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PREFACE

Every scientist and engineer needs some elementary
knowledge of statistical methods for treating experi-
mental errors and analyzing experimental observations.
The basic concepts of probability, distribution of errors,
propagation of errors, and correlations are an indispen-
sable part of the knowledge of anyone who has contact
with numbers related to experimental observations,

Many undergraduate engineering and science stu-
dents, however, find little or no time in their curricula
for an introduction to even the most elementary statisti-
cal methods. It is the author’s firm belief that some of
these techniques should be introduced early in the under-
graduate curriculum in science or engineering, so that
they may be used in later courses which incorporate
laboratory work.

Accordingly, this book has been written with con-
siderable missionary zeal in an attempt to present some
of these techniques in a form which is understandable,
palatable, and even enjoyable for sophomore science or
engineering students with little mathematical sophistica-
tion and no previous exposure to the subject of this book.
The only mathematical background assumed is a year
of elementary calculus. A year of general college physics
is helpful in understanding some of the illustrative exam-
ples, but is not essential.

Many of the mathematical developments are given
a somewhat intuitive rather than a completely rigorous
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presentation. It is to be expected that this practice will
be condemned by specialists in mathematical statistics,
but it is followed here deliberately and without apology.
The author feels strongly that the student should en-
counter this material at an early stage in his education
rather than waiting until a more rigorous treatment is
feasible. The practice of presenting useful formulas with
no derivation at all has, however, been studiously avoided.

The author’s experience in teaching this material
to several generations of sophomores maj oring in physics
at Carnegie Institute of Technology has shown that
mastery of it is not beyond the ability of students at thig
level. It has been incorporated into the first part of a
course given students majoring in physics in the first
semester of their sophomore year. Most of the materia]
can be covered quite thoroughly in four to six weeks,

- with three class hours per week and homework assign-

ments for each hour. This material is then followed by
laboratory work in which the statistical methods are put
to work,

Such a subcourse can be fitted into any course in
the sophomore, Jjunior, or senior year in which quantita-
tive laboratory work plays an important part. The book
is also sufficiently self-contained so that it may be ugsed
for individual study. In either case, exercise in applying
the principles is essential. In addition to many illustra-
tive examples in the text, a collection of problems has
been included at the end of each chapter. A summary

of important formulas is included in Appendix A,
viii
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The book is intended primarily to be rea-d from be-
ginning to end. Several chapters ma‘y b.e omitted, how-
ever, without too much loss of contm}ut}.r. 'I_‘hc read.er
who is interested mostly in the Gauss distribution .and its
consequences may omit Secs. 7, 8,' and 11. Sections 10
and 16 also may be omitted if desired.

In conclusion, a statement is necessary ab0}1t what
the book is nol. It is not a treatise of maf:heme'a.tlcal sta-
tistics. Neither is it a comprehensive discussion of all
aspects of treatment of experimental c%ata. Seve.ral ex-
cellent books in these areas already exist. Our alrr.1 has
been to make some of the most important tecthqus
accessible and useful to those who are just b(?gmnmg
their preparation for the scientific and engineering pro-
fessions.
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CHAPTER |

INTRODUCTION

In all branches of physical science and engineering, one
deals constantly with numbers which result more or less
directly from experimental observations. In fact, it can
be said that the very essence of physical science is the
discovering and the using of correlations among quanti-
tative observations of physical phenomena.

Experimental observations always have inaccura-
cies. In using numbers which result from experimental
observations, it is almost always necessary to know the
extent of these inaccuracies. If several observations are
used to compute a result, one must know how the in-
accuracies of the individual observations contribute to
the inaccuracy of the result. If one is comparing a
number based on a theoretical prediction with one based
on experiment, it is necessary to know something about
the accuracies of both of these if one is to say anything
intelligent about whether or not they agree. If one has
some knowledge of the statistical behavior of errors of
observation, it is often possible to reduce the effect of
these uncertainties on the final result. Such problems as
these will be discussed in the following pages.




Introduction

1 | Kinds of Errors

In discussing errors in individual observations, it is
customary to distinguish between systematic errors and
chance or random €rrors.

Systematic €rrors are errors associated with the
particular instruments or technique of measurement be-
ing used. Suppose we have 2 book which is 9 in. high.
We measure its height by laying a ruler against it,
with one end of the ruler at the top end of the book.
If the first inch of the ruler has been previously cut off,
then the ruler is likely to tell us that the book is 10 in.
long. This is a systematic error. If a thermometer im-
mersed in boiling pure water at normal pressure reads
102°C, it is improperly calibrated. If readings from
this thermometer are incorporated into experimental
results, a systematic error results. An ammeter which is
not properly “zeroed” introduces a systematic error.

Very often, in experimental work, systematic errors
are more important than chance errors. They are also,
however, much more difficult to deal with. There are
no general principles for avoiding systematic errors;
only an experimenter whose skill has come through long
experience can consistently detect systematic errors and
prevent or correct them.

Random errors are produced by a large number of
unpredictable and unknown variations in the experi-

mental situation. They can result from small errors in.

2

2 | Propagation of Errors
judgment on the part of the observer, such as in estimat-
ing tenths of the smallest scale division. Other causes
are unpredictable fluctuations in conditions, such as
temperature, illumination, line voltage, or any kind of
mechanical vibrations of the equipment. It is found
empirically that such random errors are frequently dis-
tributed according to a simple law. This makes it pos-
sible to use statistical methods to deal with random
errors. This statistical treatment will form the principal
body of the following discussion.

There is a third class, containing what are some-
times called errors but which are not, properly speaking,
errors at all. These include mistakes in recording num-
bers, blunders of reading instruments incorrectly, and
mistakes in arithmetic. These types of inaccuracies have
no place in a well-done experiment. They can always
be eliminated completely by careful work.

The terms accuracy and precision are often used to
distinguish between systematic and random errors. If a
measurement has small systematic errors, we say that it

has high accuracy; if small random errors, we say it has
high precision.

2 | Propagation of Errors

Propa.xgation of errors is nothing but a fancy way of
describing the obvious fact that if one uses various
experimental observations to calculate a result, and if
the observations have errors associated with them, then
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the result will also be in error by an amount which
depends on the errors of the individual observations.

Ordinarily it is not possible to calculate directly
the errors in the results, because the errors in the ob-
servations are not usually known. If we knew them, we
could correct the observations and eliminate the errors!
The results of this section are thus not directly useful
for treating propagation of experimental errors, but
they can be used to obtain formulas which are useful.
This will be the principal task of Sec. 13. Meanwhile,
the results obtained in this section are directly useful in
cases where the “error” is not really an error but a
small change in the value of a known quantity, and we
want to compute the effect which this change has on
the result of a calculation which contains this quantity.

For example, suppose one wants to determine the
volume of a cylinder by measuring its radius r and its
height £, using the formula

V = arth (2.1)

There may be an error in the measurement of 7, so that
the result of our measurement is not 7 but something
slightly different, say 7 + Ar (where Ar is the error).
If there is a similar error Ak in measuring the height,
then our result is not V, the true value, but something
slightly different, ¥ 4+ AV. We can calculate AV as
follows. In the formula we place r -+ Ar instead of just r
and % + Ak instead of 4; then the result is V + AV:

V4 AV = w(r + Ar)2(k + AR) 2.2)

2 | Propagation of Errors

If we expand this, and subtract ¥V from both sides of
the equation, the result is

AV = w(r® Ak + 21k Ar + Arh + 2r Ar AR+ Ar2 AR)

(2.3)

Now if the error Ar is much smaller than r itself, and if

e | ——
- ~—

-
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Fig. 2.1. Changes in the volume of a
cylinder resulting from changes Ar and Ak
in its dimensions. Can you identify the
separate terms of Eq. (2.4) in the figure?

A% is much smaller than £, the last three terms in
Eq. (2.3) are much smaller than the first two; hence we
can write approximately

AV = w(r2 Ak + 2rk Ar) (2.4)

which -allows us to calculate the error AV if we know r,
k, and their errors. Describing this result in different

5
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words, we may say that Eq. (2.4) gives a means of
calculating how much the volume of a cylinder changes
if we change its dimensions by the amounts Ar and A#.

Often we are interested not in the error itself, but
in the so-called fractional error, which is defined as the
ratio of the error of the quantity to the true value of the
quantity; in the present case this is AV/¥V. Using Eqs
(2.1) and (2.4), we obtain

AV  w(r® Ak + 21k Ar) _ 2Ar

v = wrih k + r (2.5)
This is a remarkably simple result because it shows that
the fractional error in V is related very simply to the
fractional errors (or fractional changes) of the quanti-
ties £ and r which are used to determine V.

This same result can be obtained in a slightly dif-
ferent way. We can approximate the error in V result-
ing from the error in 7 by means of derivatives. If the
errors AV and Ar are small, then the ratio AV/Ar is ap-
proximately equal to the derivative dV/dr. But dV/dr =
2arh. Hence, we have approximately

AV _, AV __ 27wrh Ar Ar
A = = 2xrk and v =

This gives the part of the fractional error in V which
results from the error in 7. A similar calculation gives
the contribution of A4, and the total fractional error
AV/V is the same as obtained previously.

Because V' is a function of both r and #, the correct

mathematical language for the derivative of V with
5 :

2 | Propagation of Errors
respect to r which we have used above is aV/dr, which
is read “‘partial derivative of ¥ with respect to r,” and
means simply that we recognize that V is a function of
other variables besides 7, but we are evaluating the
derivative with respect to r, while all the other variables
are kept constant. Similarly, we can define a partial
derivative of V with respect to 4, V/0h. An approx-
imate expression for the error AV can then be written:

INES 4 e Y Ar + 2.7)

Let us generahze this result. Suppose we have a
quantity Q which depends upon several observed quan-

tities q, 4, c, . The error AQ resulting from errors Aq,
Ab, . . .can be represented as
AQ—aQA +6QAb—|—aQAc+ 2.8)
and the fractional error AQ/Q as
AQ _ 1499 1dQ
Aa + =
Q2 Qda + Q % Ab + - (2.9)

As was mentioned at the beginning of this section,
the discussion just given is not of much direct usefulness
in the analysis of propagation of errors. We have talked
as though we knew the true values of the observed
quantities, along with the errors in the observations.
In some particular cases this may be true; or we may
want to compute the change in Q which results from
given values of a, 4, . . .. Then we may use Eq. (2.8).

But often this is not the case. Ordinarily we do

7
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not know the errors exactly because errors usually oc-
cur randomly. Often the distribution of errors in a set
of observations is known, but the error in any individ-
ual observation is not known. Later, after acquiring
some fundamental knowledge of statistical methods, we
shall learn in Sec. 13 some considerably more sophisti-
cated methods fortreating problems in propagation of
errors. The methods of Sec. 13 will be of much greater
practical usefulness than the naive considerations given
in this section.

Another consideration is that it is not always clear
whether or not such a thing as a “true value” really
exists. Suppose we are trying to measure the length of
a broken stick, whose ends are uneven and Jagged. We
may be able to state that the length is between certain
limits, say between 14 and 15 in. But if we try to be
more precise we have to decide where the ends are; if
we aspire to measure the length to within 0.01 in., we
cannot say that to this precision the stick Aas a definite
length.

In most of what follows, we shall assume that we
are making measurements on quantities for which true
values really exist. We should keep in miind, however,
that there are areas of physics in which it is not correct
to say that a particular observable quantity fas a definite
value. This basic uncertainty of some basic physical
quantities is, in fact, one of the fundamental notions of

quantum mechanics. In quantum-mechanical problems
8
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one must often be content with the statement that the
average of a large number of observations has a definite

" value.

3 | The Mean and Dispersion

Suppose we want to make an accurate measurement of
the diameter of a hard steel rod with a micrometer
caliper. Assuming that the rod kas a “true diameter,”
we will probably get several different results if we make
the measurement several times. We may tighten the
micrometer more sometimes than others, there may be
small dust particles present, we may make small errors
in estimating tenths of the smallest scale division, etc.
Still, one suspects intuitively that it should be possible
to obtain a more reliable result for the diameter by
using the 10 measurements than by using only one
measurement.

What then shall we do with the 10 measurements?
The first procedure which obviously suggests itself is
simply to take the average, or arithmetic mean. The mean
of a set of numbers is defined as the sum of all the num-

bers divided by the number of them. If we have 10 meas-
urements we add them all up and divide by 10. In a
more general language which we shall use often, let us
call a typical observation x;. If there are 10 observa-
tions, then the index ¢ can have any value from 1 to 10.

If there are N observations, then ¢ ranges from 1 to N.
9
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In general, we may define the mean % of the set of
numbers x; as

g=St ot v 4 oay (.1)
N
In what follows, a bar over a letter will always signify

a “mean value.” A convenient mathematical shorthand
which we frequently use is

F=1)m (3.2)

In this expression, the symbol
N

i=1
is read “the sum from ; = 1 to N’; its meaning is that
in the expression which follows 3} we first place { = 1,
add to it the result of placing ¢ = 2 and so on, up to
¢ = N, which is the last value of ;. Thus,

N

Exi =xntxtrt+--. + oxwa + xn

i=1

It will be seen later that in some important cases
there is a good reason for regarding the average of a set
of measurements as the best estimate of the true value
of the quantity being measured. For the present, how-
ever, we observe simply that taking the average seems
intuitively to be a reasonable procedure.

Sometimes we want to compute the mean of a set

of numbers (which may be measurements or anything
10
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else) in which we think that some numbers are more
important than others. How shall we make the calcu-
lation? If, for example, two observers guess the height
of a tree as 30 and 60 ft, respectively, and we have twice
as much confiderice in the first observer as the second,
how shall we compute a combined “best guess’” as to
the height of the tree?

A procedure which immediately suggests itself is to

SR
r

“ﬁ@’
& |

Fig. 3.1. Observations with unequal weights.

pretend that the 30-ft guess was made more than once.
Suppose, for example, we include it in the average
twice. Then, of course, we must divide by the total
number of guesses, which is now three. Then our best
guess will be

2(30 ft) + 1(60 fr)
21

More generally, if we have several guesses with different

degrees of reliability, we can multiply each by an ap-
' 1

= 40 ft
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propriate weighting factor, and then divide the sum of
these products by the sum of all the weighting factors.

Such considerations lead us to the idea of a weighted
mean. The weighted mean of a set of numbers is defined
as follows: For each number x; in the set (%1, %2, . . ., x%)
we assign a weighting factor, or weight w;. The weighted
mean % is then defined as

N
WX
¥ = w1x1+w2xz+ +waN — i=1 (3 3)
witwy+ - 4wy N :

S

i=1
Note that if all the weights are unity (or, more generally,
if they are all equal) the weighted mean reduces to the
mean as previously defined by Eq. (3.2). .

Having obtained a set of measurements x; and the
mean %, we should like to have a way of stating quanti-
tatively how much the individual measurements are
scattered away from the mean. A quantitative descrip-
tion of the scatter (or spread or dispersion) of the measure-
ments will give us some idea of the precision of these
measurements.

To obtain such a quantitative déscription, we first
define a deviation d; for each measurement x;. The
deviation d; is defined as the difference between any
measurement x; and the mean ¥ of the set. That is,

di=x—% (3.4)

(We could equally well have defined d; as ¥ — x, instead
12

A N S IR L 12 oo ot S ommrm o

3 | The Mean and Dispersion

of x; — %; the definition given here is the conventional
one. Some authors refer to the d; as residuals rather than
deviations. The two terms are synonymous.)

It should be noted here that it would 7ot be correct
to call d; the error in measurement x;, because % is not
actually the true value of the observed quantity. It can
be shown that in many cases, if a very large number of
observations is made, ¥ approaches the true value of the
quantity (assuming that there are no systematic CI:I‘OI‘S),
and then the deviations d; approack the true errors in the
measurements x;. This is the case, for example, if the
errors are distributed according to the Gauss distribu-
tion, or “normal error function,” to be discussed in
Sec. 9.

As a first attempt at a quantitative description of
the spread or dispersion of the measurements x; abo.ut
the mean, we might consider the average of the devia-
tions. This is

]—1\‘]:5: di = ]l\fi (xi - 7) (3-5)

i=1
The right-hand side of Eq. (3.5) is a sum of N terms,
each one of which is itself a sum of two terms. The order
of adding these terms is immaterial; so we could just
as well add all the first terms, then add all the second

terms; that is,
LS ! i i (3.6)
= (xi—x)=——< Xe— ) X .
N 121 N\& i=1
Now what is the meaning of the second term on the
13




Introduction

right side of Eq. (3.6)? Itis a sum of N terms, but they
are all the same. We simply add  itself N times. That is,

=1
Thus the expression for the average of the residuals
boils down to

(3.7)

because of Eq. (3.2). The average of the residuals is
always zero.

This should not be particularly surprising; some of
the observations are larger than the mean, and some are
smaller than the mean; so some of the residuals are
positive, and some are negative. Because of the way we
define the average and the residuals, the average of the
residuals is always zero. This means that the average of
the residuals is not very useful as a characterization of
the scatter or dispersion.

Perhaps a better idea would be to take the absolute
value of each residual and average the absolute values.
We thereby obtain what is called the mean deviation,
denoted by «. That is,

1 & 1 W
a=gylddl=5) b= (3.8)

=]
This quantity is often referred to as the average devia-

tion; this is a misnomer, as is “mean deviation.” It is
14
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not the average deviation but the average of the absolute
values of the deviations. This quantity is sometimes used
to characterize the spread or dispersion of the measure-
ments. For various reasons which will be discussed
later, it is not so useful as another one which will be
defined next, called standard deviation.

In defining the standard deviation, we get around
the problem of handling the negative residuals by squar-
ing each deviation, thereby obtaining a quantity which
is always positive. We then take the average of the
squares, and then take the square root of this result. Thus
the standard deviation can also be referred to as the
root-mean-square deviation, in that it is the square root of
the mean of the squares of the deviations. The standard
deviation is usually symbolized by o, and its defining
equation is

o= \/11\,; dt = \/]1\;2 (x: — %)? (3.9)

The square of the standard deviation o2 is called the
variance of the set of observations. Note that o alwéys
has the same units as the x;, and that it is always positive.

One might now ask, How is ¢ related to the preci-
sion of the mean, ® Clearly, it is unlikely that ¥ is in
error by as much as ¢ if the number of observations is
large. It will be shown in Sec. 12 that in many cases
the error in % is not likely to be greater than o/NY2,

Thus, as we should expect, more measurements give a
more reliable mean.

15
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We now transform Eq. (3.9), which defines o,
into another form which involves only the observations
x;. This new form will not be particularly useful, except
perhaps for machine calculations; but it provides us
with an excuse for doing some more manipulations with
summation symbols similar to the manipulations used
in showing that the average of the deviations is zero.

