CHAPTER |

INTRODUCTION

In all branches of physical science and engineering, one
deals constantly with numbers which result more or less
directly from experimental observations. In fact, it can
be said that the very essence of physical science is the
discovering and the using of correlations among quanti-
tative observations of physical phenomena.

Experimental observations always have inaccura-
cies. In using numbers which result from experimental
observations, it is almost always necessary to know the
extent of these inaccuracies. If several observations are
used to compute a result, one must know how the in-
accuracies of the individual observations contribute to
the inaccuracy of the result. If one is comparing a
number based on a theoretical prediction with one based
on experiment, it is necessary to know something about
the accuracies of both of these if one is to say anything
intelligent about whether or not they agree. If one has
some knowledge of the statistical behavior of errors of
observation, it is often possible to reduce the effect of
these uncertainties on the final result. Such problems as
these will be discussed in the following pages.
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1 | Kinds of Errors

In discussing errors in individual observations, it is
customary to distinguish between systematic errors and
chance or random €rrors.

Systematic €rrors are errors associated with the
particular instruments or technique of measurement be-
ing used. Suppose we have 2 book which is 9 in. high.
We measure its height by laying a ruler against it,
with one end of the ruler at the top end of the book.
If the first inch of the ruler has been previously cut off,
then the ruler is likely to tell us that the book is 10 in.
long. This is a systematic error. If a thermometer im-
mersed in boiling pure water at normal pressure reads
102°C, it is improperly calibrated. If readings from
this thermometer are incorporated into experimental
results, a systematic error results. An ammeter which is
not properly “zeroed” introduces a systematic error.

Very often, in experimental work, systematic errors
are more important than chance errors. They are also,
however, much more difficult to deal with. There are
no general principles for avoiding systematic errors;
only an experimenter whose skill has come through long
experience can consistently detect systematic errors and
prevent or correct them.

Random errors are produced by a large number of
unpredictable and unknown variations in the experi-

mental situation. They can result from small errors in.
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judgment on the part of the observer, such as in estimat-
ing tenths of the smallest scale division. Other causes
are unpredictable fluctuations in conditions, such as
temperature, illumination, line voltage, or any kind of
mechanical vibrations of the equipment. It is found
empirically that such random errors are frequently dis-
tributed according to a simple law. This makes it pos-
sible to use statistical methods to deal with random
errors. This statistical treatment will form the principal
body of the following discussion.

There is a third class, containing what are some-
times called errors but which are not, properly speaking,
errors at all. These include mistakes in recording num-
bers, blunders of reading instruments incorrectly, and
mistakes in arithmetic. These types of inaccuracies have
no place in a well-done experiment. They can always
be eliminated completely by careful work.

The terms accuracy and precision are often used to
distinguish between systematic and random errors. If a
measurement has small systematic errors, we say that it

has high accuracy; if small random errors, we say it has
high precision.

2 | Propagation of Errors

Propa.xgation of errors is nothing but a fancy way of
describing the obvious fact that if one uses various
experimental observations to calculate a result, and if
the observations have errors associated with them, then
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the result will also be in error by an amount which
depends on the errors of the individual observations.

Ordinarily it is not possible to calculate directly
the errors in the results, because the errors in the ob-
servations are not usually known. If we knew them, we
could correct the observations and eliminate the errors!
The results of this section are thus not directly useful
for treating propagation of experimental errors, but
they can be used to obtain formulas which are useful.
This will be the principal task of Sec. 13. Meanwhile,
the results obtained in this section are directly useful in
cases where the “error” is not really an error but a
small change in the value of a known quantity, and we
want to compute the effect which this change has on
the result of a calculation which contains this quantity.

