded, one runs the risk of throwing away information
which might lead to discovery of some unexpected
phenomenon in the experiment. Important discoveries
have resulted from apparently anomalous data. In any
event, it cannot be denied that throwing away an ob-
servation copstitutes tampering with the data, better
known as “fudging.”

As has been mentioned, this is a controversial ques-
tion, and one which has been hotly debated. There is
no agreement among authorities as to a definite answer.
We therefore present several different points of view,
and let the reader take his choice.

At one extreme, there is the point of view that
unless there is a definite reason for suspecting that a
particular observation is not valid, there is never any
Justification for throwing away data on purely statis-
tical grounds, and that to do so is dishonest. If one
takes this point of view, there is nothing more to say,
except to advocate taking enough additional data so

that the results are not affected much by the questionable
observations.

7
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At the other extreme is the point of view that an
observation should be rejected if its occurrence is so
improbable that it would not reasonably be expected to
occur in the given set of data. We reason as follows:
Suppose we make N measurements of a quantity; sup-
pose that one of these seems to have an unusually large
deviation. We use the Gauss distribution function to
calculate the probability that a deviation this large or
larger will occur. If this probability is larger than 1/N,
we conclude that it is reasonable to obtain such a devia-
tion. If, on the other hand, the probability of obtaining
such a deviation is much smaller than 1/, this means
that it is very unlikely that such a large deviation should
occur even once in a set of N measurements. In this
case, we might consider rejecting this measurement as
being due probably to a mistake or some anomalous
fluctuation of the experimental conditions. We should
expect occasionally to obtain deviations whose probabil-
ities of occurrence may be somewhat smaller than 1/N, but
not a great deal smaller. One rule of thumb for rejec-
tion of data which is sometimes used is to reject an
observation if the probability of obtaining it is less than
1/2N. This criterion is known as Chauvenet’s criterion.

Here is an example. Suppose we make 10 observa-
tions. According to Chauvenet’s criterion, an observa-
tion should be disregarded if its deviation from the
mean is.so large that the probability of occurrence of a
deviation that large or larger is less than %,. Referring
to Eq. (9.22), we want to find the value of 7" such that

P(T) =1 — Yo or 0.95. Referring to Table II, we find
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that the proper value of T"is T = 1.96. Therefore, after
calculating o for the set of observations, we should discard
any observation whose deviation from the mean is larger
than 1.96¢.

Table III is a short tabulation of maximum values

of T = di/e which should be tolerated, according to "
Chauvenet’s criterion. For example, with 20 obser-

vations, the maximum value of T is 2.24. If ¢ for a
set of 20 voltage measurements is 0.01 volt, then any

observation deviating from the mean by more than

2.24 X 0.01 volt = 0.0224 volt should be discarded.

If we eliminate an observation by Chauvenet’s
criterion, we should eliminate it completely. This means
that after the anomalous observations are eliminated,
we must recompute the mean and the standard devia-
tion using the remaining observations. If one decides
to use Chauvenet’s criterion, it should be kept in mind
that it may be possible to eliminate most or all of the
data by repeated applications. Thus the criterion, of
dubious validity at best even on the first round, should
certainly not be used more than once.

Between the two extreme views just presented, there
are other more moderate views on rejection of data.
Some of these unquestionably have better theoretical
Justification than Chauvenet’s criterion. They are also
more complicated to use. We shall outline qualitatively
one method which is sometimes used.!

If there are more observations in the “tails’ of

! For a full discussion of this method, see H. Jeffreys, “Theory
of Probability,” sec. 4.41, Oxford University Press, New York, 1948,
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the distribution than seems reasonable, one might sus-
pect that the distribution is not quite normal; it may
be approximately a Gauss distribution near the mean
but somewhat larger than Gaussian in the tails. We
can make some simple assumption regarding the small
modification to be made in the distribution to represent
probabilities for large deviations in agreement with the
observations. Then we use the principle of maximum
likelihood, which will be used for the theory of least
squares in Sec. 14, to determine the most probable value
of the observed quantity. This turns out to be a weighted
mean, in which the observations far from the mean are
given considerably less weight than those in the center.
This procedure involves a fair amount of computation,
but it is undoubtedly more honest than Chauvenet’s
criterion.