We square the entire expression, and then multiply
out the squared term following 2:

ot = %2 (¢ — %)? = %z (x— 2xx + 72  (3.10)

In this expression and those which follow, we drop the
limits on the summation symbol in order to save writing.
Unless otherwise noted, we assume that the summation
runs over the number of measurements, that is, from
i =1 to N. Now, as before, we separate the various
terms in the sum: :

g% = %zxﬁ—%zzxﬁﬁ-%zxz

The second term in Eq. (3.11) is a sum in which every
term contains the quantity 2% as a factor. It is therefore
legitimate to factor out 2% and write this term as

(3.11)

1 s = —Lon) Sa = —252 -
~% 2 2FE = ¥ (2x) zxm 2% (3.12)
where we have used the definition of the mean, Eq. (3.2).
Furthermore, the third term of Eq. (3.11) contains a

sum of N terms, each of which is just ¥%; so the value
16
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of the term is just 2. Therefore the whole expression
can be written:

ot = ]%’zxiz — % = ]%rzxiz - (Jl\;zx,-)z (3.13)

It is important to note that in general the quantities
Z(x:?) and (2x:)? are not equal; if you do not believe
this, try writing out some terms of each of these sums.

The following is an example which illustrates the cal-
culation of the mean, the average absolute deviation,
and the standard deviation of a set of observations. Here
N = 6.

i %, in, d;, in. d?, in.2
1 0.251 0.001 0.000001
2 0.248 —0.002 0.000004
3 0.250 0.000 0.000000
4 0.249 —0.001 0.000001
5 0.250 0.000 0.000000
6 0.252 0.002 0.000004
2 x; = 1.500 in. 2 |dil = 0.006 in. | = 42 = 0.000010 in.2
¥=%2x o= %3 |d o=V¥%Zd?
= 0.2500 in. = 0.001 in. = 0.0013in.

In analogy to the fractional errors defined in Sec. 2,
we sometimes use the fractional standard deviation, defined
as the ratio of the standard deviation to the mean /%
or the per cent standard deviation (o/%) X 100%. In the
previous example, the fractional standard deviation is

17
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0.0013 in./0.250 in. = 0.005, and the per cent standard
deviation is 0.5%,. Note that the fractional standard
deviation is always a pure number (without units) be-
cause it is always a ratio of two numbers with the same
units. ,

'If a weighted mean of the numbers x;, with weights
w;, has been computed, then the definitions of the mean
deviation and standard deviation should be modified
somewhat. We shall postpone until later a detailed
discussion of how to calculate the standard deviation of
a weighted mean. This discussion will be made easier
by use of the concept of standard deviation of the mean
introduced in Sec. 12 and the analysis of propagation
of errors in Sec. 13. By the time we reach these sec-
tions, we shall also have some techniques for assigning
weights to numbers, in a few situations of practical
importance.

PROBLEMS

1. The numerical value of ¢, the base of natural loga-
rithms, is approximately
¢ = 27182 8182 8459 0452 3536

.An infinite series which can be used to compute this value is

e=1+1/14+1/1-24+1/1-2:3 4+1/1-2.3.4 + ...
Find the fractional error which results from taking the fol-
lowing:

a. The first three terms of the series.

b. The first five terms.
18
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" 2. The numerical value of = is approximately

m = 3.1415 9265 3589 7932 3846
Find the fractional error in the following approximate values:

a. 2%

b. 35%13.

3. An inaccurate automobile speedometer reads 65 mph
when the true speed is 60 mph, and 90 mph when the true
speed is 80 mph. Does the fractional error increase or de-
crease with increasing speed?

4. In Prob. 3, suppose that the error changes propor-
tionately with the speed. At what speed will there be zero
error? Is the result the same if instead the fractional error is
assumed to change proportionately with speed?

5. A certain automobile engine has pistons 3.000 in. in
diameter. By approximately what fraction is the piston dis-
placement increased if the cylinder bore (diameter) is in-
creased to 3.060 in. and oversize pistons are installed?

6. A certain type of paper used for stationery is referred
to as “twenty pound” because a ream (500 sheets) of 17- by
22-in. sheets weighs 20 lb. If the sheets are ¥{g in. oversize
in each dimension, how much will a2 ream weigh?

7. If the mass of a stationary particle is mq, its apparent
mass when moving with velocity v is given by relativity theory
as m = mo(l — 22/¢*)~Y2, where ¢ is the velocity of light,
¢ =3 X 10® m/sec. By what fraction does the mass of an
clectron differ from its rest mass if its velocity is:

a. 3 X 104 m/sec?

b. 3 X 10" m/sec?

8. It is often convenient to approximate powers of num-

bers close to unity by using the binomial theorem. For
example,
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(1.01)2 = (1 4 0.01)2

1+ 2(0.01) + (0.01)2

=1 4 0.02 + 0.0001

& 1.02
The error in this approximation is 0.0001/1.0201 22 0.019.
Show that, in general, if § < 1, then (1 + 8)* =1 -+ 24, and
that the error in this approximation is about Y4n(z — 1)82

9. Use the results of Prob. 8 to obtain the approxima-

tion (4 - §)" = 4™ 4 néA™"!, valid when § << 4. What is the
fractional error in this approximation?

10. Use the method of Prob. 8 to find approximately the
values of:

a. (1.001)3
b. 1/0.998
c. V1.004

11. Two lengths ¢ and & are measured with a meter
stick, with a possible error of 0.1 cm in each. The values
obtained are

¢ = 50.0 cm b = 55.0 cm

a. What is the maximum error in the quantity (a + 5)?
In (a — b)?

6. What is the maximum fractional error in (a + 8)?
In (a — b)?

12. In a “tangent galvanometer,” the current is propor-
tional to the tangent of the angle of deflection of the gal-
vanometer needle. That is, 7 = Ctan 8. If the error in
measuring ¢ is known, find the value of ¢ for which:

a. The error in [ is smallest.
b. The fractional error in [ is smallest.

13. The acceleration of gravity g can be obtained by
measuring the period T of a simple pendulum and its length /,

using the relation T = 2xV{/g. Suppose the period was:
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observed to be 2 sec, with an error of observation of 0.02 sec,
and the length was observed to be 1 m, with an error of
observation of 0.01 m.

a. What is the maximum error in g? The minimum
error?

5. Which of the errors contributes most to the error in g?
Why?

14. The components F, and F, of a vector with length F,
making an angle § with the positive x axis in an »-y coordinate
system, are given by

F, = Fcos8 F, = Fsin @
If an error Af is made in the measurement of 6, derive expres-
sions for the errors and fractional errors in F, and F,,

15. Approximately what fractional errors might be ex-
pected in the following measurements:

a. A distance of 10 cm measured with an ordinary meter
stick.

b. A mass of 1 g measured with an analytical balance.
¢. A Y-in. steel rod measured with a good micrometer
caliper. ’

d. A human hair measured with a good micrometer
caliper.

e. A voltage of 1.5 volts measured with a meter having
a scale 3 in. long with full-scale reading 5 volts.

16. Find the mean, standard deviation, and mean devia-

tion of the following set of numbers:
1,2,3, 4,5
17. For the set of numbers (1, 2, 3, 4, 5, 6) find:
a. The mean.

b. The weighted mean in which the weights are 1, 1, 2,
2, 3, 3, respectively.
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¢. The weighted mean in which the weights are 1, 2, 3,
3,21, respectively.
18. Ten measurements of the diameter of a hard steel rod
with a micrometer caliper yielded the following data:

Diameter, in.
0.250 0.246
0.252 0.250
0.255 " 0.248
0.249 0.250
0.248 0.252

Calculate the standard deviation and mean deviation of this
set of measurements.

19. Show that the error in the mean of a series of measure-
ments is always smaller than the largest error in an individual
measurement.

20. In a certain set of observations, one observation has a
much larger deviation from the mean than the others. If
this observation is omitted from the calculations, which meas-
ure of spread is affected more, the mean deviation or the
standard deviation? Why? ‘

21. If the mean of a large set of observations is m, and
all deviations between —e¢ and ¢ occur equally often, find
the mean deviation and standard deviation,

22

CHAPTER il

PROBABILITY

Any quantitative analysis of random errors of observa-
tion must be based on probability theory. It is instruc-
tive to consider some simple probability calculations
first, as preparation for the task of applying probability
theory to the study of random errors.

4 | The Meaning of Probability

If we throw a penny up in the air, we know intuitively
that the “chance” of its coming down heads is one-half,
or 50%. If we roll an ordinary die (singular of dice)
we know that the chance of the number 5 coming up is
one-sixth.

What does this really mean, though? On each flip
of the penny it comes down either heads or tails; there
is no such thing as a penny coming down half heads
and half tails. What we really mean is that if we flip
the penny a very large number of times, the number of
times it comes down heads will be approximately one-

half the total number of trials. And, if we roll one die
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a very large number of times, the number 5 will come
up on one-sixth of the trials. For our purposes, it will
almost always be most useful to define probabilities in
this way. That is, we ask in what fraction of the total
number of trials a certain event takes place, if we make
a very large number of trials.

It should be pointed out that in the penny-flipping -

problem we have stated only that the ratio of the number
. of heads to the total number of trials approaches the
value one-half as the number of trials becomes very
large. This is not the same thing as saying that the
number of heads approaches the number of tails. For exam-
ple, for 100 flips a fairly probable result is 52 heads.
For 10,000 flips a fairly probable result is 5020 heads.
In this second case the ratio is much closer to-one-half
than in the first; yet the differences between the number
of heads and the number of tails is larger. As a matter
of fact, it can be shown that the difference between the
number of heads and the number of tails is likely to
become very large despite the fact that the ratio of each
to the total number of trials approaches one-half. So if
you are matching pennies with someone and are losing,
you cannot necessarily expect to regain your losses after
a sufficiently large number of trials. There is a 50%

1 A very lucid discussion of some of the basic concepts of prob-
ability theory is found in Lindsay and Margenau, “Foundations of
Physics,” chapter IV, which is available in an inexpensive paper-
back Dover edition. Many other chapters of this book are also
very useful in clarifying some of the basic concepts of physics.
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4 | The Meaning of Probability
chance that you will lose more and more. But, enough
of moralizing.

If we know the probabilities for some simple events,
such as tossing a coin or rolling a die, we can calculate
probabilities for more complicated events which are
composed of these simple events. For example, supﬁose
we flip two pennies at the same time and ask for the
probability of getting one head and one tail. When two
pennies are flipped, each one can come down in two
ways with equal probabilities, so that for two pennies
there are four possibilities all together: two heads; heads
on the first, tails on the second; tails on the first, heads
on the second; or both tails. All four of these possibil-
ities are equally likely, so that we say that each one has
a probability %. Of the four, two have what we are
looking for, namely, one head and one tail. Therefore,
the probability of one head and one tail is . The prob-
ability of two heads is of course %, as is the probability
of two tails.

Note that these probabilities are always numbers
less than 1. If we add all the probabilities for all the events
that can possibly happen, we obtain the total probability
that something will happen, which is of course unity.

Here is a slightly more complicated problem. Sup-
pose we roll two dice, the classical number. We ask:
What is the probability of rolling 77 Now each die
can come down in six positions; so for the two dice
there are 36 possible results of rolling two dice, all equally
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likely. (If we roll n dice, the number of different pos-
sibilities is 67.) How many of these add up to 7?
It is convenient to tabulate the possibilities:

Die 1 Die 2
1 6
2 5
.3 4
4 3
5 2
6 1

Thus, there are six ways of getting 7 with two dice; the
probability for each is }46. The probability of rolling 7
is therefore %, or %. In exactly the same way one can
show that the probability for 11 is 246, or ¥s. The prob-
ability of rolling either 7 or 11 is the sum of these,
86 or %, a fact which you may already know.

Note that in the above example, if any of several

different events can be regarded as a success, the total ‘

probability of success is simply the sum of the probabil-
ities of the individual events. The situation is a little
different if more than one requirement is to be satisfied
in order to make the event a success. Suppose, for some
strange reason, we rolled two dice and a penny and
asked for the probability that the dice will come up to-
taling 7 and the penny will come up heads. We can
look at this problem in two ways. One way is to say that
we now have twice as many possibilities as previously
because for each of the 36 dice positions there are two

positions of the coin, so that we have 72 equally likely
28
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possibilities in all. Still only six of these are favorable;
so we say that the probability of success is %2, or }s.

The other, and equally valid, point of view is to
recall that the dice rolling and the penny tossing are
independent events, each with its own probability. The
probability that the dice will come up totaling 7 is %;
the probability that the coin will come up heads is
one-half. The probability that both these things will
happen at the same time is the product of the two prob-
abilities, or }{2, in agreement with our other result.

In general, if we are considering several separate
and independent events, each with its own probability,
the probability that a/l the events will occur is the product
of the individual probabilities. This fact operates to the
advantage of railroads, for example. The probability
that a railroad engineer will fall asleep is a small num-
ber. The probability that the automatic block-signal
system will fail is some other small number. But, for a
wreck to take place, both of these things would have to
take place at once, and the probability that otk the
engineer will fall asleep and the signal system will fail is
the product of the two small numbers and is therefore a
much smaller number.

To conclude this section, here is another problem of
probabilities. Every book concerned with probability
contains at least one problem involving drawing black
balls and white balls out of an urn; there is no reason
why this book should be an exception.

The particular urn we have in mind contains six
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white balls and four black ones. They cannot be dis-
tinguished by touch, and we draw them out without
looking. If two balls are drawn out, what is the prob-
ability that one is white and the other black, if the first
is not replaced before the second is drawn?

Clearly there are two possibilities which we should
call successes: white on the first draw and black on the
second, and the reverse. Considering the first possibil-
ity, we need to multiply the probability of a white ball
on the first draw, which is %o, by the probability of a
black ball on the second, which is not 4o, but %, since
after the first draw the number remaining is 9, of which
4 are black. Thus, the probability of white on the first
and black on the second is (%40)(46) = %60 = ¥5. Sim-
ilarly, the probability of black on the first and white on
the second is (%40)(%) = 2%0 = 4{5s. The sum of these
gives the probability for one white ball and one black
one, in either order. This is 45 + 45 = 5.

The result would have been different if we had
replaced the first draw. Then the probability for each
case would have been (%o)(40) = {00 = %5, so that
the total probability would be 1%;. Making up more
problems as we go along, we note that the probability
for two blacks is (#{0)(3) if the first ball is not replaced,

since after the first draw only three blacks are left if’

the first ball was black. If the first draw is replaced,

then the probability is (4{0)(%40). And so on.
28
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5 | Permutations and Combinations

The probability calculations in some complicated prob-
lems which we will encounter are facilitated considerably

(d)

Fig. 5.1. A few of the possible permutations of 15 pool
balls. The total number of possible permutations is
15! = 1,307,674,368,000.

by the use of the ideas of permutations and combinations,
which we now introduce.

We consider first the idea of permutations of a set
of objects. A set of pool balls consists of 15 balls, num-
bered from 1 to 15. These can be placed in the rack

in a number of different ways, not all of which are legal.
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In how many different ways can the balls be arranged?
Suppose we also number the positions in the rack from
1 to 15, and fill these positions one at a time. To fill
the first position we have our choice of any of the 15 balls.
For each of these 15 choices there aie 14 choices for the
second position, because there are 14 balls remaining.
For each of these .there are 13 choices for the next
position, and so forth. Therefore, the number of differ~
ent ways of filling the entire rack is (15)(14)(13)(12) - - -
(3)(2)(1). Do not bother to multiply out this product;
its value is about 1.3 X 10'2, a very large number.
The mathematical shorthand for this product is (15!),
which is read “15 factorial.” In general,

Ni=NN-DWN-=-2)(N—=23)--- (432)Q)
(5.1)

The number of different ways of arranging the
15 objects is called the number of permutations of 15 objects,
and as we have shown this is equal to 15!. In general,
the number of permutations of &N objects is (N!).

Next, we consider a slightly different problem, that
of selecting a certain number of objects from a group
containing a larger number. Let us start with an ex-
ample. Consider a club containing a total of 10 mem-
bers. From these members a committee consisting of
four members is to be selected. How many different
committees can we find?

We can start by choosing one of the 10 members

as the first one on the committee; then there are 9 left
30
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to choose for the second member, 8 for the third, and
7 for the fourth. Thus, we might be tempted to say
that the total number of possibilities is (10)(9) 8)(7).
This, however, is not correct. The reason is that a
pumber of these possibilities would have the same four
people, but chosen in various orders. Since we do not
care in what order the people are chosen, we do not

@Q@@ GO

(b)

@Q?@ GO

Fig. 5.2. A few of the possible combinations of 15 pool
balls taken four at a time. Arrangements (c) and (d) con-
tain the same balls in different orders; hence they are the

same combination. The total number of distinct combina-
tions is 151/111 41 = 1365,

want to count these as different possibilities. There-
fore, we must divide the above number by the number
of ways of rearranging four people, which is simply the
number of permutations of four objects, 4!. The correct
result for the number of four-man committees which can
be chosen from a group of 10 people, if the order of
choice is irrelevant, is (10)(9) @)(7)/(4)(3)(2)(1). This
is known as the number of combinations of 10 objects taken
Jour at a time.
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In general, the number of combinations of N things
taken 7 at a time, which we abbreviate C(N,n), is
C(N,n) = ,
NN —-1D)N=2)--- (N—n+2)(N=n+1)

n!

(5.2)

This expression can be simplified somewhat by multi-

plying numerator and denominator by (N — n)!. The

result is then

N! N

CWom) = (N —n)ln!l (n) (5.3)

The last expression in Eq. (5.3) is a more common

abbreviation for the number of combinations of N things

taken » at a time. It is also referred to as a binomial

cogfficient, for reasons which will be explained. From
now on, we shall use the notation

")
n
rather than C(N,n).

In Eq. (5.3) and in other places, we will sometimes
encounter cases where (0!) appears, and this has not
been defined. How shall we define (01)? The number
of combinations of N things taken all N at a time
(which is of course just 1) is given by
' N) N1

N)TOINT T 01 (5.4)

Thus, Eq. (5.3) is correct in all cases only if 0! = 1. This
32
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is in fact reasonable if we regard 0! not as containing a
factor zero, but as containing no factors at all, so that
0! X 1 = 1. We therefore agree on the definition

0! =1 (5.5)

The binomial coefficients are, as the name implies,
closely related to the binomial theorem. To illustrate
the relationship, we consider first a particular example,
the expansion of

(@+8)*= (a+b)(a+ b)(a+ b)

When these three factors are multiplied out, there are
terms of the form @, a%, ab?, and #%. The problem is to
find the coefficient of each of these terms. First, we note
that the only way the term @® can appear is from the
product in which the factor q is taken in all three of the
parentheses. The term a2 arises from taking ¢ in any
two parentheses and & in the third; the number of
times this term appears will therefore be the number of
different ways that two factors a can be selected from
the three parentheses, namely, the number of combina-
tions of three things taken two at a time, which is
31/211! = 3. We therefore find

(@ + b)) = a® + 342 + 3482 + p?