For example, suppose one wants to determine the
volume of a cylinder by measuring its radius r and its
height £, using the formula

V = arth (2.1)

There may be an error in the measurement of 7, so that
the result of our measurement is not 7 but something
slightly different, say 7 + Ar (where Ar is the error).
If there is a similar error Ak in measuring the height,
then our result is not V, the true value, but something
slightly different, ¥ 4+ AV. We can calculate AV as
follows. In the formula we place r -+ Ar instead of just r
and % + Ak instead of 4; then the result is V + AV:

V4 AV = w(r + Ar)2(k + AR) 2.2)

2 | Propagation of Errors

If we expand this, and subtract ¥V from both sides of
the equation, the result is

AV = w(r® Ak + 21k Ar + Arh + 2r Ar AR+ Ar2 AR)

(2.3)

Now if the error Ar is much smaller than r itself, and if
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Fig. 2.1. Changes in the volume of a
cylinder resulting from changes Ar and Ak
in its dimensions. Can you identify the
separate terms of Eq. (2.4) in the figure?

A% is much smaller than £, the last three terms in
Eq. (2.3) are much smaller than the first two; hence we
can write approximately

AV = w(r2 Ak + 2rk Ar) (2.4)

which -allows us to calculate the error AV if we know r,
k, and their errors. Describing this result in different
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words, we may say that Eq. (2.4) gives a means of
calculating how much the volume of a cylinder changes
if we change its dimensions by the amounts Ar and A#.

Often we are interested not in the error itself, but
in the so-called fractional error, which is defined as the
ratio of the error of the quantity to the true value of the
quantity; in the present case this is AV/¥V. Using Eqs
(2.1) and (2.4), we obtain

AV  w(r® Ak + 21k Ar) _ 2Ar

v = wrih k + r (2.5)
This is a remarkably simple result because it shows that
the fractional error in V is related very simply to the
fractional errors (or fractional changes) of the quanti-
ties £ and r which are used to determine V.

This same result can be obtained in a slightly dif-
ferent way. We can approximate the error in V result-
ing from the error in 7 by means of derivatives. If the
errors AV and Ar are small, then the ratio AV/Ar is ap-
proximately equal to the derivative dV/dr. But dV/dr =
2arh. Hence, we have approximately

AV _, AV __ 27wrh Ar Ar
A = = 2xrk and v =

This gives the part of the fractional error in V which
results from the error in 7. A similar calculation gives
the contribution of A4, and the total fractional error
AV/V is the same as obtained previously.

Because V' is a function of both r and #, the correct

mathematical language for the derivative of V with
5 :
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respect to r which we have used above is aV/dr, which
is read “‘partial derivative of ¥ with respect to r,” and
means simply that we recognize that V is a function of
other variables besides 7, but we are evaluating the
derivative with respect to r, while all the other variables
are kept constant. Similarly, we can define a partial
derivative of V with respect to 4, V/0h. An approx-
imate expression for the error AV can then be written:

INES 4 e Y Ar + 2.7)

Let us generahze this result. Suppose we have a
quantity Q which depends upon several observed quan-

tities q, 4, c, . The error AQ resulting from errors Aq,
Ab, . . .can be represented as
AQ—aQA +6QAb—|—aQAc+ 2.8)
and the fractional error AQ/Q as
AQ _ 1499 1dQ
Aa + =
Q2 Qda + Q % Ab + - (2.9)

As was mentioned at the beginning of this section,
the discussion just given is not of much direct usefulness
in the analysis of propagation of errors. We have talked
as though we knew the true values of the observed
quantities, along with the errors in the observations.
In some particular cases this may be true; or we may
want to compute the change in Q which results from
given values of a, 4, . . .. Then we may use Eq. (2.8).

But often this is not the case. Ordinarily we do
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not know the errors exactly because errors usually oc-
cur randomly. Often the distribution of errors in a set
of observations is known, but the error in any individ-
ual observation is not known. Later, after acquiring
some fundamental knowledge of statistical methods, we
shall learn in Sec. 13 some considerably more sophisti-
cated methods fortreating problems in propagation of
errors. The methods of Sec. 13 will be of much greater
practical usefulness than the naive considerations given
in this section.

Another consideration is that it is not always clear
whether or not such a thing as a “true value” really
exists. Suppose we are trying to measure the length of
a broken stick, whose ends are uneven and Jagged. We
may be able to state that the length is between certain
limits, say between 14 and 15 in. But if we try to be
more precise we have to decide where the ends are; if
we aspire to measure the length to within 0.01 in., we
cannot say that to this precision the stick Aas a definite
length.