1 l Goodness of Fit

We now return briefly to a question raised at the end
of Sec. 6; that is, if we suspect that a given set of ob-
servations comes from some particular parent distribu-
tion, how can we test them for agreement with this
distribution? :

Consider the example of Sec. 6, the probability dis-
tribution for the results of rolling two dice. The prob-
ability distribution f(n) tabulated on page 41 is com-
puted on the assumption that each die is symmetric, so
that the six numbers on each are all equally likely.
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Now we roll the dice a large number of times, recording
the totals. It is not very likely that 12 will occur on
exactly }4e of the trials, but we expect the result to be
close to %4s. If it turns out to be ¥ instead, there is
probably something very strange about these dice. Now,
the problem is: How much disagreement between the’
parent distribution (in this case the table on page 41)'
and our sample distribution can we reasonably expect,
if the sample is taken from this parent distribution?
Or, to put the question another way, how great must
the disagreement be in order to Justify the conclusion
that the dice do not obey the parent distribution (i.e.,
that they are loaded)?

What we need is a quantitative index of the differ-
ence in the two distributions, and a means of interpreting
this index. The sample distribution is expressed most
naturally in terms of the frequencies of the various events,
where the frequency of an event is defined as the total
number of times this event occurs among all the trials.
Thus it is convenient to express our distributions in
terms of frequencies rather than probabilities. Specifi-
cally, let F(n) be the frequency of event n (in this case,
simply the occurrence of the total n) for the sample,
which we shall assume to consist of N trials. If the
parent distribution which we are comparing with this
sample is f(r), then the frequency predicted by the parent
distribution is just Nf(r). The difference Nf(n) — F(n)
for each n characterizes the difference in the two fre-
quencies.
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The most widely used test for comparing the sample
and parent frequencies (or for examining the “goodness
of fit” of the sample) consists of computing a weighted
mean of the square of the fractional difference of the
two frequencies. The resulting quantity is called x2
this quantity, together with a suitable interpretation,
constitutes the “x* test of goodness of fit.”

The quantity [Nf(r) — F(n)]/Nf(n) represents the
fractional difference in the frequencies for a given n.
Our first impulse is to square this quantity and sum
over n. A little thought shows, however, that this would
weight the “tails” of the distribution, whose statistical
fluctuations are always relatively large, as much as the
center. Thus a better criterion for goodness of fit is
obtained by multiplying by a weighting factor Nf(n),
which then weights the fractional difference according
to the importance of the event n in the distribution.
Thus it is customary to define a measure of goodness of
fit called x? by the equation

2 _ V [Nf(n) — F(n)]?
X _.2 an(n) (11.1)

This discussion is not intended to be a thorough €xposi-
tion of the reasons for this particular definition of x>
To give such an exposition we should relate x? to the
idea of the least-squares sum which is introduced in
Sec. 14. Such a discussion is beyond the scope of this

book; instead, we simply recognize that Eq. (11.1)
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seems intuitively to be a reasonable index of goodness
of fit. '

There remains the question of how to interpret the
result of Eq. (11.1). Clearly, if the sample distribution
and the assumed parent distribution agree exactly, then
x? = 0. This is of course extremely unlikely; even if
the sample is taken from the assumed parent distribu-
tion, one would not expect exact agreement in every
interval. But, the larger x? is, the more disagreement
there is between the two distributions. The proper
question to ask is: How large a value of x? is reasonable
if the sample is taken from the assumed parent? If we
obtain a value of x? larger than this reasonable value,
then we should assume that the sample does not agree
with the parent.

Calculating values of x? which can occur simply
by chance is quite involved, and we cannot discuss the
problem here. Instead, we give a short table which
will help interpret x? in specific situations. Table IV
lists values of x? for which the probability of occurrence
of a x? larger than this is a given value P, assuming that
the sample is taken from the parent distribution used in
computing x2 This value depends on the number of
points at which the theoretical and sample frequencies
are compared, which is called v in the table.

In the dice-rolling example, we are comparing the
two frequencies for 11 different events; so in this case
v = 11. For v = 11, the table lists the value x% = 6.989
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under P = 0.80, and the value x? = 24.725 under P =
0.01. This means that if the sample “fits” the assumed

parent distribution, there is an 809, chance that x*

will be 6.989 or larger, because of random fluctuations,

but only a 19, chance that it will be greater than.

24.725. Thus if we calculate x2 for a sample and obtain
a value around 7, we carn say that this is probably due
to chance fluctuations, and the sample does fit the as-
sumed parent. If on the other hand we obtain x2 = 40,
then it is very unlikely that this value occurred by chance,
and the sample probably does not fit the parent. Note
that the x* test never gives a cut-and-dried answer “it
fits’ or “it does not fit.” Some judgment is required in
all cases.