More generally, in expanding a binomial (a + &)~
we note that the expansion is a sum of terms all of which
have the form a¥"p» where n ranges from 0 to M.
The number of times this term appears in the expansion
is again just the number of combinations of N objects
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taken n at a time, the “objects” in this case being the
b terms in the expansion. We therefore conclude

(a + 5)7
N

N
v N
— N—nhn — e g N
2(2’)“ b nZ,O(N—n)!n!“ b

n=0
(5.6)
which is a fancy way of writing the old familiar binomial
theorem.
A useful formula for the sum of a set of binomial
coeflicients can be obtained by placinga = 1 and 4 =
in this equation. The result is

Q (N
N — 9N —
1+ 1) =2 Zo("> (5.7)
This may not look particularly useful now, but its use-
fulness will appear soon.

PROBLEMS

- 1. A bag contains 10 white marbles and 10 black ones.
If three marbles are drawn without looking, what is the prob-
ability that all three will be black? Is the situation different
if each marble is replaced before the next is drawn?

2. In the game of Russian roulette (not recommended)
one inserts one cartridge in a revolver whose capacity is six,
spins the chamber, aims at one’s head, and pulls the trigger.
What is the chance of still being alive after playing the game:

a. Once?

b. Twice?
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¢. Three times?

d. A very large number of times?

3. A special pair of dice are marked in the following
unorthodox manner: Each die has 1 on three faces, 2 on two
faces, and 3 on the remaining face. Find the probabilities for
all possible totals when the dice are rolied: .

4. Consider a die which, instead of being cubical, is, in
the shape of a regular tetrahedron (four faces, all equilateral
triangles) with numbers 1 to 4. If three such dice are rolled,
find the probabilities for all possible totals. Represent the
results on a graph.

5. In a group of 30 people selected at random, what is
the probability that at least two have the same birthday?
Neglect leap years. Solution of this and similar problems is
facilitated by use of a log table and an adding machine.

6. Two cards are drawn at random from a 52-card deck.
What is the probability that they are the queen of spades
and the jack of diamonds?

7. A drawer contains 10 white socks, 10 red ones, and
10 black ones. If their owner arises early and picks out socks
in the dark, what is the probability of getting a pair if he
picks out two? Three? Four?

8. A carpenter has a tool chest with two compartments,
each one having a lock. He has two keys for each lock, and
he keeps all four keys on the same ring. His habitual pro-
cedure in opening a compartment is to select a key at random
and try it. If it fails, he selects one of the remaining three and
tries it, and so on. What is the probability that he succeeds
on the first try? The second? The third? Would he gain

efficiency if he removed one key for each lock, leaving only
one of each kind? Explain.
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9. In a table of two-digit random numbers, what is the
probability that the digit 3 appears exactly once in a two-
digit number? Try to make the calculation without listing
all the two-digit numbers.

10. A series of observations of the focal length of a lens
was made by focusing an image of a distant object (such as
the moon) on a screen. The measurements, made to the
nearest }{o mm, grouped themselves around the true value
with the following probabilities:

Error, mm Probability
0.3 0.04
0.2 0.10
0.1 0.20
0.0 0.25
—-0.1 0.20
—0.2 0.10
—0.3 0.04

a. What is the probability that a single measurement will
be in error by more than =40.15 mm?

b. If three measurements are made, what is the probabil-
ity that their errors are 0.1, 0.0, and —~0.1 mm, respectively?

¢. What is the probability that the errors in part & will
occur, in any order?

11. In a batch of 1000 light bulbs, 109, were defective.
If a sample of 10 bulbs is taken at random, what is the prob-
ability that none of the sample is defective? One? More
than one?

12. In Prob. 11, suppose that the percentage of defective
bulbs is not known, but in two samples of 10 bulbs each, two
were found to be defective in each sample. What conclusions
about the total number of defective bulbs'can be made?

13. One die is rolled until 1 appears. What is the prob-
36
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ability that this will happen on the first roll? The second?
The third? The ath? Verify that the sum of these probabilities
is unity. (Hint: Use the formula for the sum of an infinite
geometric progression, 1 + a4 a2 4 g8 4+ ... = 1 /(1 —a),
fora < 1.)

14. How many different basketball teams (5 men) can be
chosen from a group of 10 men, if each man can play any
position?

15. The Explorers’ Club has 30 members; an Executive
Committee of four is to be chosen. How many possible com-
mittees are there?

16. If the Carnegie Tech tennis team has 10 men and
the University of Pittsburgh team 7 men, how many different
doubles matches between Tech and Pitt can be arranged?

17. How many distinct five-letter words can be formed
with the English alphabet, if each word must contain two
vowels and three consonants? (There are 5 vowels and 21 con-
sonants in the alphabet.)

18. Four cards are drawn at random from a 52-card deck.
What is the probability that they are the four aces?

19. In bridge, what is the probability that a certain player
will be dealt a hand containing all 13 spades? (Write an
expression, but do not carry out the long arithmetic computa-
tions.) Is the probability that someone at the table will receive
this hand the same or different? Explain,

20. In poker, what is the probability of being dealt four
of a kind (e.g., four aces, etc.) in a five-card hand? Does this
depend on the number of players in the game?

21. Show that if a needle of length 4 is dropped at random

on an array of parallel lines spaced 2a apart, the needle lands
on a line with probability 1/r.
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22. A machine cuts out paper rectangles at random.
Each dimension is between 1 and 2 in., but all values. l:?ctween
these limits are equally likely. What is the probability that
the area of a rectangle is greater than 2 in.??

CHAPTER III

PROBABILITY
DISTRIBUTIONS

We have seen in Sec. 4 how some simple probabilities
can be computed from elementary considerations. For
more detailed analysis of probability we need to con-
sider more efficient ways of dealing with probabilities of
whole classes of events. For this purpose we introduce
the concept of a probability distribution.

6 | The Meaning of a Probability Distribution

To introduce the idea of a probability distribution, sup-
pose that we flip 10 pennies at the same time. We can
compute in an elementary way the probability that four
will come down heads and the other six tails. But sup-
pose we ask: What is the probability for the appearance
of five heads and five tails, or seven heads and three
tails, or more generally, for n heads and (10 — n) tails,
where n may be any integer between 0 and 10? The
answer to this question is a set of numbers, one for each
value of n. These numbers can be thought of as forming
a function of n, f(n). That is, for each = there is a value
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of f(n) which gives the probability of the event char-
acterized by the number #. Such a function is called a
probability distribution. .

A probability distribution is always defined for a
definite range of values of the index n. In the above
example, n is an integer between 0 and 10. If, as will
usually be the case in our problems, this range of the
index includes all the possible events, then the sum
of all the probabilities must be unity (certainty). In
this case,

3 fm) =1 @

where the sum extends over the entire range of values
of n appropriate to the particular problem under con-
sideration. :

An example of a probability distribution which can
be obtained using the methods of Sec. 4 is the probability
of various results from rolling two dice. The total may
be any integer from 2 to 12, but these numbers are not
all equally likely. We saw in Sec. 4, in fact, that the
probability for 7 was %, while the probability for 11
was ¥s. Expressing these facts in the language just in-
troduced, we let n be the total on the two dice, and
f(n) be the probability for this number. We have found
that f(7) = % and f(11) = ¥s. The other values for
this distribution can be obtained similarly; the whole

distribution is as follows:
40
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f(=)

(TR I AT IO
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10 s
1 s
12 146

According to Eq. (6.1), the sum of all the values of Sf(n)
should be unity. The reader is invited to verify that
this is in fact the case. The distribution f(n) can be

represented graphically by means of a histogram, as
shown in Fig. 6.1.

f(n)
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015¢
0.10

005

2 3

4 5

6 7 8 9 10 11 12 n
Fig. 6.1, Probability distribution for two dice.
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Of course, the probability distribution may have

more than one index. If we flip 10 pennies and 4 dimes,

we can compute the probability that among the pennies
there will be n heads, and that among the dimes there
will be r, where # is an integer between 0 and 10, and
r is an integer between 0 and 4. We can call the result
F(nz) to indicate that the probability depends on both
n and . We shall not discuss such probability distribu-
tions in this text; they are treated by straightforward
extensions of the methods to be discussed here.
Returning to the 10-penny problem, suppose that
we want to find the average or mean number of heads in
a large number of trials. Suppose we flip the pennies
Z times, where Z is a very large number. By definition
. of the probability distribution, the number of times we
obtain n heads is Zf(n). To compute the mean value
of n, we should multiply each value of » by the number
of times it occurs, add all these products, and divide
by Z. That is,

1

n= z nZf(n) = (6.2)

Y nf(w)
The fact that Z cancels out of this expression means, of
course, that for a large number of trials, the value 7 is
independent of Z.

The expression for 7, given by Eq. (6.2), can be
thought of as a weighted mean of the values of n, with
weights equal to the corresponding probabilities. The

sum of the weights in this case is unity.
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As an illustration of the meaning of Eq. (6.2), we

use the distribution for two dice to compute the mean

value of the total, in a large number of rolls. We mul-

tiply each value of n by its probability and add the
results:

n f(n) nf(n)
2 Y6 Us
3 s Hs
4 %2 % or %8
5 % % or 10 8
6 V; 6 % or 1518
7 % 7/6 or 2%8
8 %6 104 or 20{4
9 }6 1or 1818
10 i2 % or 13{g
11 Us 1Y g
12 36 3% or Hs

n= 2 nf(n) = 128{, =

The average value of n is # = 7. This should not
be surprising; the probabilities are distributed symmet-
rically about n = 7 so that, roughly speaking, a value
of n greater than 7 is as probable as a value smaller
than 7 by the same amount.

In the same manner one could calculate the mean
value of 72, which is

7= Y nfln)

n

(6.3)
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More commonly, one is interested in the average value
of (n — )%, which is of course the variance of the values
of n which occur. This is given in general by

=Y (=) (4

As an example of the use of Eq. (6.4), we compute the
variance of the two-dice distribution. The calculation is
conveniently arranged in tabular form as follows:

o | G=m | e-mr|  f@) A
2 —5 25 %6 2%6

3 —4 16 s 3%%6

4 _3 9 }{2 27, 6

5 -2 4 % 19 6

6 -1 1 e Yo *
7 0 0 }(/5 0

8 1 1 ;éB %6

9 2 4 % ] 1%6
10 3 9 }'12 27 6
1 4 16 s %46
12 5 25 ¥ %o

ot = Z (n— B)H(n) = 19%6 = 2'H

Thus the root-mean-square spread of the values of n
about the mean is ¢ = (3%2)"/? = 1.71, which is about
what we would guess from looking at the distribution.

So far we have discussed probability distributions
based on the definition of probability given in Sec. 4,
which in turn is based on the idea of making an indefi-
a4
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nitely large number of trials, counting the number of
favorable events, and taking the ratio of the two. Our
discussion of the mean and standard deviation is based
on the assumption that a very large number of trials
has been made.

It may not be immediately clear, therefore, how
these quantities are related to the results which would
be obtained if we made an experiment consisting of a
relatively small number of trials. If there is only one
trial, for example, the mean is clearly not very likely to
equal the mean for an infinite number of trials. The
mean 7 for a small number of trials cannot be expected
to correspond exactly with the value obtained with an
infinite number of trials. The same is true for the stand-
ard deviation of a small number of trials.

To describe the distinction between the infinitely
large number of trials used to define f(n) and any small
number of trials in an actual experiment, we call f(r)
the infinite parent distribution and the results of any group
of trials a sample of this distribution. It is clear that the

.mean of a small sample is only an estimate of the mean

of t}'xe infinite parent distribution. For some types of
distributions it can be shown that the precision of this

estimate increases with the size of the sample, but it is

1m¥>ortant to remember that it is never more than an

.estlmate.. Similarly, the standard deviation of a sample

is an estfmate of the standard deviation of the infinite
parent distribution.

Moreover, there are good theoretical reasons, which
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we shall not discuss in detail, for stating that Eq. (3.9)
does not even give the best estimate of the parent dis-
tribution standard deviation which can be obtained
from a given sample. It turns out that a somewhat
better estimate is given by

N

o= \/7\/'1—“1; (x; — %)? (6.5)
which differs from Eq. (3.9) in that the sum of the 4;? is
divided by (N — 1) instead of N. Roughly speaking,
the reason for this is that the deviations are not all inde-
pendent; the same data have been used previously to
compute the sample mean which is used to compute the
di%, and so the number of independent deviations is only
(N = 1). Although this modification is of some theoret-
ical significance, it is not usually of any practical im-
portance. Ordinarily & is sufficiently large so that the
sample standard deviation is affected very little by the
choice between N and (¥ — 1).

Because we shall sometimes want to learn as pre-
cisely as possible the characteristics of the infinite parent
distribution, it is important to know how well the mean
and standard deviation of the sample approximate the
mean and the standard deviation of the infinite parent
distribution, and how the precision of these approxima-
tions depends on the size of the sample. We return to
these questions in Chap. IV.

A related question arises if we have a number of

trials of some kind and want to ascertain whether the
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results of these trials can or cannot be regarded as a
sample of some particular infinite parent distribution.
The distribution of results of a small sample, as we have
just pointed out, will not be identical to that of the
infinite parent distribution in any case; but how close
should we expect the sample distribution to be to the

f(n)

0.04
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Fig. 6.2. Comparison of parent and sample distributions for two
dice. The solid bars represent the parent distribution, the shaded
bars the distribution which resulted from a sample of 100 rolls.
The mean of the parent distribution is exactly 7, while the mean of
the sample is 7.15.

infinite parent distribution in order to conclude that
the sample is in fact a sample of this parent distribution?
A partial answer to this question is given in Sec. 11.

A very practical example of this kind of question
arises in connection with the probability distribution for
two dice, shown in Fig. 6.1. Suppose we want to deter-
mine whether the dice of a particular pair are loaded.
If they are loaded, their parent distribution will not be
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that of Fig. 6.1, but something different. We roll the
dice several times, recording the results. We then need
a means of comparing this sample distribution with the
parent distribution characteristic of unloaded dice. How
much difference between the sample and parent dis-
tributions should be expected if the dice are not loaded?
How much difference should we require as evidence
that they are loaded? A partial answer to this sort of
question is given in Sec. 11.

If some of the above discussion seems somewhat
vague and abstract, take heart! It will become clearer
as more examples are discussed in the following sections.

7 ‘ Binomial Distribution

We now consider a problem in which we will use all
the things we have learned so far about probability and
statistics. Suppose that we have N independent events
of some kind, each of which has probability ¢ of suc-
ceeding and probability (1 — p) of not succeeding. We
want to know the probability that exactly z of the events
will succeed. ' '
An example may help clarify the situation. Suppose
we light five firecrackers. They are supposedly identical,
but because of some uncertainty in their manufacture
only % of them explode when lighted. In other words,
the probability for any one to explode is p = %, and
the probability that it will fizzle is 1 —p = 4. In
this case the number of independent events, N, is 5.
48 '
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We now ask for the probability that, of these 5, n will
explode when lighted, where n is an integer between
0 and 5.

A few particular cases are easy. If the probability
of success in one of these events is p, the probability
that all N of them will succeed is p¥. The probabil-
ity that all N will fail is (1 — p)¥. In our example,
the probability that all five firecrackers will explode is,
(%)° = 0.237. The probability that none will explode
is (4)5 = 0.00098. In other words, neither of these is
very likely; probability favors the other possibilities in
which some of the firecrackers explode. The various
probabilities are shown graphically in Fig. 7.1.

The in-between possibilities are not so simple. If
we select a particular group of n events from N, the
probability that these n will succeed and all the rest
(N — n) will fail is p»(1 — p)¥ ™. We can shorten the
notations slightly by abbreviating 1 — p = g¢.

This is not yet the probability that exactly n events
will succeed, because we have considered only one partic-
ular group or combination of 7 events. How many
combinations of n events can be chosen from N? Just
t%lc number of combinations of N things taken # at a
time. So the probability that exactly n events will suc-
ceed from the group of N, which we denote by fi ,(n), is

Fral) = (2’)1""4”,"” (7.1)

which we can call the probability of n successes in N
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one trial is p. This kflo‘,v that the probability for 5 to come up on a singll:
dfe is %. What is the probability of 5 coming up on n
dice, where z can be 0, 1, 2, or 3> We see that this is

Probability Distributions

trials if the probability of success.in
expression fr p(n), defined by Eq. (71), is palled the
binomial distribution because of its close relation to the

fn) frp(?)
odo}
' 020
0301 i
015
020} I
¢ 0.10 -
; -
R 010} , i
B 0.08 1 0.05 |-
i 0.06 0.04
: 004 003 |
002 0.02 |
. 001 |
T 0 1 2 3 4 5 n
C 0123458678 91011121
: : 3 314 15 1
SN Fig. 7.1. Probability that n firecrackers will explode Fig. 7.2 6 17 18 19 20 p
; S ' in a group of five, if the probability for any one to ex- b tl‘ib:lti;na.f Exainll)le of binomial distribution, with ¥ = 20. Dis-
ChoE plode is %. This is a binomial distribution with N = 5, K or p = Y5 is symmetric about the mean, # = 10
s = %. e )
5 xactly the problem solved by the binomial distribution

g S binomial theorem. A few examples of binomial distribu- The probability of success in a single trial is % in thi
s 1 tions, computed from Eq. (7.1), are shown in Fig. 7.2. B case, so that p = 3. We are asking for the p %bm 't%lls
o What is the binomial distribution good for? Here Of n successes in three trials. This is, a ;ro 2Lty
is another example. Suppose we roll three dice. We binomial distribution, » ccording to the

SIE 50
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it - (YO (-5

The probablhtles of 0, 1, 2, and successes in three trials

are then
fnp(m)

020

N=20
015} p="ho

010t

0.05 |-
0.04
003
0.02
0.01

0 123 456 178 91011121‘314151617181920

Fig. 7.2b. Example of binomial distribution, with N = 20. Distri-
bution for p = 3/10 favors smaller values of n, close to 7 = 6.

5) _ 125
0)| 10! = 216

i (6) ) -

Sfs.as(0) =

Zero successes:

Sous(l) =

One success:
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Two successes:  fs,15(2) = (3—3;)—@-; (l)z <§> 15
—2)121\6

6 216

Three successes: f3,1/5(3) = ZS—% (1—)3 =1
— 3)1 3! 2

fN,p(n) 16

040}

0.30

N=20

0.20 =10

0.10

01234586789
Fig. 7. i i
1g. 7.2c. Example of binomial distribution, with N = 20. Distri

bution is strongly as H
ymmetric. =
2> 6 are negligibly anall ere 7 = 1, and probabilities for

As i
: c;k}e'ck on these calculations we note that the total
ro
fher ability for 0, 1, 2, or 3 successes must be one since
¢ are no other possibilities. Thus, the four prob-
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abilities which we have calculated above must total
unity; this is in fact the case.