In most of what follows, we shall assume that we
are making measurements on quantities for which true
values really exist. We should keep in miind, however,
that there are areas of physics in which it is not correct
to say that a particular observable quantity fas a definite
value. This basic uncertainty of some basic physical
quantities is, in fact, one of the fundamental notions of

quantum mechanics. In quantum-mechanical problems
8
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one must often be content with the statement that the
average of a large number of observations has a definite

" value.

3 | The Mean and Dispersion

Suppose we want to make an accurate measurement of
the diameter of a hard steel rod with a micrometer
caliper. Assuming that the rod kas a “true diameter,”
we will probably get several different results if we make
the measurement several times. We may tighten the
micrometer more sometimes than others, there may be
small dust particles present, we may make small errors
in estimating tenths of the smallest scale division, etc.
Still, one suspects intuitively that it should be possible
to obtain a more reliable result for the diameter by
using the 10 measurements than by using only one
measurement.

What then shall we do with the 10 measurements?
The first procedure which obviously suggests itself is
simply to take the average, or arithmetic mean. The mean
of a set of numbers is defined as the sum of all the num-

bers divided by the number of them. If we have 10 meas-
urements we add them all up and divide by 10. In a
more general language which we shall use often, let us
call a typical observation x;. If there are 10 observa-
tions, then the index ¢ can have any value from 1 to 10.

If there are N observations, then ¢ ranges from 1 to N.
9
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In general, we may define the mean % of the set of
numbers x; as

g=St ot v 4 oay (.1)
N
In what follows, a bar over a letter will always signify

a “mean value.” A convenient mathematical shorthand
which we frequently use is

F=1)m (3.2)

In this expression, the symbol
N

i=1
is read “the sum from ; = 1 to N’; its meaning is that
in the expression which follows 3} we first place { = 1,
add to it the result of placing ¢ = 2 and so on, up to
¢ = N, which is the last value of ;. Thus,

N

Exi =xntxtrt+--. + oxwa + xn

i=1

It will be seen later that in some important cases
there is a good reason for regarding the average of a set
of measurements as the best estimate of the true value
of the quantity being measured. For the present, how-
ever, we observe simply that taking the average seems
intuitively to be a reasonable procedure.

Sometimes we want to compute the mean of a set

of numbers (which may be measurements or anything
10
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else) in which we think that some numbers are more
important than others. How shall we make the calcu-
lation? If, for example, two observers guess the height
of a tree as 30 and 60 ft, respectively, and we have twice
as much confiderice in the first observer as the second,
how shall we compute a combined “best guess’” as to
the height of the tree?

A procedure which immediately suggests itself is to
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Fig. 3.1. Observations with unequal weights.

pretend that the 30-ft guess was made more than once.
Suppose, for example, we include it in the average
twice. Then, of course, we must divide by the total
number of guesses, which is now three. Then our best
guess will be

2(30 ft) + 1(60 fr)
21

More generally, if we have several guesses with different

degrees of reliability, we can multiply each by an ap-
' 1

= 40 ft
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propriate weighting factor, and then divide the sum of
these products by the sum of all the weighting factors.

Such considerations lead us to the idea of a weighted
mean. The weighted mean of a set of numbers is defined
as follows: For each number x; in the set (%1, %2, . . ., x%)
we assign a weighting factor, or weight w;. The weighted
mean % is then defined as

N
WX
¥ = w1x1+w2xz+ +waN — i=1 (3 3)
witwy+ - 4wy N :

S

i=1
Note that if all the weights are unity (or, more generally,
if they are all equal) the weighted mean reduces to the
mean as previously defined by Eq. (3.2). .

Having obtained a set of measurements x; and the
mean %, we should like to have a way of stating quanti-
tatively how much the individual measurements are
scattered away from the mean. A quantitative descrip-
tion of the scatter (or spread or dispersion) of the measure-
ments will give us some idea of the precision of these
measurements.

To obtain such a quantitative déscription, we first
define a deviation d; for each measurement x;. The
deviation d; is defined as the difference between any
measurement x; and the mean ¥ of the set. That is,

di=x—% (3.4)

(We could equally well have defined d; as ¥ — x, instead
12
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of x; — %; the definition given here is the conventional
one. Some authors refer to the d; as residuals rather than
deviations. The two terms are synonymous.)