It is not necessary that the frequencies refer to indi-
vidual events. They may just as well refer to groups of
events. Suppose, for example, that we are observing
radioactive decays and want to compare the distribution
of the number of events in a given time interval with
the Poisson distribution with a given value of 2. In a
particular case it might be expedient to consider the
following four groups: n = 0; n = 1; n = 2, 3, or 4;
n > 4. For these four groups we have four comparisons
between the sample and parent frequencies. In this
case, then, v = 4,

An additional complication arises if we must deter-
mine the quantity ¢ from the sample distribution. It
can be shown that the most probable value of ¢ from

the sample is simply the mean of the sample distribu-
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tion, as we might have guessed from Eq. (8.6). But in
using the sample to determine a, we have forced a cer-
tain degree of agreement between the two frequencies.
Thus the number of real comparisons is reduced from
four to three, and we should use » = 3.

In general, when comparing a sample with a parent -
distribution using K groups of events, we take v = K if
the parameters of the parent distribution (such as « for
the Poisson distribution, or N and p for the binomial)
are specified in advance. If one parameter of the parent
distribution (such as q) is determined from the sample,
we take » = K — 1; if two parameters (such as N and p)
are determined from the sample, we take v = K — 2,
and so on.

It is easy to extend this method to the case where
the observed quantity, say x, is a continuous variable,
so that the parent distribution f(x) is a function of a
continuous variable. We divide the range of values of x
into a series of nonoverlapping intervals which together
cover the whole range. Call a typical interval A(xb
and the value of x at its center x;. Assume that there
are K intervals in all, so that & ranges from 1 to K. The
probability P, given by the parent distribution for a
measurement to fall in this interval is

Pe= [ e OF (11.2)

Zh—ATr/2

In usual practice, the intervals are sufficiently small,
except perhaps in the “tails” of the distribution, so

that this integral can be approximated by taking the
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value of f(x) at the center and multiplying by the width
of the interval; this is equivalent to assuming that f(x)
is approximately constant over any single interval. In
this case, we have approximately

Pk =f(xk)Axk (113)
The frequency predicted by the parent distribution is
then NPy; the sample frequency Fy is of course the num-
ber of times the variable x falls in the interval Ax; in
the given sample. In this case the appropriate definition
of x? is

K
Xt = z Qﬁ’%_fk)” (11.4)
k=1
PROBLEMS

1. Six pennies are tossed simultaneously. What are the
probabilities for no heads? One head? Two? Three? Four?
Five? Six? ???? Would the probabilities. be the same if],
instead, one penny was tossed six times? Explain.

2. One die (singular of dice) is rolled. What is the prob-
ability that 6 will come up? If four dice are rolled, what is
the probability for no 6s? One? Two? Three? Four? Five?

3. Among a large number of eggs, 1% were found to be
rotten. In a dozen eggs, what is the probability that none is
rotten? One? More than one? _

4. A man starts out for a Sunday afternoon walk, playing
the following game. At the starting point he tosses a coin.
If the result is heads, he walks north one block; if tails, south
one block. Find all the possible positions after four tosses,
and the probability for each.
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5. In Prob. 4, derive the probability distribution for the
possible positions after N tosses of the coin.

6. In Prob. 5, if the man walks on several different
Sundays, what is the average distance he reaches from the
starting point after N tosses? What is the standard deviation
of his positions after N tosses?

7. The man plays the same game as in Prob. 4, but in-,
stead of tossing one coin he tosses two. If botk are heads, he
walks a block north; for any other result he walks a block
south. Find the possible positions after four tosses, and the
probability for each,

8. In Prob. 7, derive the probability distribution for the
possible positions after NV tosses of the coin.

9. Answer the questions asked in Prob. 6, for the distri-
bution obtained in Prob. 8.

10. The scores in a final examination were found to be
distributed according to the following table:

Distribution, Distribution,

Score % Score %

(7 0
95-100 4 65-69 14
90- 94 6 60-64 10
85— 89 8 55-59 6
80— 84 12 50-54 2
75— 79 16 40-49 2
70- 74 18 9-39 2

a. Draw a histogram illustrating this distribution.

b. Calculate approximate values for the mean and vari-
ance of the distribution. :

¢. If 15% of the students failed the examination, what
was the lowest passing grade?
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11. Observations on 200 litters of cocker spaniel puppies
revealed the following statistics:

Puppies in

Litters each {itter
5 4
17 5
34 6
47 - 7
31 8
25 9
18 10
14 11
7 : 12
2 13

Find the mean number in a litter, and the standard deviation.