More generally, it must be true, for the same reason,

that

S fiala) = i(ﬂf) g =1 (7.2)

n=0
To show that this is in fact the case, we note that

N

P & ) (7.3)

n

is exactly equal to the binomial expansion of (g + p)¥,
as seen from Eq. (5.6). Butp + ¢ = 1,50 (g + ¥ =1,
and Eq. (7.2) is established. Note, incidentally, that it
is true for any value of p, which is a number between 0
and 1.

Now that we have calculated the probability for any
number of successes in N trials, we can calculate the
mean (or average) number of successes in N trials. The
meaning of this mean is the same as in Sec. 6. We make
the N trials, observing a certain number n of successes.
We make N trials again, finding in general a different
number of successes. We do this a large number of
times, say Z (where Z may stand for a zillion), and then
compute the mean of all the numbers of successes which
we observe,

To do this, we multiply each number of successes n
by the number of times Zfy ,(n) that it occurs, and then
divide by the total number of sets of trials, Z. The
54
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average number of successes, which we denote by 7, is
N

_ N\, S
n—-nzon(n)[) (1 = p)r—n (7.4)
The sum ranges from n = 0 to N because in every one
of the sets of trials some number of successes between 0
and N must occur. To summarize, we have obtainéd
Eq. (7.4) directly from Eq. (6.2) by inserting the expres-
sion for the binomial distribution function, Eq. (7.1).

We can calculate the value of 7 if we know the
number of trials N and the probability p for success in
any one trial. In the example of three dice, we have
used the values of N and p given (N = 3, p = 1%) to com-
pute the values of the probability distribution f;,i6(r).
Using these values, we proceed as follows:

n Ss6(n) nf3,116(n)
0 12516 0

! e "%16
2 %16 %16
3 Y16 %16

3
fi= nzofa'm(n) =108, — 1

If we average the numbers of 5s in all the trials, the
re.sult is %. This is not equal to the result of any single
trial, of course, and there is no reason to expect it to. be.
The most probable number is zero, and the probabilities
for the others are just such as to make the average 4.

55




Probability Distributions

This calculation can be done more simply, but to
do it more simply we have to derive an equation which
expresses the result of performing the sum in Eq. (7.4)
in a simple way. Deriving the equation requires some
* acrobatics, the details of which are given in Appendix B.
The result is

= Y a(N)pa - pr - 3 75)

n=0
This remarkably simple and very reasonable result says
that the average number of successes in NV trials is just
the probability of success in any one trial, multiplied
by the number of trials. If we had had to guess at a
result, this is probably what we would have guessed!

Applying this result to the three-dice problem, we
see that with N = 3 and p = %, the average number of
5s can be obtained immediately: 7 = Np = 3 X % = 4,
in agreement with our previous result. '

Just as the mean 7 is defined in general for any dis-
tribution f(n), by Eq. (6.2) the variance is obtained by
calculating the mean of the squares of the deviations,
Eq. (6.4). For the binomial distribution, the variance
is given by

N N
ot =Y (1= DYrs0) = ) (0= Np)Fw(n),
n=0 =0
| " 1 (7.6)
in which we have used 7 = Np, Eq. (7.5).
Evaluation of this sum, as with the evaluation of 7,

requires a bit of trickery. The details are again given
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in Appendix B so as not to interrupt the continuity of
the present discussion. The result of the calculation is

o? = Np(1 — p) = Npq (1.7)
or
o = V Npq

(7.8)

another remarkably simple result. ;‘
As an illustration of the properties of the binomial
distribution just obtained, we return to the example of
three dice, for which we have computed the probabilities
for the occurrence of any number of 5s between 0 and 3.
In this case, N = 3, p = %. The mean number of 5s

was found to be }$. Similarly, we may compute the
standard deviation:

o= VNpg = V3 X% X% = 0.646

which means that the root-mean-square deviation of the
values of n about the mean (7 = 34) is somewhat less
than unity. The deviations of the few events for which
n=2o0rn=3 are, of course, larger than this.

8 | Poisson Distribution

\A"c c‘onsider next a particular application of the binomial
distribution which is important in nuclear physics. Sup-
pose that we have N radioactive nuclei. Suppose also
tha? the probability for any one of these to undergo a
f'adloactive decay in a given interval of time (T, for
Instance) is p. We want to know the probability ’that
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n nuclei will decay in the interval 7. The answer is of
course the old familiar binomial distribution function
fu.»(n). This is, however, somewhat unwieldy for prac-
tical calculations; N may be a very large number, such
as 102, and p may be the order of 1072 or so. With
numbers of these magnitudes, there is no practical way
to evaluate the binomial distribution, Eq. (7.1).
Fortunately, we can make considerable simplifica-
tions by using approximations which are valid when ¥
is extremely large and p is extremely small. We there-
fore consider the &mit of the binomial distribution func-
tion as N grows very large and p grows very small in
such a way that the mean of the distribution, which is
Np, remains finite. We denote this product by

Np =a (8.1)

We shall introduce the approximations in a manner
which will make them seem plausible, but no attempt
will be made to attain mathematical rigor.

First of all, we note that if p is a very small quantity,
the average number of events will be very much smaller
than N so that the values of » which are of interest will
be extremely small compared to N. Guided by this
observation, we make two approximations in the expres-
sion

Sron) = (—]V'TN%L)—!ﬁpn(I - p)¥

Consider first the factor
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"(N—n+1)
(8.2)
This is a product of n factors, none of which is signifi-

cantly different from N. We therefore replace Eq. (8.2)
by N*. We then have approximately

fope) 2 LB (1 — gy = DO (1 = P
nt (1 —p)
(8.3)
Second, we notice that the factor (1 — p)* is very nearly
equal to unity because it is a number very close to unity
raised to a not terribly large power. We therefore drop
this factor. We also eliminate N from the expression,
using ¢ = Np, and rearrange it to obtain

NI

(N =1 =NN-~1)(N-2).

fla) = 551 = p)eie = L1 ~ s (8.4)

All that remains now is to evaluate the limit
lim (1 — p)u»
p—0

This limit is discussed in many books on elementary
calculus and is shown to have the value 1/¢. Using this
fact in Eq. (8.4), we obtain

Jolw) = L& | 8.5)

This form is known as the Poisson distribution function.
Note that while the binomial distribution contained two
independent parameters (N and p), the Poisson dis-
tribution has only one (a). The other one disappeared
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when we took the limit of the binomial distribution as
N-—> oo,

Using the definition of a, Eq. (8.1), and the general
expression for the mean of the binomial distribution,
Eq. (7.5), we find that the mean value of 7 is

i=a (8.6)
That is, if we observe the radioactive material for a
series of time intervals T, recording the number of dis-
integrations taking place in each interval, we find that
the average number of disintegrations is a.

As with the general form of the binomial distribu-
tion, if we add the probabilities for all possible values
of n, we must obtain unity (certainty). That is,

Y falm) = 1 (8.7)
n=0
We extend the summation from zero to infinity because
we have let the number of independent events N become
indefinitely large. To establish that Eq. (8.7) is in fact
true, we insert Eq. (8.5) in Eq. (8.7):

i Ja(n) = e i Z—’: (8.8)

n=0 n=0
But the sum in Eq. (8.8) is nothing but the Maclaurin
series expansion of the quantity ¢*. Thus the sum in
Eq. (8.7) does equal unity, as required.

Any probability distribution which is constructed
so that the sum of the probabilities of all possible events

is unity is said to be rormalized. It is quite possible to
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define a probability distribution differently so that the
sum of all the probabilities is 2 number different from
unity. In this case, certainty is represented not by
unity, but by some other number. It is usually con-
venient, however, to construct the probability distribu-
tion in such a way that the sum of all the probabilities
is unity. This practice is followed everywhere in this
book.

As has been stated in Eq. (8.6), the mean value of
n for the Poisson distribution is simply # = 4. The
standard deviation for the Poisson distribution can also
be obtained easily from the expression for the standard
deviation of the binomial distribution, Eq. (7.8), by
using Np = a and the fact that ¢ is very nearly unity;
the result is simply

c=Va or g =aq (8.9)

Here is an example of the use of the Poisson distribu-
tion in radioactive decay. Suppose we have 102 atoms
of Shakespeareum, a fictitious radioactive element whose
nuclei emit a particles. Shakespeareum might be, for ex-
ample, a rare unstable isotope of one of the rare-earth
elements, with an atomic weight in the vicinity of 150; in
this case 10? atoms correspond to about 25 mg of the ele-
ment. Suppose that the decay constant is 2 X 10~2° per
second, which means that the probability for any one
nucleus to decay in 1 sec is 2 X 10~2°. This corresponds
to a half-life of about 10?2 years, rather long but not
impossibly so.
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Now suppose we observe this sample of material
for many 1-sec intervals. What is the probability to
observe no o emissions in an interval? One? Two? The
answers are given simply by the Poisson distribution.
We are given N = 102 and p = 2 X 10~%; s0 we have
a = 2. Substituting this value in Eq. (8.5), we obtain
the following values:

fo(n)

0.135
0.271
0.271
0.180
0.090
0.036
0.012
0.003
0.001

XN DALVNR O X

These results are shown graphically in Fig. 8.1. The
mean number of counts in this case is exactly 2, and
the standard deviation is V2. For comparison, Fig. 8.2
shows a Poisson distribution with ¢ = 10.

In many practical applications of the Poisson dis-
tribution the problem may be somewhat different, in
that the constant ¢ may not be known at the beginning.
The problem may be, for example, to determine the
value of ¢ from a distribution of experiméntal data. If
it is known that the parent distribution of which the
data are a sample is a Poisson distribution, then the

best estimate of a is just the mean of the sample distribu-
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fa(n)
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Fig. 8.1. Poisson distribution with ¢ = 2.
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Fig. 8.2. Poisson distribution with ¢ = 10, 63
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tion. A little thought will show that the standard devia-
tion of this value is V.

Other cases may arise where it is not certain whether
the parent distribution corresponding to a given sample
is a Poisson distribution. For example, if one observes
the number of eggs laid by a flock of chickens on each
of several days, one may want to ascertain whether the
probability for a given number of eggs on a particular
day follows the Poisson distribution. In such a case
some test of goodness of fit, such as the test discussed in
Sec. 11, may be used.

9 | Gauss Distribution, or Normal Error Function

We now consider another probability distribution which
is of great practical importance, the Gauss distribution.
It is important for several reasons. (1) It describes the
distribution of random errors in many kinds of measure-
ments. (2) It is possible to show that even if individual
errors do not follow this distribution, the averages of
groups of such errors are distributed in a manner which
approaches the Gauss distribution for very large groups.
We may have, for example, a set of observations which
are distributed according to the xpz distribution, which
may be any distribution at all. If we take groups of N
observations and average them, then in the limit of very
large N the averages will be distributed according to the
Gauss distribution. The only condition is that the vari-

ance of the xyz distribution be finite. This statement is
PR
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known as the central-limit theorem; it is very important
in more advanced developments in mathematical sta-
tistics.

The Gauss distribution can be regarded in two
ways: as a result which can be derived mathematically
from elementary considerations or as a formula found
empirically to agree with random errors which actually
occur in a given measurement. Someone has remarked,
in fact, that everyone believes that the Gauss distribu-
tion describes the distribution of random errors, math-

‘ematicians because they think physicists have verified it

experimentally, and physicists because they think math-
ematicians have proved it theoretically!

From a theoretical point of view, we can make the
plausible assumption that any random error can be
thought of as the result of a large number of elementary
errors, all of equal magnitude, and each equally likely
to be positive or negative. The Gauss distribution can
therefore be associated with a limiting form of the bi-
nomial distribution in which the number of independent
events NV (corresponding to the elementary errors) be-
comes very large, while the probability p of success in
each (the chance of any elementary error being positive)
is }6. The derivation of the Gauss distribution from these
considerations is given in Appendix C.

Many people feel, however, that the real Jjustifica-
tion for using the Gauss distribution to describe distribu-
tion of random errors is that many sets of experimental
observations turn out to obey it. This is a more convinc-
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ing reason than any mathematical derivation. Hence it
is a valid point of view to treat this distribution as an
experimental fact, state its formula dogmatically, and
then examine what it means and what it is good for.

The Gauss distribution function is often referred to
as the normal error function, and errors distributed accord-
ing to the Gauss distribution are said to be normally
distributed. .

The Gauss distribution is

Sx) = de~Pemmr (9.1)

where 4, &, and m are constants and x is the value ob-
tained from one measurement. This distribution differs
from those we have considered previously in that we
shall regard x as a continuous variable, rather than an
integer as with the binomial and Poisson distributions.
‘This will necessitate some further discussion of the sig-
nificance of f(x); but first we plot the function f(x) to get
a general idea of its behavior.

Figure 9.1 is a graph of the Gauss distribution
function, Eq. (9.1). We note that 4 is the maximum
height of the function, m represents the value of x for
which the function attains this maximum height, and 4
has something to do with the broadness or narrowness of
the bell-shaped curve. A large value of 4 corresponds
to a narrow, peaked curve, while a small value of #
gives a broad, flat curve.

Now, what is the significance of the function S(x)?
We are tempted to say that f(x) represents the probabil-
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ity of observing the value x of the measured quantity.
But this is not really correct. Remembering that x is a
continuous variable, we realize that the probability for x
to have exactly any particular value is zero. What we
must discuss instead is the probability that x will have
a value in a certain region, say between x and x + Ax.-
fx)

Ry

1

Fig. 9.1. Gauss distribution function. The points x = m == 1/A, at
which the curve has 1/¢ of its maximum height, are shown.

So the proper interpretation of the function f(x) is that
for a small interval dx, f(x) dx represents the probability
of observing a measurement which lies in the interval
between x and x + dx.

This statement has a simple graphical interpreta-
tion. In Fig. 9.2, the area of the shaded strip on the

graph represents f(x) dx. Therefore we can say that the
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area under the curve within the interval dx represents
the probability that a measurement will fall in this
interval. Similarly,

P(a,b) = /’ ® f(x) dx (9.2)

is the probability that 2 measurement will fall somewhere
in the interval ¢ < x S b.

()
7
-—/1-— dx \
0 x a b x

Fig. 9.2. Graphical representation of probabilities. Shaded areas
represent probabilities for an observation to fall in the corresponding
intervals.

The total probability for a measurement to fall
somewhere is of course unity; so the total area under
curve f(x) must be unity. Analytically, we can say
that it must be true that

[Cf@dx =1 (9.3)

This is analogous to Eq. (6.1). If this condition is satis-
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fied, the function f(x) is said to be normalized in the
same sense as the functions in Secs. 7 and 8 were nor-
malized, having a total probability of 1. We have
extended the range of integration from —o to 4w
because it is necessary to include all possible values of x
in the integration. '

The requirement that the function f(x) be nor-
malized imposes a restriction on the constants which
appear in the function. If we know % and m, then

f_: Ae—Pe—mt gy — (9.4)

will be satisfied only with one particular value of the
constant 4. To obtain this value of 4, we must actually
perform the integration. To simplify the integral we
make a change of variable, letting

b(x —m) = 2 (9.5)
Equation (9.4) then becomes

A /_"” e?dz = h (9.6)
‘The value of the integral in Eq. (9.6) can be shown to be

[_"; e?dz = Vi 9.7)

Obtaining this value requires a small chicanery, the
details of which are given in Appendix D. Inserting
Eq. (9.7) in Eq. (9.6),
h
= — 9.8
v | (9.8)

Thus, we find that in order to satisfy the normaliza-
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tion condition, Eq. (9.4), the constant 4 must have the

value 4 = 4/ V7. From now on, therefore, we write
the Gauss distribution function as

f(x) — __\;ze-—h?(:c—m)2 (99)
. w

which is normalized for every value of £.

Next, we find the mean value of x for this distribu-
tion. The meaning of mean is the same as always—
the average of a very large number of measurements of
the quantity x. We could go through the same line of
reasoning as in Sec. 6 by introducing the total number
of measurements Z and then showing that it divides out
of the final result. Instead, we observe simply that
Jf(x) dx represents the probability of occurrence of the
measurement in the interval dx and that the mean value
of x is found simply by integrating the product of this
probability and the value of x corresponding to this
interval. That is,

%= [_: xf(x) dx (9.10)
This expression is completely analogous to Eq. (6.2); we
use an integral here rather than a sum because x is a
continuous variable rather than a discrete one.

To compute * we insert Eq. (9.9) into Eq. (9.10)
and make the change of variable given by Eq. (9.5):

/-m xe~h@—me g,

f(i + m> e* dz (9.11)

x

S-S
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The first term of this expression integrates to zero be-
cause the contributions from negative values of z ex-

actly cancel those from positive values. The part that
survives is '

m ® 22 = ._.m_.
= Tw . e % dz = v Vr
=m ' (9.12)
a result which we could have guessed in the first place
simply by looking at the graph of the function.

The calculation of the variance proceeds in a similar
manner. The variance is given by

ot = /_ : (x — m)*f(x) dx

x

=" -j_— (x — m)%ett—m» g (9.13)
— T

To evaluate this integral we make the change of variable,
Eq. (9.5), to obtain

h"’\l/_ /n 2% % dz (9.14)
)

This is a convergent integral; at large values of z, 22 be-
comes very large, but ¢~% grows small so rapidly that
the product 2%~* also approaches zero very rapidly.
The integral in Eq. (9.14) can be integrated by parts
to convert it into the form of Eq. (9.7), whose value is
known. The final result is
1
2

a-=2_hi" or g =

o2 =

713; (9.15)
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The standard deviation is inversely proportional to 4.
'This should not be surprising, because larger values of 4
mean a more sharply peaked curve as well as smaller
values of o. Since 4 is large for sharply peaked curves,

——

X

0

Fig. 9.3. Gauss distributions for two values of £ with the same
m; hy = 2hy. Positions of ¢ and ¢ for the two curves are shown.

corresponding to small spread of errors, % is sometimes
called the measure of precision of the distribution. The
Gauss distribution is plotted in Fig. 9.3 for two values
of 4.

It is often useful to write the Gauss distribution in

terms of ¢ rather than 4. Using o, the function becomes
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f(x) . _\/21_1 . e~ @—m»/2q? (9.16)

The mean deviation for the Gauss distribution is even
easier to obtain than the variance. It is given by

<«
h h2( 2
a = X — m| —= ¢~ He—m)* gy
/—wl !\/;r

N \i/—}:?ﬁﬂ""”’@ | (9.17)

This integral can easily be evaluated by making the
substitution z = A%?2. It should not be necessary to give
the details of this substitution; the result is simply

1

xX = m (918)

Comparing this with Eq. (9.15), we see that for the
Gauss distribution the standard deviation and mean
deviation are proportional, since both are inversely pro-
portional to 4. The standard deviation is the larger of
the two; the relation is

g = \/zz-ra =125« 9.19)

This equation is quite useful when one wants a
rough estimate of the standard deviation of a set of ob-
servations whose errors are thought to be normally dis-
tributed. Instead of calculating ¢ from the data, one
calculates @ (which is generally easier since it is not
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hecessary to square all the deviations) and then uses
Eq. (9.19). It must be emphasized, though, that this
relationship holds only for the Gauss distribution; it is
not valid for other distributions.