It should be noted here that it would 7ot be correct
to call d; the error in measurement x;, because % is not
actually the true value of the observed quantity. It can
be shown that in many cases, if a very large number of
observations is made, ¥ approaches the true value of the
quantity (assuming that there are no systematic CI:I‘OI‘S),
and then the deviations d; approack the true errors in the
measurements x;. This is the case, for example, if the
errors are distributed according to the Gauss distribu-
tion, or “normal error function,” to be discussed in
Sec. 9.

As a first attempt at a quantitative description of
the spread or dispersion of the measurements x; abo.ut
the mean, we might consider the average of the devia-
tions. This is

]—1\‘]:5: di = ]l\fi (xi - 7) (3-5)

i=1
The right-hand side of Eq. (3.5) is a sum of N terms,
each one of which is itself a sum of two terms. The order
of adding these terms is immaterial; so we could just
as well add all the first terms, then add all the second

terms; that is,
LS ! i i (3.6)
= (xi—x)=——< Xe— ) X .
N 121 N\& i=1
Now what is the meaning of the second term on the
13
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right side of Eq. (3.6)? Itis a sum of N terms, but they
are all the same. We simply add  itself N times. That is,

=1
Thus the expression for the average of the residuals
boils down to

(3.7)

because of Eq. (3.2). The average of the residuals is
always zero.

This should not be particularly surprising; some of
the observations are larger than the mean, and some are
smaller than the mean; so some of the residuals are
positive, and some are negative. Because of the way we
define the average and the residuals, the average of the
residuals is always zero. This means that the average of
the residuals is not very useful as a characterization of
the scatter or dispersion.

Perhaps a better idea would be to take the absolute
value of each residual and average the absolute values.
We thereby obtain what is called the mean deviation,
denoted by «. That is,

1 & 1 W
a=gylddl=5) b= (3.8)

=]
This quantity is often referred to as the average devia-

tion; this is a misnomer, as is “mean deviation.” It is
14

3 | The Mean and Dispersion
not the average deviation but the average of the absolute
values of the deviations. This quantity is sometimes used
to characterize the spread or dispersion of the measure-
ments. For various reasons which will be discussed
later, it is not so useful as another one which will be
defined next, called standard deviation.

In defining the standard deviation, we get around
the problem of handling the negative residuals by squar-
ing each deviation, thereby obtaining a quantity which
is always positive. We then take the average of the
squares, and then take the square root of this result. Thus
the standard deviation can also be referred to as the
root-mean-square deviation, in that it is the square root of
the mean of the squares of the deviations. The standard
deviation is usually symbolized by o, and its defining
equation is

o= \/11\,; dt = \/]1\;2 (x: — %)? (3.9)

The square of the standard deviation o2 is called the
variance of the set of observations. Note that o alwéys
has the same units as the x;, and that it is always positive.

One might now ask, How is ¢ related to the preci-
sion of the mean, ® Clearly, it is unlikely that ¥ is in
error by as much as ¢ if the number of observations is
large. It will be shown in Sec. 12 that in many cases
the error in % is not likely to be greater than o/NY2,

Thus, as we should expect, more measurements give a
more reliable mean.

15
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We now transform Eq. (3.9), which defines o,
into another form which involves only the observations
x;. This new form will not be particularly useful, except
perhaps for machine calculations; but it provides us
with an excuse for doing some more manipulations with
summation symbols similar to the manipulations used
in showing that the average of the deviations is zero.

We square the entire expression, and then multiply
out the squared term following 2:

ot = %2 (¢ — %)? = %z (x— 2xx + 72  (3.10)

In this expression and those which follow, we drop the
limits on the summation symbol in order to save writing.
Unless otherwise noted, we assume that the summation
runs over the number of measurements, that is, from
i =1 to N. Now, as before, we separate the various
terms in the sum: :

g% = %zxﬁ—%zzxﬁﬁ-%zxz

The second term in Eq. (3.11) is a sum in which every
term contains the quantity 2% as a factor. It is therefore
legitimate to factor out 2% and write this term as

(3.11)

1 s = —Lon) Sa = —252 -
~% 2 2FE = ¥ (2x) zxm 2% (3.12)
where we have used the definition of the mean, Eq. (3.2).
Furthermore, the third term of Eq. (3.11) contains a

sum of N terms, each of which is just ¥%; so the value
16
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of the term is just 2. Therefore the whole expression
can be written:

ot = ]%’zxiz — % = ]%rzxiz - (Jl\;zx,-)z (3.13)

It is important to note that in general the quantities
Z(x:?) and (2x:)? are not equal; if you do not believe
this, try writing out some terms of each of these sums.