12. A lump of Shakespeareum (a fictitious radioactive ele-
ment) contains 10% nuclei. The probability that any one will
decay in 10 sec is found to be 2 X 10-2'. Find the probability
that in a given 10-sec period no decays will occur. Also one

decay, two, three, etc. Find the number of decays per 10 sec

such that the probability of more decays than this number is
less than 0.1%. The answer to this part will determine what
is meant by “etc.” in the first part.

13. A group of underfed chickens were observed for 50 con-
secutive days and found to lay the following numbers of eggs:

Eggslaid No. of days

10
13
13
8.
4
2

bW =0
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Problems

Show that this is approximately a Poisson distribution. Cal-
culate the mean and standard deviation directly from the
data. Compare with standard deviation predicted by the
Poisson distribution.

14. Derive Eq. (8.6) for the mean of the Poisson distribu-
tion directly from Eqs. (6.2) and (8.5). To evaluate the sum,
insert Eq. (8.5) into Eq. (8.7) and differentiate the result
with respect to a. This procedure is similar to that used in
Appendix B for the binomial distribution.

15. Derive Eq. (8.9) for the variance of the Poisson dis-
tribution directly from Egs. (6.4) and (8.5) by the same pro-
cedure suggested in Prob. 14. '

16. During a summer shower which lasted 10 min, 108
raindrops fell on a square area 10 m on a side. The top of a
convertible was actuated by a rain-sensing element 1 cm
square; so the interior of the car was protected in case of rain.

a. Find the probability that at least one raindrop landed
on the element.

6. In such a shower how much time must elapse after
the shower begins, on the average, before the top closes
itself?

17. It has been observed in human reproduction that
twins occur approximately once in 100 births. If the number
of babies in a birth follows a Poisson distribution, calculate the
probability of the birth of quintuplets. Do you think it likely
that octuplets have ever been born in the history of man?

18. A coin is tossed 10,000 times; the results are 5176
heads and 4824 tails. Is this a reasonable result for a symmet-
ric coin, or is it fairly conclusive evidence that the coin is
asymmetric? (Hint: Calculate the total probability for more
than 5176 heads in 10,000 tosses. To do this, approximate
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Probability Distributions

the binomial distribution by a Gauss distribution, as discussed
in the last paragraph of Appendix C.) ‘

19. Calculate the mean deviation for the Gauss distribution.
Express your result as a multiple of ¢.

20. If a set of measurements is distributed according to
the Gauss distribution, find the probability that any single
measurement will fall between (m — ¥0¢) and (m + }0).

21, The “probable error” of a distribution is defined as the
error such that the probability of occurrence of an error
whose absolute value is less than this value is 1. Find the
probable error for the normal (Gauss) distribution, and ex-
press it as a multiple of ¢. Is this the most probable error? 1f
not, what is?

22. Show that the graph representing the results of Prob. 1
can be approximated by a normal distribution curve. Find
the appropriate mean and standard deviation for this curve.

23. Consider the data of Prob. 27. If these are normally
distributed, and if two additional measurements are made,
find:

a. The probability that botk will be in the interval 54.98
to 55.02 cm.
5. The probability that neither will be in this interval.
24. The measurements (x) in a certain experiment are
distributed according to the function
F(x) = A/[(x — m)% + b*].
a. Sketch the function.
b. Find the value of 4 needed to normalize the function.
¢.. What is the mean of the distribution?
d. Discuss the standard deviation of the distribution.
25. Suppose that the function of Prob. 24 were “cut off”

atx = m = b. That is, F(x) is the given function in the inter-
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Problems
valm — b < x < m 4 b, but F(x) = 0 for values outside this
interval. Answer the questions of Prob. 24.

26. An object undergoes simple harmonic motion with
amplitude 4 and frequency f according to the equation
x = A sin 2x ft, where x represents the displacement from equi-
librium. Calculate the mean and standard deviation of the
position and of the speed of the object. :

27. The height of a mercury column in a manometer was

measured using a cathetometer. The following measurements
were obtained:

ocm cm
55.06 .54:99.
5492 55:02-
5501 5503
_55:00 55.02_

Test these data using Chauvenet’s criterion to determine
which should be discarded. After discarding the appropriate
data, recompute the mean. By how much does it differ from
the original mean? Compare this difference with ¢ for the
set of data.

28. Apply the x? test to the data of Prob. 13.

29. Discuss how the x? test might be applied in Prob. 18.
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