The Gauss distribution may be used to find the
probability that a measurement will fall within any
specified limits. In particular, it is of interest to calcu-
late the probability that a measurement will fall within
o of the mean value. This will give a more clear under-
standing of the significance of the standard deviation.
"The probability P that a measurement will fall between
m — ¢ and m + ¢ is given by

P= L ":+ \/zl_we—@—m)*/zv’ dx (9.20)
Making a change of variable ¢ = (x — m)/e, we find
p=—1_ / T men g (9.21)
Vor |1 )

This integral cannot be evaluated except by making
numerical approximations. Fortunately, such integrals
are used sufficiently often so that extensive tables of
their values have been calculated. A short table of
values of the integral

T
vl R
wJo

for various values of 7" is given at the end of the book,

Table II. Also included for convenience is a table of
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values of the function (1/V/2m)e=%/2, Table I. References
to more extensive tables are also given.

In general, the probability for a measurement to
occur in an interval within T'¢ of the mean is
B S ey 1
Vs _Te dt (9.22)‘
The values of this probability for a few values of T are
as follows:

P(1) = 0.683 1 - P(1) = 0.317

P(2) = 0.954 1 — P(2) = 0.046

P(3) = 0.997 1 — P(3) = 0.003
These figures show that the probability for a measure-
ment to fall within one standard deviation of the mean
is about 68%; the probability that it will fall within
two standard deviations is about 95%,, and the probabil-
ity that it will be farther away from the mean than three
standard deviations is only 0.3%,.

Here is an example of the use of some of the ideas
just discussed. A surveyor runs a line over level ground
between two points about 1000 ft apart. He carefully
stretches his 100-ft tape to the proper tension for each
segment of the measurement and applies the proper tem-
perature correction, to eliminate systematic errors from
these sources. He repeats the measurement 10 times.
Supposing that the remaining errors are associated with
random errors in the individual measurements, and that
the resulting errors are randomly distributed, we can
make the following calculations:

PT) =
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Observation (x), ft |44, ft
1023.56 0.055
1023.47 0.035
1023.51 0.005
1023.49 0.015
1023.51 0.005
1023.48 0.025
1023.50 . 0.005
1023.53 0.025
1023.48 0.025
1023.52 0.015__

% = 1023.505 ft 0.210 ft

a = 0.021 ft

g = 1.25a = 0.026 ft

The probability for an individual measurement to fall
within 0.026 ft of the mean is 0.683, so we expect about
689, of the measurements to lie between 1023.48 and
1023.53 ft. The probability for falling within fwe stand-
ard deviations of the mean (1023.45 and 1023.56 ft) is
0.95, and so on. A more important question is: What
is the reliability of the mean” This question can be
answered with the methods introduced in Sec. 12.

10 | Rejection of Data

The question we consider next is a controversial one.
It concerns the problem of what to do if, among a set
of observations, one or more have deviations so large as
to seem unreasonable. If, for example, a set of measure-
ments made with a micrometer caliper has a standard
deviation of 0.001 in., but one measurement differs

from the mean by 0.010 in., then we are tempted to
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regard this large deviation as a blunder or mistake
rather than a random error. What shall we do with
this observation?

Such an observation creates an awkward situation
for the experimenter. If he retains the questionable
observation, it can have quite a large effect on the mean. -
It will also, of course, have an even greater effect on
the standard deviation. If on the other hand it is dis-
carded, one runs the risk of throwing away information
which might lead to discovery of some unexpected
phenomenon in the experiment. Important discoveries
have resulted from apparently anomalous data. In any
event, it cannot be denied that throwing away an ob-
servation copstitutes tampering with the data, better
known as “fudging.”

As has been mentioned, this is a controversial ques-
tion, and one which has been hotly debated. There is
no agreement among authorities as to a definite answer.
We therefore present several different points of view,
and let the reader take his choice.

At one extreme, there is the point of view that
unless there is a definite reason for suspecting that a
particular observation is not valid, there is never any
Justification for throwing away data on purely statis-
tical grounds, and that to do so is dishonest. If one
takes this point of view, there is nothing more to say,
except to advocate taking enough additional data so

that the results are not affected much by the questionable
observations.

7
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At the other extreme is the point of view that an
observation should be rejected if its occurrence is so
improbable that it would not reasonably be expected to
occur in the given set of data. We reason as follows:
Suppose we make N measurements of a quantity; sup-
pose that one of these seems to have an unusually large
deviation. We use the Gauss distribution function to
calculate the probability that a deviation this large or
larger will occur. If this probability is larger than 1/N,
we conclude that it is reasonable to obtain such a devia-
tion. If, on the other hand, the probability of obtaining
such a deviation is much smaller than 1/, this means
that it is very unlikely that such a large deviation should
occur even once in a set of N measurements. In this
case, we might consider rejecting this measurement as
being due probably to a mistake or some anomalous
fluctuation of the experimental conditions. We should
expect occasionally to obtain deviations whose probabil-
ities of occurrence may be somewhat smaller than 1/N, but
not a great deal smaller. One rule of thumb for rejec-
tion of data which is sometimes used is to reject an
observation if the probability of obtaining it is less than
1/2N. This criterion is known as Chauvenet’s criterion.

Here is an example. Suppose we make 10 observa-
tions. According to Chauvenet’s criterion, an observa-
tion should be disregarded if its deviation from the
mean is.so large that the probability of occurrence of a
deviation that large or larger is less than %,. Referring
to Eq. (9.22), we want to find the value of 7" such that

P(T) =1 — Yo or 0.95. Referring to Table II, we find
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that the proper value of T"is T = 1.96. Therefore, after
calculating o for the set of observations, we should discard
any observation whose deviation from the mean is larger
than 1.96¢.

Table III is a short tabulation of maximum values

of T = di/e which should be tolerated, according to "
Chauvenet’s criterion. For example, with 20 obser-

vations, the maximum value of T is 2.24. If ¢ for a
set of 20 voltage measurements is 0.01 volt, then any

observation deviating from the mean by more than

2.24 X 0.01 volt = 0.0224 volt should be discarded.

If we eliminate an observation by Chauvenet’s
criterion, we should eliminate it completely. This means
that after the anomalous observations are eliminated,
we must recompute the mean and the standard devia-
tion using the remaining observations. If one decides
to use Chauvenet’s criterion, it should be kept in mind
that it may be possible to eliminate most or all of the
data by repeated applications. Thus the criterion, of
dubious validity at best even on the first round, should
certainly not be used more than once.

Between the two extreme views just presented, there
are other more moderate views on rejection of data.
Some of these unquestionably have better theoretical
Justification than Chauvenet’s criterion. They are also
more complicated to use. We shall outline qualitatively
one method which is sometimes used.!

If there are more observations in the “tails’ of

! For a full discussion of this method, see H. Jeffreys, “Theory
of Probability,” sec. 4.41, Oxford University Press, New York, 1948,
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the distribution than seems reasonable, one might sus-
pect that the distribution is not quite normal; it may
be approximately a Gauss distribution near the mean
but somewhat larger than Gaussian in the tails. We
can make some simple assumption regarding the small
modification to be made in the distribution to represent
probabilities for large deviations in agreement with the
observations. Then we use the principle of maximum
likelihood, which will be used for the theory of least
squares in Sec. 14, to determine the most probable value
of the observed quantity. This turns out to be a weighted
mean, in which the observations far from the mean are
given considerably less weight than those in the center.
This procedure involves a fair amount of computation,
but it is undoubtedly more honest than Chauvenet’s
criterion.

1 l Goodness of Fit

We now return briefly to a question raised at the end
of Sec. 6; that is, if we suspect that a given set of ob-
servations comes from some particular parent distribu-
tion, how can we test them for agreement with this
distribution? :

Consider the example of Sec. 6, the probability dis-
tribution for the results of rolling two dice. The prob-
ability distribution f(n) tabulated on page 41 is com-
puted on the assumption that each die is symmetric, so
that the six numbers on each are all equally likely.
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Now we roll the dice a large number of times, recording
the totals. It is not very likely that 12 will occur on
exactly }4e of the trials, but we expect the result to be
close to %4s. If it turns out to be ¥ instead, there is
probably something very strange about these dice. Now,
the problem is: How much disagreement between the’
parent distribution (in this case the table on page 41)'
and our sample distribution can we reasonably expect,
if the sample is taken from this parent distribution?
Or, to put the question another way, how great must
the disagreement be in order to Justify the conclusion
that the dice do not obey the parent distribution (i.e.,
that they are loaded)?

What we need is a quantitative index of the differ-
ence in the two distributions, and a means of interpreting
this index. The sample distribution is expressed most
naturally in terms of the frequencies of the various events,
where the frequency of an event is defined as the total
number of times this event occurs among all the trials.
Thus it is convenient to express our distributions in
terms of frequencies rather than probabilities. Specifi-
cally, let F(n) be the frequency of event n (in this case,
simply the occurrence of the total n) for the sample,
which we shall assume to consist of N trials. If the
parent distribution which we are comparing with this
sample is f(r), then the frequency predicted by the parent
distribution is just Nf(r). The difference Nf(n) — F(n)
for each n characterizes the difference in the two fre-
quencies.
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The most widely used test for comparing the sample
and parent frequencies (or for examining the “goodness
of fit” of the sample) consists of computing a weighted
mean of the square of the fractional difference of the
two frequencies. The resulting quantity is called x2
this quantity, together with a suitable interpretation,
constitutes the “x* test of goodness of fit.”

The quantity [Nf(r) — F(n)]/Nf(n) represents the
fractional difference in the frequencies for a given n.
Our first impulse is to square this quantity and sum
over n. A little thought shows, however, that this would
weight the “tails” of the distribution, whose statistical
fluctuations are always relatively large, as much as the
center. Thus a better criterion for goodness of fit is
obtained by multiplying by a weighting factor Nf(n),
which then weights the fractional difference according
to the importance of the event n in the distribution.
Thus it is customary to define a measure of goodness of
fit called x? by the equation

2 _ V [Nf(n) — F(n)]?
X _.2 an(n) (11.1)

This discussion is not intended to be a thorough €xposi-
tion of the reasons for this particular definition of x>
To give such an exposition we should relate x? to the
idea of the least-squares sum which is introduced in
Sec. 14. Such a discussion is beyond the scope of this

book; instead, we simply recognize that Eq. (11.1)
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seems intuitively to be a reasonable index of goodness
of fit. '

There remains the question of how to interpret the
result of Eq. (11.1). Clearly, if the sample distribution
and the assumed parent distribution agree exactly, then
x? = 0. This is of course extremely unlikely; even if
the sample is taken from the assumed parent distribu-
tion, one would not expect exact agreement in every
interval. But, the larger x? is, the more disagreement
there is between the two distributions. The proper
question to ask is: How large a value of x? is reasonable
if the sample is taken from the assumed parent? If we
obtain a value of x? larger than this reasonable value,
then we should assume that the sample does not agree
with the parent.

Calculating values of x? which can occur simply
by chance is quite involved, and we cannot discuss the
problem here. Instead, we give a short table which
will help interpret x? in specific situations. Table IV
lists values of x? for which the probability of occurrence
of a x? larger than this is a given value P, assuming that
the sample is taken from the parent distribution used in
computing x2 This value depends on the number of
points at which the theoretical and sample frequencies
are compared, which is called v in the table.

In the dice-rolling example, we are comparing the
two frequencies for 11 different events; so in this case
v = 11. For v = 11, the table lists the value x% = 6.989
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under P = 0.80, and the value x? = 24.725 under P =
0.01. This means that if the sample “fits” the assumed

parent distribution, there is an 809, chance that x*

will be 6.989 or larger, because of random fluctuations,

but only a 19, chance that it will be greater than.

24.725. Thus if we calculate x2 for a sample and obtain
a value around 7, we carn say that this is probably due
to chance fluctuations, and the sample does fit the as-
sumed parent. If on the other hand we obtain x2 = 40,
then it is very unlikely that this value occurred by chance,
and the sample probably does not fit the parent. Note
that the x* test never gives a cut-and-dried answer “it
fits’ or “it does not fit.” Some judgment is required in
all cases.

It is not necessary that the frequencies refer to indi-
vidual events. They may just as well refer to groups of
events. Suppose, for example, that we are observing
radioactive decays and want to compare the distribution
of the number of events in a given time interval with
the Poisson distribution with a given value of 2. In a
particular case it might be expedient to consider the
following four groups: n = 0; n = 1; n = 2, 3, or 4;
n > 4. For these four groups we have four comparisons
between the sample and parent frequencies. In this
case, then, v = 4,

An additional complication arises if we must deter-
mine the quantity ¢ from the sample distribution. It
can be shown that the most probable value of ¢ from

the sample is simply the mean of the sample distribu-
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tion, as we might have guessed from Eq. (8.6). But in
using the sample to determine a, we have forced a cer-
tain degree of agreement between the two frequencies.
Thus the number of real comparisons is reduced from
four to three, and we should use » = 3.

In general, when comparing a sample with a parent -
distribution using K groups of events, we take v = K if
the parameters of the parent distribution (such as « for
the Poisson distribution, or N and p for the binomial)
are specified in advance. If one parameter of the parent
distribution (such as q) is determined from the sample,
we take » = K — 1; if two parameters (such as N and p)
are determined from the sample, we take v = K — 2,
and so on.

It is easy to extend this method to the case where
the observed quantity, say x, is a continuous variable,
so that the parent distribution f(x) is a function of a
continuous variable. We divide the range of values of x
into a series of nonoverlapping intervals which together
cover the whole range. Call a typical interval A(xb
and the value of x at its center x;. Assume that there
are K intervals in all, so that & ranges from 1 to K. The
probability P, given by the parent distribution for a
measurement to fall in this interval is

Pe= [ e OF (11.2)

Zh—ATr/2

In usual practice, the intervals are sufficiently small,
except perhaps in the “tails” of the distribution, so

that this integral can be approximated by taking the
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value of f(x) at the center and multiplying by the width
of the interval; this is equivalent to assuming that f(x)
is approximately constant over any single interval. In
this case, we have approximately

Pk =f(xk)Axk (113)
The frequency predicted by the parent distribution is
then NPy; the sample frequency Fy is of course the num-
ber of times the variable x falls in the interval Ax; in
the given sample. In this case the appropriate definition
of x? is

K
Xt = z Qﬁ’%_fk)” (11.4)
k=1
PROBLEMS

1. Six pennies are tossed simultaneously. What are the
probabilities for no heads? One head? Two? Three? Four?
Five? Six? ???? Would the probabilities. be the same if],
instead, one penny was tossed six times? Explain.

2. One die (singular of dice) is rolled. What is the prob-
ability that 6 will come up? If four dice are rolled, what is
the probability for no 6s? One? Two? Three? Four? Five?

3. Among a large number of eggs, 1% were found to be
rotten. In a dozen eggs, what is the probability that none is
rotten? One? More than one? _

4. A man starts out for a Sunday afternoon walk, playing
the following game. At the starting point he tosses a coin.
If the result is heads, he walks north one block; if tails, south
one block. Find all the possible positions after four tosses,
and the probability for each.
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5. In Prob. 4, derive the probability distribution for the
possible positions after N tosses of the coin.

6. In Prob. 5, if the man walks on several different
Sundays, what is the average distance he reaches from the
starting point after N tosses? What is the standard deviation
of his positions after N tosses?

7. The man plays the same game as in Prob. 4, but in-,
stead of tossing one coin he tosses two. If botk are heads, he
walks a block north; for any other result he walks a block
south. Find the possible positions after four tosses, and the
probability for each,

8. In Prob. 7, derive the probability distribution for the
possible positions after NV tosses of the coin.

9. Answer the questions asked in Prob. 6, for the distri-
bution obtained in Prob. 8.

10. The scores in a final examination were found to be
distributed according to the following table:

Distribution, Distribution,

Score % Score %

(7 0
95-100 4 65-69 14
90- 94 6 60-64 10
85— 89 8 55-59 6
80— 84 12 50-54 2
75— 79 16 40-49 2
70- 74 18 9-39 2

a. Draw a histogram illustrating this distribution.

b. Calculate approximate values for the mean and vari-
ance of the distribution. :

¢. If 15% of the students failed the examination, what
was the lowest passing grade?
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11. Observations on 200 litters of cocker spaniel puppies
revealed the following statistics:

Puppies in

Litters each {itter
5 4
17 5
34 6
47 - 7
31 8
25 9
18 10
14 11
7 : 12
2 13

Find the mean number in a litter, and the standard deviation.

12. A lump of Shakespeareum (a fictitious radioactive ele-
ment) contains 10% nuclei. The probability that any one will
decay in 10 sec is found to be 2 X 10-2'. Find the probability
that in a given 10-sec period no decays will occur. Also one

decay, two, three, etc. Find the number of decays per 10 sec

such that the probability of more decays than this number is
less than 0.1%. The answer to this part will determine what
is meant by “etc.” in the first part.

13. A group of underfed chickens were observed for 50 con-
secutive days and found to lay the following numbers of eggs:

Eggslaid No. of days

10
13
13
8.
4
2

bW =0

88

e

Problems

Show that this is approximately a Poisson distribution. Cal-
culate the mean and standard deviation directly from the
data. Compare with standard deviation predicted by the
Poisson distribution.

14. Derive Eq. (8.6) for the mean of the Poisson distribu-
tion directly from Eqs. (6.2) and (8.5). To evaluate the sum,
insert Eq. (8.5) into Eq. (8.7) and differentiate the result
with respect to a. This procedure is similar to that used in
Appendix B for the binomial distribution.

15. Derive Eq. (8.9) for the variance of the Poisson dis-
tribution directly from Egs. (6.4) and (8.5) by the same pro-
cedure suggested in Prob. 14. '

16. During a summer shower which lasted 10 min, 108
raindrops fell on a square area 10 m on a side. The top of a
convertible was actuated by a rain-sensing element 1 cm
square; so the interior of the car was protected in case of rain.

a. Find the probability that at least one raindrop landed
on the element.

6. In such a shower how much time must elapse after
the shower begins, on the average, before the top closes
itself?

17. It has been observed in human reproduction that
twins occur approximately once in 100 births. If the number
of babies in a birth follows a Poisson distribution, calculate the
probability of the birth of quintuplets. Do you think it likely
that octuplets have ever been born in the history of man?