The following is an example which illustrates the cal-
culation of the mean, the average absolute deviation,
and the standard deviation of a set of observations. Here
N = 6.

i %, in, d;, in. d?, in.2
1 0.251 0.001 0.000001
2 0.248 —0.002 0.000004
3 0.250 0.000 0.000000
4 0.249 —0.001 0.000001
5 0.250 0.000 0.000000
6 0.252 0.002 0.000004
2 x; = 1.500 in. 2 |dil = 0.006 in. | = 42 = 0.000010 in.2
¥=%2x o= %3 |d o=V¥%Zd?
= 0.2500 in. = 0.001 in. = 0.0013in.

In analogy to the fractional errors defined in Sec. 2,
we sometimes use the fractional standard deviation, defined
as the ratio of the standard deviation to the mean /%
or the per cent standard deviation (o/%) X 100%. In the
previous example, the fractional standard deviation is

17
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0.0013 in./0.250 in. = 0.005, and the per cent standard
deviation is 0.5%,. Note that the fractional standard
deviation is always a pure number (without units) be-
cause it is always a ratio of two numbers with the same
units. ,

'If a weighted mean of the numbers x;, with weights
w;, has been computed, then the definitions of the mean
deviation and standard deviation should be modified
somewhat. We shall postpone until later a detailed
discussion of how to calculate the standard deviation of
a weighted mean. This discussion will be made easier
by use of the concept of standard deviation of the mean
introduced in Sec. 12 and the analysis of propagation
of errors in Sec. 13. By the time we reach these sec-
tions, we shall also have some techniques for assigning
weights to numbers, in a few situations of practical
importance.

PROBLEMS

1. The numerical value of ¢, the base of natural loga-
rithms, is approximately
¢ = 27182 8182 8459 0452 3536

.An infinite series which can be used to compute this value is

e=1+1/14+1/1-24+1/1-2:3 4+1/1-2.3.4 + ...
Find the fractional error which results from taking the fol-
lowing:

a. The first three terms of the series.

b. The first five terms.
18
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" 2. The numerical value of = is approximately

m = 3.1415 9265 3589 7932 3846
Find the fractional error in the following approximate values:

a. 2%

b. 35%13.

3. An inaccurate automobile speedometer reads 65 mph
when the true speed is 60 mph, and 90 mph when the true
speed is 80 mph. Does the fractional error increase or de-
crease with increasing speed?

4. In Prob. 3, suppose that the error changes propor-
tionately with the speed. At what speed will there be zero
error? Is the result the same if instead the fractional error is
assumed to change proportionately with speed?

5. A certain automobile engine has pistons 3.000 in. in
diameter. By approximately what fraction is the piston dis-
placement increased if the cylinder bore (diameter) is in-
creased to 3.060 in. and oversize pistons are installed?

6. A certain type of paper used for stationery is referred
to as “twenty pound” because a ream (500 sheets) of 17- by
22-in. sheets weighs 20 lb. If the sheets are ¥{g in. oversize
in each dimension, how much will a2 ream weigh?

7. If the mass of a stationary particle is mq, its apparent
mass when moving with velocity v is given by relativity theory
as m = mo(l — 22/¢*)~Y2, where ¢ is the velocity of light,
¢ =3 X 10® m/sec. By what fraction does the mass of an
clectron differ from its rest mass if its velocity is:

a. 3 X 104 m/sec?

b. 3 X 10" m/sec?