18. A coin is tossed 10,000 times; the results are 5176
heads and 4824 tails. Is this a reasonable result for a symmet-
ric coin, or is it fairly conclusive evidence that the coin is
asymmetric? (Hint: Calculate the total probability for more
than 5176 heads in 10,000 tosses. To do this, approximate
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the binomial distribution by a Gauss distribution, as discussed
in the last paragraph of Appendix C.) ‘

19. Calculate the mean deviation for the Gauss distribution.
Express your result as a multiple of ¢.

20. If a set of measurements is distributed according to
the Gauss distribution, find the probability that any single
measurement will fall between (m — ¥0¢) and (m + }0).

21, The “probable error” of a distribution is defined as the
error such that the probability of occurrence of an error
whose absolute value is less than this value is 1. Find the
probable error for the normal (Gauss) distribution, and ex-
press it as a multiple of ¢. Is this the most probable error? 1f
not, what is?

22. Show that the graph representing the results of Prob. 1
can be approximated by a normal distribution curve. Find
the appropriate mean and standard deviation for this curve.

23. Consider the data of Prob. 27. If these are normally
distributed, and if two additional measurements are made,
find:

a. The probability that botk will be in the interval 54.98
to 55.02 cm.
5. The probability that neither will be in this interval.
24. The measurements (x) in a certain experiment are
distributed according to the function
F(x) = A/[(x — m)% + b*].
a. Sketch the function.
b. Find the value of 4 needed to normalize the function.
¢.. What is the mean of the distribution?
d. Discuss the standard deviation of the distribution.
25. Suppose that the function of Prob. 24 were “cut off”

atx = m = b. That is, F(x) is the given function in the inter-
90
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Problems
valm — b < x < m 4 b, but F(x) = 0 for values outside this
interval. Answer the questions of Prob. 24.

26. An object undergoes simple harmonic motion with
amplitude 4 and frequency f according to the equation
x = A sin 2x ft, where x represents the displacement from equi-
librium. Calculate the mean and standard deviation of the
position and of the speed of the object. :

27. The height of a mercury column in a manometer was

measured using a cathetometer. The following measurements
were obtained:

ocm cm
55.06 .54:99.
5492 55:02-
5501 5503
_55:00 55.02_

Test these data using Chauvenet’s criterion to determine
which should be discarded. After discarding the appropriate
data, recompute the mean. By how much does it differ from
the original mean? Compare this difference with ¢ for the
set of data.

28. Apply the x? test to the data of Prob. 13.

29. Discuss how the x? test might be applied in Prob. 18.

91




CHAPTER IV

FURTHER
DEVELOPMENTS

All that has been said so far about probability and prob-
ability distributions has established a foundation on
which we can now build several techniques of great
practical importance in handling experimental data.
This chapter contains several very powerful tools which
are developed from the principles we have learned so far.

12 | Standard Deviation of the Mean

We return to an important question which was raised
in Sec. 3. This is: What is the relation between the
standard deviation of a set of measurements and the
precision of the mean of the set?

We answer this question by a straightforward exten-
sion of the ideas which have already been introduced.
First, suppose that we take N measurements having
random errors which follow the Gauss distribution. We
calculate the mean and o of this set of measurements.
Now suppose we take another set of N measurements and
calculate the mean and o of this set. This mean will not
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in general be exactly equal to the mean of the first set,
although we expect intuitively that the difference of the
means on the average will be considerably smaller than
the difference between the individual measurements.
The values of ¢ will be somewhat different also. Another
way of saying the same thing is to say that the mean
and variance of a sample of N observations are not in
general equal to the mean and variance of the parent
distribution. We continue this process until we have
taken many sets, say M, each with its own mean and o.
We now ask: What is the standard deviation of the means?
It is clear that this standard deviation provides an indi-
cation of how reliable any one of the means is.

To facilitate our calculation of the standard devia-
tion of the means, for which we shall use the symbol g,
we introduce some new notation. We shall take M sets
of measurements with N measurements in each set.
There will then be MN readings in all. We use a Greek
index p to indicate which set of measurements we are
talking about and 7, as always, to designate a particular
measurement within a set. Let
X« = measurement 7 in set y
X, = mean of set u
X = mean of all measurements
dyi = %, — X = deviation of Xy
D, =%, — X = deviation of mean bR
The variance of the individual measurements is given by
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ot = f i 4 (12.1)
MN#=1 i=1 *

The variance of the means is given by

Ly (122)
gnl=— ) DS 12.2
) A
Now the deviations D, of the means can be expressed
in terms of the deviations d,; of the individual observa-
tions, as follows:

x,n«—X

| Gy b

.= 1
D“:fﬂ—X:ﬁ,

(]

L)

1

1 N 1 X ‘
=52 =X =% ) d (12.3)

=1 =1

Inserting Eq. (12.3) into Eq. (12.2), we obtain

M N M N 2
1 1 1 _
o = 3 (7\_7 z d‘“’) i) (z d“)
p=1 =1 p=1 Mi=]
(12.4)

Now let us squint for 2 moment at Eq. (12.4). The
double sum at the right side of this equation, when evalu-
ated, contains two different kinds of terms. There are
terms in which one of the d,; is squared, and other
terms containing products of two different d,;. Now,
because of the symmetry of the Gauss distribution func-
tion with respect to positive and negative deviations,
the ds are as likely to be positive as negative. So in the

limit, when we take a very large set of observations
9
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MN, the products of two different ds will tend to cancel

each other out. In Eq. (12.4) it is therefore legitimate
to replace

p=l =1
which contains only the 4? terms. This argument for
eliminating the cross terms is intended to be a plausi-
bility argument rather than a rigorous one. It is quite
possible but somewhat involved to put it on a more
firm mathematical basis.
Equation (12.4) now becomes

L1 M N ,
Im” = MN? z zdm‘ (12.5)

p=1i=1

This is closely related to Eq. (12.1). Combining Eq. |
(12.1) and Eq. (12.5), we obtain

%Vf or am=—\;77 (12.6)

The variance of the mean of a set of N measurements is
simply the variance of the individual measurements
divided by the number of measurements!

The standard deviation of the mean is used univer-
sally to describe the precision of the mean of the set of
measurements; we now have available a method of
calculating the standard deviation of the mean from the
measurements themselves. In the surveyor’s problem at
the end of Sec. 9, for example, we find that the standard
deviation of the mean is 0.026 ft/v/'10 = 0.008 ft. There
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is about a 68%, chance that the mean is within 0.008 ft
of the mean of the parent distribution, which is pre-
sumably the true value of the quantity.

A word of caution about Eq. (12.6) is in order. It
should not be thought that this equation is valid for
measurements taken from every parent distribution. We
have assumed that the cross terms in the sum used to
find ¢,.2 are negligibly small. This is true for the Gauss
distribution, as may be proved from a theorem known
as the central limit theorem. Because experimental meas-
urements so often obey the Gauss distribution, this is a
useful formula. But it is quite possible to dream up
strange distributions for which Eq. (12.6) is not true.
For the Cauchy distribution, which will not be discussed
here, 0,2 may be infinite!

13 | Propagation of Errors

We now return to the question raised in Sec. 2—the
effect which errors in measurements have on the error
of the result of a calculation which incorporates these
measurements. We consider a quantity Q which is to
be calculated from several observed quantities a, b, ¢, . . . :

Q = fla, by¢c,...) (13.1)
Suppose that @, b, ¢, . . . are all measured N times. We
can then calculate N different values of Q. We can
also calculate the mean and variance for the set of

measurements of a,
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E (Aay)?
ml (13.2)
wherc Aa; = a; — @, and i
i — @, and also the variance of Q,
1 N

t=1

where Q = f(z, F, . . .), Q; = f(a;, b & - ..),and AQ; =
Q: — 0. The AQ; can be approx1mated by the same
methods used in Sec. 2, Eq. (2.8):

aQ aQ
AQi o X A : — . .
o Qa + m Ab; +
Inserting Eq. (13.4) into Eq. (13.3),

N2<—QA +aQAb,-+---)2 (13.5)

When the quanflty in the parentheses in Eq. (13.5) is
squared, two kinds of terms appear. The first are
squares, a typical one of which is

(52

The other terms are cross terms of the form

9Q 3Q
oo gy Dai Ab;

(13.4)

Now, we use exactly the same argument as used in
Sec. 12 to obtain Eq. (12.5). The cross terms, since
they contain quantities which are equally likely to be
positive or negative, add up to very nearly zero, or at
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least something very much smaller than the sum of the
squared terms. We therefore drop them from the sum;
the remaining terms are

oot = —‘A-,i [(3&) (Ac)* + (%%) @b+ - |
- (13.6)

This can be rewritten:

N 2 1 &
aQ\? 1 _ (@_Q_) =V a2+ -
0o’ = (5;) Ni; dat+(55) ¥ 2

2
This important result gives us a relation betwcer} the
variances of the individual observations and the variance
of the quantity Q calculated from -these obse:rvatlons.

Usually, we are interested not in the variance of the
individual observations, but in the varianc.e o.f the mean.
Assuming that the errors are normall'y 'dxstrlbl'xted, we
can convert Eq. (13.7) into one containing variances of
the means by using Eq. (12.6). The result is

2 9Q\? e )
Tma® = (%%) Tma® + (—(%) Tmp? + (13.8)

where o.e? Is the variance of the mean of Q, on.? the
variance of the mean of ¢, and so forth. N

This is the result referred to at the end of Sec. 2; '1t .15
of much greater usefulness than Eq. (2.8) becau§c .1t is
the correct formula to use when the standard deviations
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of the means of ¢, 4, . . . are known. The corresponding
formula for the fractional standard deviation of the
mean, obtained by simply dividing Eq. (13.8) by Q2, is

() - () (55

(13.9)
A further remark needs to be made concerning
Eq. (13.8), the truth of which is not exhibited clearly
by the nonrigorous derivation which we have given.
Equation (13.8) can be shown to be true even if different
numbers of observations are made on the quantities q, b, ¢.
So Eq. (13.8) actually has a much wider range of ap-
plicability than has been demonstrated. In the case of
unequal numbers of observations, however, Eq. (13.7)
must be modified, and the derivation of Eq. (13.8)
is a little more involved. In what follows we shall make
use of this more general validity of Eq. (13.8), although
the proof has not been given here.
Here is an example of the foregoing analysis. Sup-
pose the quantity Q is the area of a rectangle, whose

dimensions are a and 4; then Q = ab. Using Eq. (13.8),
we find

0o = b2g,2 4+ g%,? (13.10)

In Eq. (13.10) and in the remainder of this section the
subscript m is dropped from the standard deviations, but
it is understood that each standard deviation is that of

the mean, unless otherwise noted. Thus, ¢, is the standard
deviation of the mean of 4.
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Introducing the fractional standard deviations of the
means, 0¢,/a, etc., we obtain

-+

More generally, if Q = a™b", then it is easy to show that

@) =)+ 1312
This Pythagorean sort of addition of fractional standard
deviations makes them very convenient for practical
calculations.

It is important to note the difference between
Eq. (13.8) derived in this section and the much more
naive result, Eq. (2.8). If even crude estimates of the
standard deviations of the means of the measurements
are available, Eq. (13.8) alwaps gives a more réliable
estimate of the precision of the result than Eq. (2.8);
therefore Eq. (13.8) should always be used in such cases.
Only if the actual errors are known is Eq. (2.8) used.

Here is an example of the methods developed in
this section. Suppose we have a horizontal beam of
length /, supported at its ends and loaded in the center
with a weight w. It can be shown that the deflection ¥
at the center of the beam is given by

w3

Y= %

where E is an elastic modulus and 7 is the moment of

inertia of the cross section about its center of area.

Now it may happen that the characteristics of the
100
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beam, £ and I, are known very well, but that one has
only crude measurements of w and /:

w = 100 tons == 1 ton
{= 50ft 0.5t

where the “-£” in each case refers to the standard devia-
tion of the mean. What is the resulting fractional stand-

ard deviation of ¥? This is just the question answered
by Eq. (13.12). We have

() -+

(0.01)? 4 32(0.01)2 = 0.001

gy

72 0.032
Note that although » and / have equal fractional stand-
ard deviations, ¢; has a much more mmportant effect
because ! appears to the third power. Also, the frac-
tional standard deviation in Y is considerably larger
than that in either w or /.

14 | Method of Least Squares

We now come to a very powerful method for obtaining
the most reliable possible information from a set of
experimental observations. We first state the principle of
least squares for a set of measurements on one quantity,
and then discuss how the principle can be derived from

- the principle of maximum likelihood if the errors follow the
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Gauss distribution. In the next section we discuss appli-
cations of the principle to observations of more than
one unknown quantity.

The principle of least squares can be stated as
follows: The most probable value of a quantity is ob-
tained from a set of measurements by choosing the value
which minimizes the sum of the squares of the devia-
tions of these measurements. For a set of measurements
x: the most probable value of x is that which minimizes
the quantity ‘

i (x — x))° (14:1)

in which x is regarded as a variable which can be varied
to obtain the minimum value of the function (14.1).
We note in passing that expression (14.1) is just

N times the variance of the x;, computed on the basis -

of the most probable value x. Thus an equivalent state-
ment of the principle of least squares is: The most
probable value of a quantity is that value which min-
imizes the variance (or alternately the standard devia-
tion) of the measurements.

We know that the condition which must be satisfied
for the function (14.1) to be a minimum is

N
%c 2 (x —x)2=0 (14.2)

i=1

This is a derivative of a sum of terms; we evaluate it by

differentiating each term in turn: :
102

-

14 | Method of Least Squares

d Sd
i3 —_ )2 = .
Y

i=1
N N

= Z 2(x — x;) = 2Nx — 2 Z x:  (14.3)
1=: i=1

The condition which must be satisfied is therefore

N
2Nx—2zx,.=o

i=1

or

N
x=12m

N2 i (14.4)

The proper value of x to use is Jjust the average of the

observations! This is the result which we guessed to be
correct in Sec. 3.

Now, why should it be desirable to minimize the
sum of the squares of the deviations® To answer this
question, let us consider first the probability of occur-
rence of the set of measurements x; which we obtained.
Assuming that the measurements are distributed nor-
mally (according to the Gauss distribution), the prob-
a?ility of obtaining a measurement within an interval dx
of x; is

1
oV 2r

P =

e‘(ﬂ:—z;)’/&r’ dx (14.5)

where o characterizes the parent distribution from which
X; 15 obtained. The probability of obtaining the whole
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set of N measurements is the product of the separate
probabilities:

P=P1P2...PN

—_ 1__ e—(z—zl)2/2a2 dx>
oVar
R 1_ e~ (x—2N)2/202 dx>
ocVlr

Now the plot is beginning to thicken! The probabil-
ity P of observing the whole set of measurements x;
depends upon the value of x, of course. If x is a number
vastly different from any of the x;, then the exponent in
the last form of Eq. (14.6) is a very large negative quan-
tity, and P will be very small. That is, it is very unlikely
that we obtain a set of measurements all of which are
very far from the true value of the quantity.

We now make a basic assumption, called the prin-
cple of maximum likelihood; we assume that the set of
measurements which we obtain is actually the most prob-
able set of measurements. According to this assumption,
the proper value of x to choose is that which gives P
the largest possible value. We want to maximize the
probability of obtaining the particular set of measure-

ments which we actually obtained. We then call the

value of x so obtained the most probable value of x.

Clearly, the way to maximize P is to minimize the
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value of the exponent in Eq. (14.6). We shall refer to

the sum in this exponent as the leasi-squares sum and
denote it by M(x). Thus

M(x) = EK"T;Z"—V (14.7)

The principle of maximum likelihood thus leads to the
conclusion that we should minimize M(x), which is of
course equivalent to minimizing Z (x; — x)?, in accord-
ance with our original statement.

'To summarize what has been said so far: We have
assumed that the best value of the observed quantity
which we can obtain is the value which maximizes the
probability of the set of observations which we have
obtained, and we have called this the most probable value.
If the observations are distributed normally, we max-
imize the probability by minimizing the sum of the
squares of the deviations. For the case of observations
on one quantity, this leads to the conclusion that the
most probable value of the observed quantity is simply
the arithmetic mean of the series of observations. Saying
the same thing in slightly different language, we want
to find the mean of the infinite parent distribution,
which we regard as the true value of the quantity. The
best estimate we can make of this mean is the mean of
the sample of N measurements.

The standard deviation of the most probable value
of x obtained above can be found easily by using the
propagation of errors formula, Eq. (13.8). The quan-
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tity x is regarded as a function of all the x; each of
which has a standard deviation equal to that of the
parent distribution, that is, 0. Therefore,

N

Ox\? Ox\?2 (ax)z .
t=(ZYV et (ZEY ez ... = E: o9x

Tm -(6x1> T <6x2) 7 & Ox; v

( (14.8)
From Eq. (14.4) we find
Ox 1
o9x 2 14.9
6x,- N ( )
S0
2=V _ 2 14.10

This result should not be surprising; it is the same con-_

clusion we reached in Sec. 12, Eq. (12.6), from a slightly
different point of view. The difference between Eq.
(14.10) and Eq. (12.6) is that Eq. (14.10) contains the
variance of the infinite parent distribution, while Eq.
(12.6) contains the variance of a sample of N measure-
ments, which is used as an estimate of the variance of the
parent distribution. The error of this estimate is thrown
away when we discard the cross terms in Eq. (12.4).
The variance of the parent distribution is of course
not known. All that can be done is to estimate it by
computing the variance of the sample, and this is ordi-
narily sufficient. In extremely critical work it is occa-
sionally desirable to inquire into the precision of the
sample variance, that is, to ask how well it is likely to

approximate the variance of the parent distribution.
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This can be investigated in a straightforward way by
computing the variance of the variance. We shall not
discuss this calculation here; it is rarely needed.

In the foregoing discussion we have assumed that
all the x; belong to the same infinite parent distribution
and that this is a normal distribution. But one can
easily think of cases where this is not true. If one makes
a series of measurements with an ordinary meter stick,
and then measures with a good-quality steel scale, the
random errors will in general be distributed differently
in the two cases. There may of course also be systematic
errors; we assume here that these have been either
eliminated or corrected.

How shall we handle the case when the X; come
from different parent distributions? Specifically, sup-
pose that x; comes from a normal parent distribution
characterized by variance o2 Referring to Eq. (14.6),
we see that the probability of the set of measurements
must be written as

P = (dx)¥ [_Z (x ~ xi)z:l

ex
0103 - -+ ox(V2m)¥ P 202

(14.11)
‘The ““least-squares sum” in this case is 2 (x — x:)%/20 2.
To maximize P, according to the principle of maximum
likelihood, we minimize this sum, leading to the con-
dition
4y x—x)?_ :
= s =0 (14.12)
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Carrying out the differentiation and rearranging the
result, we find _

x = 2Xi/0 (14.13)

2 1 / g ,'2
We have found that the most probable value of x in
this case is not the simple mean of the x;, but a weighted
mean, in which each weight w; is the reciprocal of the
variance of the corresponding parent distribution.

We have thus obtained an important and very
useful result: In computing the average of several quan-
tities whose variances are known, the most probable
value is a weighted average in which each weight w; is
given by

1

w; = ;—;" (14.14)

The variance of the value of x obtained from Eq.
(14.13) can be found by exactly the same procedure used
to derive Eq. (14.10). From the propagation-of-errors
formula, Eq. (13.8), we have, using Eq. (14.14),

6x>2 w; .
U-mz o —_ 0-.2 — —_— T,
JE <6xj ’ ;z <2 wi>2 ’
1 1
= Eije z v (14.15)
Thus we find
1
L=y (14.16)

Clearly, the variance of the weighted mean is smaller
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than any of the individual variances. We note also
that in the special case where all the variances are equal
1/0,* = N/o* and Eq. (14.16) reduces to Eq. (14.10).

As an example of the use of the methods just out-
lined, suppose that two experimenters have measured

the velocity of light in vacuum and have obtained the
following results:

1. ¢ = 299,774 & 2 km/sec
2. ¢ = 299,778 & 4 km/sec

where the errors are standard deviations of the means.
What is the most probable value of ¢, based on these
two determinations, and what is its standard deviation?
According to Eq. (14.13), we should weight each ob-
servation according to 1/0% Clearly, it is immaterial
whether the weights are equal to their respective values
of 1/ or simply proportional to them. Thus it is correct
to give the first determination a weight of 4, and the
second a weight of unity. The most probable value is
then

.= 4X299,774 4 1X299,778

441

Its standard deviation is given by Eq. (14.16):

1 1 1

@ (2 km/sec)? + (4 km/sec)?

= 299,774.8 km/sec -

or
o = 1.7 km/sec

In using Eqs. (14.13) and (14.16), one should keep
in mind that the variance associated with each x; also
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provides a means of testing whether the values are
consistent in a statistical sense. Suppose, for example,

that on two different days one makes measurements on
the melting temperature of a certain alloy. One day’s
result yields the value 736 == 1°C, and the other day’s
result is 749 == 2°C, where in each case the figures after
the =+ sign are standard deviations. The difference is
very much larger than the standard deviation in either
result; and the probability of this occurring by chance is
infinitesimally small. Thus we suspect that in one or
both determinations there is a systematic error. Perhaps
the composition of the alloy has changed. Considera-
tions of this sort are an important weapon in detecting
systematic errors. Of course, one can devise more quan-
titative tests of consistency; we shall not go into any
further detail here.

The result given by Eq. (14.16), and some other
results to be derived later, can be obtained somewhat
more simply if one is willing to accept a statement
which can be put on firm theoretical ground but which
we cannot discuss in detail. The statement is this: In
Eq. (14.11), which gives the probability of the set of
observations as a function of x, P is approximately a
Gauss function of x if the number of observations is large.
That is, P can be represented by

P = const X ¢~ @—a*/20m (14.17)

in which x is the value of x which maximizes P, which
we have shown to be equal to the weighted mean,

Eq. (14.13), and ¢,? is the variance of the mean, which
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we should like to find. To find ¢.? we compare Eq.
(14.17) with Eq. (14.11). The sum in Eq. (14.11) is
again called the least-squares sum and denoted by M(x).
We make a Taylor series expansion of M(x) about the
most probable value x,:

M) = M) + = x) (2)

+ %(x — x@?(ﬁfﬁ) + .-+ (14.18)

The derivatives are evaluated at the most probable value,
and thus (dM/dx),, = 0. Comparing Eq. (14.18) with
the exponent in Eq. (14.17), we see that they are equal
only if
1M 1
2T = P (14.19)

Thus we conclude that the variance of the mean is
related to the least-squares sum by the simple equation
1M

Ol dx?

(14.20)

where the derivative is evaluated at the point x = xo.
This result can also be used to simplify some derivations
in which the maximum likelihood principle is used for
the determination of several unknowns.

We conclude this section by considering another
application of the method of least squares in a situation
slightly different from the simple one of making a series
of measurements on a single observable. This example
deals instead with determining an unknown quantity
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indirectly from pairs of observations on two other quan-
tities.

Suppose we want to determine the force constant of
a spring (or Young’s modulus of a wire). Suppose also
that there is reason to believe that the spring obeys
Hooke’s law, so that the relation of force F to elongation
yis (

F=F (14.21)
where £ is the spring constant to be determined. We
apply several different forces F; to the spring by hanging
accurately calibrated weights on the end. For each, we
measure the elongation y;. The observations are shown
graphically in Fig. 14.1.

The y; all have random errors; we assume that the
errors all have the same distribution and thus the same
variance. If there were no errors in y;, we would have
yi— Fi/k = 0. As it is, the quantity d; = y; — F;/k
represents the error in y;. Therefore in the principle of
maximum likelihood, the correct least-squares sum to
use is

M@#) =Y U—‘zdf—/“ (14.22)

Taking dM/dk and setting it equal to zero,

dM _ 1 N poo — pp =
e a%zzza( 9 — Fi/k) =0 (14.23)
or
S F2
k=g . (14.24)
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It is enlightening to compare this result with the pro-

cedure one might naively be tempted to use, namely,
the average of the ratios F;/y;, or

p o LV E

N4y,

The correct least-squares result, Eq. (14.24), is quite
different.

F
§2
Filb——— . ,
. di |
|
|
» hd |
|
1
0 ¥ v

Fig. 14.1. Each point represents a pair of ob-
servations of F and y. The deviation d; corre-
sponding to (F;,y;) is shown. The line represents
the result of the least-squares calculation.

‘The variance 62 of £ may be found by use of Eq.
(14.20). The derivative of the left side of Eq. (14.23)
is d>M /dk?; this is

M _ 2 ypf F\, 1
= ﬂiﬂ@'ﬁ+ﬁﬂw<mw

The first sum in this equation is just (2/k) times the
first derivative, and this is zero. . Thus
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1 1

The value of £ used is, of course, the most probable value
just found.

The variance ¢? of the measurements y; can be
estimated in various ways.

The most straightforward procedure is to compute
the deviation d; = y; — F;/k for each pair of observations,
using the most probable value of % as given by Eq.
(14.24). Then the variance of the y; is given by

o = ]%/,20'52

1 2F.y; | F?
= ]-Vz<yi2 - —/'C‘L + k_") (14.27)

Inserting Eq. (14.24) into Eq. (14.27),
1 (2 F;p)?
2 = L 2 A& LY
7 N[Z" zF? ]
or

o* = 1%;(2 i — };ZF}:) (14.28)

Since Z F;p; has already been computed, evaluation of
Eq. (14.28) involves relatively little additional work. In
fact, when such calculations are done by machine, it is
usual to compute Z F?, 2 F,y;, and Z y;? simultaneously.

A direct estimate of o2 can be obtained, of course,
by repeating the observation several times with the

same force. In practical cases, if one wants only a rough
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estimate of 0% an estimate or shrewd guess of ¢2, based
on inspection of the instruments, may suffice.

15 | Least Squares with Several Unknowns

The method of least squares is also useful when more
than one quantity is to be determined from a series of
measurements. We start with an example. We know
that for an object moving in a straight line with constant
acceleration the velocity varies with time according to
the relation )

v=1u+ at (15.1)
where 1 is the velocity at time ¢ = 0. Now suppose that
in a particular situation we want to determine the values
of »p and a by measuring the velocity v; at each of a suc-
cession of times ¢;. The measurements might be made,
for example, with a speedometer and a stop watch.
Furthermore, suppose that the times can be measured
very accurately, so that the principal experimental errors
are in the velocity measurements.

If we merely measure the velocity at two times,
obtaining two pairs of observations (v1,f1) and (vs,%), we
obtain two simultaneous equations:

n = v -+ ah
v = vy + aly

(15.2)

which can be solved to determine v, and 2. But now
suppose that, in order to increase the precision of our

results, we take a series of pairs of observations, say N
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pairs in all, of which a typical pair is (v;,t;). The result-
ing set of equations is

v =0y + aty

v = vy + aty (15.3)

Un

Uz

Uz

Uy

P

t

Fig. 15.1. The line which fits observations (u;,4)
and (zy,t5) has, in general, a different slope () and
intercept () from that which fits (v1,t:) and (vs,4s).
There is no straight line which fits all three points.

Now these equations are not in general consistent;
if we take different pairs of equations, and solve them
for v and @, we obtain different values of », and a.
Graphical solutions for », and ¢ are shown in Fig. 15.1.
The reason for the various values of v, and «a, of course,
is that there are experimerftal errors in the v;. Equa-

tions (15.3) should be regarded therefore not as true
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equalities but as observation equations whose two sides are
not quite equal. We use the symbol 2, which is read
“observed to be equal to,” and write

v 2 v+ at; (15.4)

In actual fact the two sides of the equation are not, ex-
actly equal, but differ by an amount d;:

d; = v =+ at; — v; (155)

where d; is the deviation corresponding to equatlon i
and the pair of observations (v;,t;).

Since the d; are the results of the experimental er-
rors, we shall assume that they are distributed according
to the Gauss distribution function. The most probable
values of 2y and a can now be obtained from the principle
of maximum likelihood.

For a set of observations (v;,t;), they are the values
which make this set most probable. As in the previous
example, this probability is maximized when we minimize
the sum of the squares of the deviations.

Here is the princitle of least squares operating again.
That is, we want to minimize the quantity

2 di2 = 2 (Zlo + at,- — l)i)2 (15.6)

by choosing v and @ properly.

'To minimize a function of two variables, we take
the partial derivative of the function with respect to
each of the variables in turn and set each derivative
equal to zero. Thus the conditions which determine
and «a are
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N O 9N g2
o zdz =0 and Zd, 0 (15.7)

When we evaluate these derivatives, we obtain two

. equations which then can be solved simultaneously to

find » and «. Notice that in general this procedure
always gives us as many equations as we have unknown
quantities to determine. These equations, of which
Egs. (15.7) are examples, are sometimes called normal
equations.

Inserting Eq. (15.6) into Eq. (15.7),
’a—?};zdiz = ZZ(Z}O + at; — I)i) =0

or

2N + a z t; = 2 2 (15.84)

and

%Zd# = zzti(vo -+ at; — vi) =0

or
2 z ti+a Z 1R = Evgti (15.86)

We now have a pair of simultaneous equations for
and a:

N +aZt; =3Zu,; »

Vo = t: + a ) tiz =2 vty (15.8)

These equations are the normal equations for this problem.
The number of normal equations is equal to the number
of unknowns. Equations (15.8) can be solved in a

straightforward manner for v and ¢, using determinants:
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2z U; ] i;
29 = Zut; 2 2 - (2 Ili) (2 t,;z) - (E v,-t,-)(E ti)
N =z NZ 12— (T 1)t
Zt, Zt2
(15.9)
N E Vg
o = 2t 2 vty - NZ vt — (E Ui) (E h‘)
N 2t NZt2 — (E ti)z
2t 2

Before proceeding further, it is worthwhile to stop
to consider what we have done. If there had not been
.any experimental errors, all the pairs of observations
(v3,¢:) would have obeyed Eq. (15.1). A graphical rep-

0 t: t

Fig. 15.2. Graph illustrating least-squares calcula-
tion of 2 and a. Each point represents a pair of ob-
servations; a typical one is labeled (u:,t;), with its de-
viation. The line is drawn with the values of 2, and
given by Egs. (15.9). In general this line need not pass
exactly through any of the points.
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resentation of this statement is that if there were no ex-
perimental errors, all the points represented by the co-
ordinates (v;¢;) would lie on a straight line whose slope
is @ and whose intercept on the v axis is v). Such a line
is shown in Fig. 15.2,

Because of the random errors in the 2;, the actual
observations are represented by points which lie some-
what above and below the line, as shown in the figure.
Reference to Eq. (15.5), which defines the deviations,
shows that the graphical significance of d; is that its
magnitude is the vertical distance between point (,t,)
and the line. The method of least squares selects a line
which minimizes the sum of squares of these vertical dis-
tances. We have used vertical distances rather than
horizontal distances or some combination because of the
assumption that only the »;, not the ¢;, contain errors. ‘

For reference, we restate the results just obtained,
in slightly more general language. If two variables x
and y are known to be related by a linear equation of
the form y = mx + b, where m is the slope of the line
and & is its y intercept, if a series of NV observations
(x:,9:) are made, in which random errors occur only in
the »; measurements, and if these errors all belong to
the same parent distribution, then the normal equa-
tions are

mZx; +bN =2y;

mZ x4+ b2 x; = Zxy; (15.10)

and the most probable values of m and & are given by
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m = NZ XiYi — (2 xz)(Ey,)
"NZx?— (2 x)?

p = 229(Zx8) = (2 x:95) (2 x2)
NZ xf’ - (2 x,-)”

(15.11)

These expressions have been obtained directly from
Egs. (15.9) by appropriate substitution of symbols.
The next logical step is to try to calculate the
standard deviations of the values of m and & which have
been obtained from the method of least squares. This
can be done by exactly the same methods as used for
the case of one unknown. Errorsin m and 4 are produced

by errors in the y;, which we assume are taken all from

the same parent distribution with variance 2. Thus we
may use Eq. (13.8) to compute the variances of m and b
in terms of the variance of the parent distribution. Then
the y; themselves can be used to estimate the variance
of the parent distribution.

We proceed as follows: From Eq. (13.8) we obtain

) 6m>2
O = —) o2 15.12
,Z (6)’7' (15.12),
The partial derivatives are evaluated by use of Eq.

(15.11), in which we abbreviate the denominators by
the symbol A = N2 x2 — (2 x,)%. To evaluate

d
:9__);:- in)’i

1

we note that there is only one term in the sum in which
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i is the same as y;, the variable we are differentiating.

Therefore,
9

Similarly,

d
9; ,Zyi =1
Thus we find
dm  Nx; — 2 x;
om _ VXxj T A Xy
¥y A (15.13)
(6_m>2 o Nzsz -_— Zij z X3 + (2 x¢)2
dy; A?
Inserting Eq. (15.14) into Eq. (15.12),

=5 [N” 2= ZN(ij)(Exi)WLN(Zx,.)z]
= z%: [ ) 2 = N ()] (15.15)

where we have used the obvious fact that Z x; = 2 x;.
Finally, recalling the definition of A,
No?
ont = N
Using precisely the same procedure to find the variance
of b, we obtain
o2 x?
A

All that remains now is to estimate the variance ¢2
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(15.14)

(15.16)

0’(,2 =

(15.17)
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of the parent distribution, and this is easy to do. We
recall that the deviation of each observation equation is
given by

di =mx;+ b — y; ' (15.18)

The variance of the sample is then
1 1
2 = -— 2 == - : — )2 ¢
ot = E d; ¥ E (mx; + b — y)) (1519)

in which the values of m and & are those given by Eq.
(15.11).

We have now solved, at least in principle, the problem
of finding the variances of m and &, in that we have
shown how they may be computed from the observed
data by means of Egs. (15.16), (15.17), and (15.19).
In practice, the calculations are rather long and compli-
cated. For this reason it is important to ask, in any
particular problem, whether the variances are needed
badly enough to justify the labor of obtaining them. Ifa
large number of data are to be used in an all-out effort
to determine constants with the greatest possible pre-
cision, then of course one wants to know what the pre-
cision is. In this case, the necessary calculations are
often done with a high-speed digital computer.

The theory of least squares can be generalized in at
least four ways, which we shall discuss only very briefly.

1. It can be used to determine constants in equa-
tions when there are more than two unknowns. One has
an observation equation for each set of observations,
There is a deviation for each observation equation, and
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the most probable values of the constants are determined
by minimizing the sum of squares of deviations. This
procedure involves taking the partial derivative of the
sum with respect to each of the unknowns and setting
the derivative equal to zero. This gives a number of
normal equations equal to the number of unknowns.
Simultaneous solution of these equations then gives the
most probable values of the unknowns. The computa-
tional labor increases very rapidly, of course, as the
number of unknowns increases.

2. The theory can be used when the observations
are not all samples of the same parent distribution. In
this case, as with one unknown, the deviations are
weighted inversely as the variances of their parent dis-
tributions. For example, if the observation equations
are y; = mx; + b, and the various parent distributions
for the y; are characterized by their variances ¢;%, then
the correct procedure is to minimize the quantity

3 wid = 25—;’ = Y wi(me + b~ p)?  (15.20)

where we have again used w; = 1/02 It is then easy
to show (and is, in fact, almost obvious) that the normal
equations for this example are

mZwx; +bZw; = Zwy;

mZwixd + b wixi = 2wy (15.21)

As in the unweighted case, we can next calculate the
variances of m and & by straightforward extensions of

the methods already presented.
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3. The method of least squares can be used when

the observation equations are nonlinear. As a simple
example, consider a capacitor of capacitance C which is
initially charged to a potential V, and allowed to dis-
charge through a resistance R. It can be shown that
the potential difference across the capacitor is given by

V = Ve t/RC (15.22)’

Suppose we want to determine the quantity RC by
making a series of observations of V at various times.
Suppose further that we have very accurate time-meas-
uring instruments, so that the only significant random
errors are in V, and that we have carefully eliminated
any systematic errors in these measurements.

We write an observation equation for each pair of
observations:

Vi 2 Voemt/EC (15.23)
and a corresponding deviation
di = Vi — Ve /R (15.24)

Assuming that the errors in the V; are normally dis-
tributed, all with the same variance, we determine V,
and RC using the principle of maximum likelihood by
computing 2 d;* and minimizing it. The normal equa-
tions for ¥, and RC are, however, nonlinear, and can be
solved only by numerical methods.

If the voltmeter happens to have a logarithmic scale,
as some electronic voltmeters do, the problem becomes
much simpler. We take logarithms of both sides of

Eq. (15.23): 25
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° t;
ln Vi = ln Vo _ ,Ea (1525)

Introducing a new variable y, defined by y=InV, we
now have a linear observation equation in J: and ¢,
Furthermore, because of the logarithmic scale, it is
reasonable to assume that the errors in the y; all have
the same variance; so we may proceed with exactly the
same methods which led to Eqgs. (15.11). If the scale
is not logarithmic, the y; will not have the same. vari-
ance, however.

It is not always possible to reduce an equation to
linear form by a simple substitution. In more compli-
cated cases it may be expedient to calculate approximate
values of the unknown quantities and then represent the
nonlinear equations by linear approximations, using
Taylor series expansions.

4. It sometimes happens that we do not know the
form of the observation equations or, indeed, whether
the observed quantities are related at all. We then need
a systematic method of investigating whether there is any
relationship between two variables. This leads to the
theory of correlations, a simple example of which is
given in Sec. 16.