8. It is often convenient to approximate powers of num-

bers close to unity by using the binomial theorem. For
example,

19
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(1.01)2 = (1 4 0.01)2

1+ 2(0.01) + (0.01)2

=1 4 0.02 + 0.0001

& 1.02
The error in this approximation is 0.0001/1.0201 22 0.019.
Show that, in general, if § < 1, then (1 + 8)* =1 -+ 24, and
that the error in this approximation is about Y4n(z — 1)82

9. Use the results of Prob. 8 to obtain the approxima-

tion (4 - §)" = 4™ 4 néA™"!, valid when § << 4. What is the
fractional error in this approximation?

10. Use the method of Prob. 8 to find approximately the
values of:

a. (1.001)3
b. 1/0.998
c. V1.004

11. Two lengths ¢ and & are measured with a meter
stick, with a possible error of 0.1 cm in each. The values
obtained are

¢ = 50.0 cm b = 55.0 cm

a. What is the maximum error in the quantity (a + 5)?
In (a — b)?

6. What is the maximum fractional error in (a + 8)?
In (a — b)?

12. In a “tangent galvanometer,” the current is propor-
tional to the tangent of the angle of deflection of the gal-
vanometer needle. That is, 7 = Ctan 8. If the error in
measuring ¢ is known, find the value of ¢ for which:

a. The error in [ is smallest.
b. The fractional error in [ is smallest.

13. The acceleration of gravity g can be obtained by
measuring the period T of a simple pendulum and its length /,

using the relation T = 2xV{/g. Suppose the period was:

20
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observed to be 2 sec, with an error of observation of 0.02 sec,
and the length was observed to be 1 m, with an error of
observation of 0.01 m.

a. What is the maximum error in g? The minimum
error?

5. Which of the errors contributes most to the error in g?
Why?

14. The components F, and F, of a vector with length F,
making an angle § with the positive x axis in an »-y coordinate
system, are given by

F, = Fcos8 F, = Fsin @
If an error Af is made in the measurement of 6, derive expres-
sions for the errors and fractional errors in F, and F,,

15. Approximately what fractional errors might be ex-
pected in the following measurements:

a. A distance of 10 cm measured with an ordinary meter
stick.

b. A mass of 1 g measured with an analytical balance.
¢. A Y-in. steel rod measured with a good micrometer
caliper. ’

d. A human hair measured with a good micrometer
caliper.

e. A voltage of 1.5 volts measured with a meter having
a scale 3 in. long with full-scale reading 5 volts.

16. Find the mean, standard deviation, and mean devia-

tion of the following set of numbers:
1,2,3, 4,5
17. For the set of numbers (1, 2, 3, 4, 5, 6) find:
a. The mean.

b. The weighted mean in which the weights are 1, 1, 2,
2, 3, 3, respectively.

21
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¢. The weighted mean in which the weights are 1, 2, 3,
3,21, respectively.
18. Ten measurements of the diameter of a hard steel rod
with a micrometer caliper yielded the following data:

Diameter, in.
0.250 0.246
0.252 0.250
0.255 " 0.248
0.249 0.250
0.248 0.252

Calculate the standard deviation and mean deviation of this
set of measurements.

19. Show that the error in the mean of a series of measure-
ments is always smaller than the largest error in an individual
measurement.

20. In a certain set of observations, one observation has a
much larger deviation from the mean than the others. If
this observation is omitted from the calculations, which meas-
ure of spread is affected more, the mean deviation or the
standard deviation? Why? ‘

21. If the mean of a large set of observations is m, and
all deviations between —e¢ and ¢ occur equally often, find
the mean deviation and standard deviation,

22

CHAPTER il

PROBABILITY

Any quantitative analysis of random errors of observa-
tion must be based on probability theory. It is instruc-
tive to consider some simple probability calculations
first, as preparation for the task of applying probability
theory to the study of random errors.

4 | The Meaning of Probability

If we throw a penny up in the air, we know intuitively
that the “chance” of its coming down heads is one-half,
or 50%. If we roll an ordinary die (singular of dice)
we know that the chance of the number 5 coming up is
one-sixth.

What does this really mean, though? On each flip
of the penny it comes down either heads or tails; there
is no such thing as a penny coming down half heads
and half tails. What we really mean is that if we flip
the penny a very large number of times, the number of
times it comes down heads will be approximately one-

half the total number of trials. And, if we roll one die
23