16 | Correlations

In Sec. 15, we discussed the problem of determining the
constants in a linear equation relating two variables (in

this case » and y) by using pairs of observations (xip2)
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of these variables; it was known in advance that such a
linear relationship existed.

Sometimes it happens, however, that we do not
know in advance whether two variables, say x and jy,
are related. Furthermore, if we make pairs of observa-
tions (x;,y;) as before, the data may be scattered so widely
because of experimental errors that it is not clear whether

Ay .

ny

0
Fig. 16.1. To what extent are x and y related?

or not there is any relation between x and y. Repre-
senting the observations (;,p:;) graphically, we might
obtain a picture similar to Fig. 16.1. Are x and »
related, or are they not? Is there a correlation between
x and »?

Of course, there is no end to the variety of possible
functional relationships between x and y. There is no

general way of investigating all possible relationships,
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but it is fairly easy to check some simple ones. The
simplest possible one, of course, is a linear equation.
So a reasonable place to start is to ask whether there is
a linear relationship between x and y or, in other words,
a linear correlation.

We can answer this question at least partially by a
slight extension of the method of least squares for two
unknowns, introduced in Sec. 15. We assume a linear
relationship between x and y in the form

y=mx+b (16.1)
and proceed to determine the constants m and 4 from
the observations (x;,»;) in exactly the same manner as

- in Sec. 15, Eq. (15.11). In particular,

_NZxy—2x2Zy
T NIZx— (Zx)?
In this expression, and in those which follow, we have
dropped the limits of the summation, which are always 1
to N, and also have omitted the summation indices on x
and y. Thus, Z xy is an abbreviation for
N
z X))
i=1
The graphical interpretation of the procedure just
described is as follows: We are trying to represent the
scattered points in Fig. 16.1 by drawing the best straight
line through the points. The slope of this line is m, and
its intercept on the y axis is 4. Since the deviations we
have used in the method of least squares are
d»; = mx; + b —Ji (16.3)
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d: represents the vertical distance between the point
(xy:) and the straight line described by constants m
and 4. In this case, then, the method of least squares
minimizes the sum of the squares of the vertical dis-
tances between the point and the straight line. The line
determined by this procedure is sometimes called the
line of regression of y on x.

If there is no correlation at all between x and y, this
sum of squares will be minimized by a horizontal line;
we shall find therefore in the case of ne correlation
that m = 0, a line with zero slope.

Now let us back up slightly. There is no particular
reason for writing our assumed linear relationship be-
tween x and y in the particular form of Eq. (16.1). We
might equally well have written instead

x=my+ ¥ (16.4)

in which the roles of x and y have been reversed. In
this case, the deviations we use in the method. of least
squares are given by

di' = m’y,- + b’ — X3 (165)
The method of least squares now minimizes the sum of
the squares of the horizontal distances between the line
described by Eq. (16.4) and the points (x;,;) represent-
ing the observations. The result is the line of regression
of x on y. The expression for m’ is obtained simply by
reversing the roles of x and y in Eq. (16.2) and is

' = NZxy—2ZxZy

N2y —(2Z))*

(16.6)
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Note that m' is not the slope of the line given by
Eq. (16.4) but rather its reciprocal. This is easy to see
if we solve Eq. (16.4) for .
x b

We see that the slope of this line is 1/m’, and its intercept
with the y axis is —&'/m’."
Using Eq. (16.4), if there is no correlation between
x and y, the method of least squares will give the value
m’ = 0, a vertical line. If, on the other hand, all the
points lie exactly on the line, so that the correlation is
perfect, then this method must give us the same line as
the previous one, Eq. (16.1). That is, in the case of
perfect correlation, we must find that 1/m’ = m. Thus
if there is no correlation between x and y, mm’ = 0,
while if the correlation is perfect, mm’ = 1. Clearly, the
value of the product mm’ has something to do with the
extent to which the variables x and y are correlated.
It is therefore natural to define a correlation coeffi-
cient r as follows:
r = ! = NZxyy—2Zx2Zy
[NE x2 — (2 x)2]1/2 [Nzy2 —_— (Ey)2]1/2
(16.8)
Thus r = 1 means perfect correlation, and r = 0 means
no correlation. If there is imperfect correlation, we ex-
pect a value of r somewhere between 0 and 1. In fact,
it can be shown that Eq. (16.8) must always have a
value between —1 and 1.

Suppose now that we have calculated r for a set of
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observations. How do we interpret the result? In other
words, how large must r be in order to indicate a sig-
nificant correlation between the variables x and »?
Clearly, because of random fluctuations, we will not in
generai get exactly r = 0 even if there is no real connec-
tion between x and y. And if a linear relationship exists,
we will not get exactly r = 1, especially if the experi-
mental errors are large. Given a value of 7, then, the
question to ask is: What is the probability of obtaining
a value of r as large as this purely by chance from ob-
servations on two variables which are not really related?
This situation is similar to the one which arose in inter-
preting the results of a x? calculation in Sec. 11.

Tables have been calculated which give the prob-
ability of obtaining a given value of r for various num-
bers N of pairs of observations. Table V gives a few
values of this probability. A reference to more extensive
tables is also given.

Here is an example of the use of this table. Suppose
we make 10 observations; then N = 10. The table says
that there is a probability P = 0.10 of finding a correla-
tion coefficient of 0.549 or larger by chance, and a
probability P = 0.01 of finding r > 0.765, if the vari-
ables are not really related. If for our 10 observations
we find r = 0.9, we can be reasonably sure that this
indicates a true correlation and not an accident. But if
we find only r = 0.5 we cannot be sure, because there
is more than 109, chance that this value will occur by
chance.
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A commonly used rule of thumb in interpreting
values of r is to regard the correlation as significant if
there is less than 1 chance in 20 (P = 0.05) that the
value will occur by chance. According to this rule of
thumb, we find from Table V that for 10 sets of observa-
tions, any value of r greater than 0.632 should be re-
garded as showing a significant correlation. For five
sets, r must be greater than 0.878 to be significant.

The theory of correlations can be extended in sev-
eral directions. First, there may exist a functional rela-
tionship between x and y which is not linear and which
is not detected by our linear correlation coefficient. For
example, if the graph of x versus y is a circle, the correla-
tion coefficient will be zero even if there are no experi-
mental errors. To take such possibilities as this into ac-
count, we can assume a quadratic, cubic, or more com-
plicated functional relationship and use the theory of
least squares to determine the constants in the equa-
tions. Such an analysis gives us nonlinear correlations.

It is also necessary at times to consider correlations
among more than two variables, so-called multiple cor-
relations. These extensions of the theory of correlations
have rather specialized applications, and we shall not
consider them here.

PROBLEMS

1. Find the standard deviation of the mean in Prob. 18,

Chap. I.
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2. Find the standard deviation of the mean in Prob. 27,
Chap. III. Compare this value with the change in the mean
which results from the rejection of unlikely data.

3. A certain quantity was measured N times, and the
mean and its standard deviation were computed. If it is
desired to increase the precision of the result (decrease o) by
a factor of 2, how many additional measurements should be
made? ‘

4. In Prob. 3, discuss how the mean of the first N meas-
urements should be combined with the mean of the additional
measurements, and how the standard deviation of the result
should be computed from the standard deviations of the two
sets.

5. Show that the standard deviation of a weighted mean
is always smaller than any individual standard deviation. Is
this a reasonable result?

6. Two different measurements of the speed of light using
the same general method (a rotating mirror) yielded the fol-
lowing results:

299,796 =+ 4 km/sec

299,774 £ 2 km/sec
Are these results consistent? (Assume that the errors given
are standard deviations of the means.)

7. In Prob. 13, Chap. I, suppose that the “errors”’ re-
ferred to are standard deviations of the means. Find the
standard deviation in g. Compare with the result of Prob. 13,
Chap. I. Which is more significant?

8. For some obscure reason an individual wants to make
an accurate determination of the area of a sheet of typewriting
paper. The following measurements are made on the length
and width:
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Length, in. Width, in.
11.03 8.51
11.00 8.48
10.97 8.49
10.98 8.50
11.02 8.53

8.48
8.51

a. Determine the standard deviation of each set of meas-
urements.

6. Determine the most probable value of each quantity
and its standard deviation. '

¢. Determine the most probable value of the area and
its standard deviation.

9. In a centripetal-force experiment the force exerted on
a body moving in a circle with constant speed is measured
directly and is also computed from the equation

mv? 4Ar:mR
F= R 1

The following data were obtained:

F, dynes T, sec R, cm
6.92 X 108 0.200 5.13
6.82 0.198 5.06
6.87 0.202 5.05
6.87 0.199 5.09
6.92 0.201 5.10

The mass is known very accurately: m = 140.00 g. Do the

measured and calculated values of F agree? Discuss.
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10. In the Bohr theory of the structure of the hydrogen
atom, the energies of the various quantum states are given by

1 me*

En = T2y
where m is the mass of the electron, e is its charge, 4 is Planck’s
constant divided by 2, and n = 1, 2, 3, --- . If the mass.is

known with a fractional standard deviation of 0.1%, the
charge with 0.29%, and Planck’s constant with 0.1%, what
is the per cent standard deviation in E, for the state for which
n = 1? For then = 2state? If the accuracy is to be improved,
which quantity (m, ¢, or %) should be determined more
accurately? ,

11. The phase angle ¢ between voltage V and current [
supplied to an electric motor (or any other device) is related
to the electrical power input P by the equation P = EI cos ¢.
The quantities P, E, and I are measured, with the following
results:

P = 515 & 50 watts

E = 110 & 2 volts

I = 5.20 & 0,20 amp

a. The quantity cos ¢ is called the power factor. Calculate
the power factor and its standard deviation.

b. Calculate ¢ and its standard deviation.

12. The number of radioactive decays occurring in a
given interval has been shown to follow the Poisson distribu-
tion. Often the parameter @ is not known in advance, but is
determined by counting for several intervals. Suppose N
intervals are used, and n; counts are observed in interval ¢
(where i = 1,2, --- , N). Apply the principle of maximum
likelihood to determine a. That is, find the value of 2 which
maximizes the probability of occurrence of the set of observa-
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tions- n;.  Specifically, show directly that the most probable |

value of ¢ is the average of the n;.

13. What is the standard deviation of the most probable
value of a obtained in Prob. 12?

14. The value of a resistor R is to be found by passing several
different currents I through it, measuring the correspond-
ing voltage drop V, and using the relation ¥V = IR. The values
of V' are measured very precisely with a potentiometer,
while I is measured with an ordinary ammeter, resulting in
normally distributed random errors. Using the method of
least squares, derive an expression for the most probable value
of R in terms of the pairs of observations (¥;1, ).

15. From the set of observation equations given, find the
most probable values of x and y, using the method of least
squares, assuming all the observational errors to belong to the
same normal distribution,

x4 =229
x—2y=209
2x — 3y 2 1.9

16. The three interior angles of a triangle were observed
to be
31° 62° 88°

Using the method of least squares and the fact that the sum -

of the angles must be 180°, find the most probable values of
the angles. Does your method make any assumption about
relative accuracies of the measurements of the angles? '

17. In an experiment to measure the acceleration of a
freely falling object, a tuning fork is set into vibration and
allowed to drop, scratching a wavy line on a strip of waxed

paper as it falls. From this trace, the positions at a succession
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of times separated by equal time intervals can be determined.
The theoretical relation between distance and time is
s = so + vt + Ygt?
Assuming that the times are known much more precisely
than the positions, use the method of least squares to derive
expressions for the initial position s, the initial velocity 2y, and
the acceleration g in terms of the pairs of observations (s;,t).

18. Use the method of least squares to find the best
straight line for the four points (4,5), (6,8), (8,10), (9,12).
Are any assumptions regarding the errors necessary?

19. An experimenter wanted to detérmine the ratio of
inches to centimeters by using a yardstick and a meter stick,
side by side. His procedure is to observe the centimeter cor-
responding to each of a succession of inch marks. Unfor-
tunately, the centimeters are not subdivided, so he reads
only to the nearest centimeter. Use the method of least
squares to derive a formula for the conversion factor.

20. In Prob. 19, the result is considerably simpler if an
odd number of inch marks are used, and if they are renum-
bered so that zero is in the middle. That is, if there are
2N + 1 marks, they are labeled from —N to N. Obtain the
simplified result, using this scheme. Useful information: The
sum of the first N integers is

1+2+...+N=M%1)

and the sum of their squares is

124204 .. 2= NI EDEN + 1)
6

21. Using the data of Prob. 18, calculate the line of regres-
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Further Developments

sion of x on y, the line of regression of y on x, and the correla-
tion coefficient. Is the correlation significant?

22. Following are two sets of pairs of observations on
variables x and y:

®
x®

[€, JR0-N FURY S
B WN | e
[S 3 STCRE X R
(SIS WIS TR RN

Determine whether either of these sets exhibits a significant
correlation between x and y.
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APPENDIX A
SUMMARY OF FORMULAS

Following is a summary of important and useful formulas
which have been developed in the text. The numbered
equations are given the same numbers as in the text to
facilitate reference to appropriate parts of the text.

Approximations

If a quantity Q is determined from quantities 4, 5, . . . by
a relation Q = f(q, b, . . .), then the change AQ of the
quantity produced by changes Aa, Ab, . . . is

Y 9Q 9Q
AQ . Aag + 3 Ab + e Ac + (2.8)

The Mean and Dispersion

The mean (or arithmetic mean or average) of a set of
N numbers, of which a typical one is x;, is

< 1 &
x = N,Zl X (3.2)

‘The weighted mean of a set of N numbers, of which a
typical one is x; with weight w;, is
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N
WXz
- _ Wiy + wexe b - - waxy _ i=1
X = - N (33)
w+we + - + wy
- wi
i=1

The deviation of a number x; in a set of N numbers is
d; = x; — % ) (3.4)

The mean deviation of a set of N numbers x; is

a_—Eu{——-Epc, (3.8)

i=1

The standard deviation of a set of N numbers x; is

\/ 242—\/N2(x,—x)2 (3.9)

t=1
The wvariance is defined as the square of the standard
deviation.

Probability

If the probabilities for two independent events a and &
are P, and P, the probability for both to occur is the
product P.P,. If events 2 and & are mutually exclusive,
the probability for @ or & to occur is the sum P, + P.

Permutations and Combinations

The number of permutations of NV objects is
= NN~ 1D = 2)(N = 3) --- (9(3)(2)(1)
(5.1)
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Summary of Formulas

The number of combinations of N objects, taken =z at a
time, is

N!

which also defines the binomial coefficients.
The binomial theorem for expansion of the binomial

(a + 6)¥ is

N

N = N—nhn
(a + b) ’Zo (y) av b
) ,20 T 5.6)
The sum of the binomial coefficients for a given N is
N
14 1)7 =27 =
(1 +1) P ® 5.7)

Probability Distributions

"The condition for a discrete probability distribution to be
normalized is

DS =1 (6.1)
The mean of a discrete probability distribution is
7= nfln) (62)

'The variance of a discrete probability distribution is
= (v — 0¥ (6.4)
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The best estimate of the variance of a parent distribu-
tion, from a sample of this distribution, is

g = \/———-—- 2 (x; — x)2 (6.5)

t=1

Binomial Distribution

The binomial distribution gives the probability of #n suc-
cesses in NV independent trials, if the probability of suc-
cess in any one trial is . The binomial distribution is
given by

Fuoln) = (N)p (7.1)

where ¢ = 1 —
The mean of the binomial distribution is

N
= Y a(M)pra —pr = 759)
The variance of the binomial distribution is
0% = Np(1 — p) = Npq (7.7)
Poisson Distribution

The Poisson distribution is the limit of the binomial dis-
tribution as N =« and p — 0 in such a way that the

product ¢ = Np remains finite. The Poisson distribu- .

tion is given by

faln) = 2= (8.5)

142

Summary of Formulas
The mean of the Poisson distribution is

n=a (8.6)
The variance of the Poisson distribution is
g% = q. (8.9)

Gauss Distribution

'The Gauss distribution, or normal error function, is

_ _L —h(z—m)2 .
Jo) = et = e

The index of precision h and the variance ¢* are related by

g~ @=mr/2e (9.9 9 16)

1
g2 = ﬁ (915)
The mean deviation for the Gauss distribution is given by
1 \/5
o= = Al— 0 9.18, 9.19
Vrh N ( )

The probability for a measurement to fall within 7o of
the mean is

P(T) = \/_ " g gy (9.22)

The Gauss distribution is approximately equal to the
binomial distribution with the same mean and variance,
if N is very large and p is finite. For very large N,

Nt -
Sro(n) = W=nim? e

e~ n—Np)»/2Npq C.25
V2w Npg ( 14?%
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Goodness of Fit

To compare a sample frequency F(n) with a frequency
Nf(n) predicted by a parent distribution f(n) for N trials,
a sultable index of goodness of fit is

Nf(n) — F(n)]?
Z[ Nf(n)()] (11.1)

In using a table of values of x2, » = K — 7, where K is
the number of frequencies of the two distributions com-
pared and r is the number of parameters of the parent
distribution which are determined from the sample.

Standard Deviation of the Mean

The standard deviation of the mean % of a set of numbers x; is
o? |

ol =% or am=4\/'ﬁ (12.6)

if the numbers are distributed normally with parent
standard deviation ¢.

Propagation of Errors

If a quantity Q is determined from quantities a, 4, . .. by

arelation Q = f(a, b, . . .), the variance of the mean of Q
is related to the variances of the means of g, b, . . . by

2
Ome? = (%%) Oma® + (%%) Cmp? + - (13.8)
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Summary of Formulas

Method of Least Squares

If N observations are made on a quantity, and their
errors are normally distributed, the most probable value
of the quantity is

- ]_1\} z (14.4)

and the variance of the most probable value is related to
the variance of the individual observations by

- z__ =7 (14.10)

If the observations x; come from different parent dis-
tributions, characterized by their variances ¢;% then
the most probable value of x is the weighted mean

— Ex,-/o’,-z

> 1/07 (14.13)
and the variance of this weighted mean is given by
1 1

In an equation y =-mx + &, the most probable values of m
and &, from a set of pairs of observations (;,;) in which
the x; have no errors and all the y; have errors belonging
to the same distribution, are
N2 xy: — (2 x)(Z p)

NZx?— (2 x)?

(E}L,)(E x%) — (E xzya)(z Xs)
NZ i = ( 2))° (15.11)

m =
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The variances of the most probable values are given by
No?

2 YO

Tn A (15.16)
and

2 2

o = 25 (15.17)
where .

A= Nzxﬁ - (Exi)z
and

g2 = Al,z (mx; + b — ;)? (15.19)

where ¢2 is evaluated using the most probable values
of m and b.

Correlations
‘The definition of the linear correlation coefficient r is

T NIZxy—-2ZxZy
r mm INZx2— Z 2R [NZy — (2 )2

(16.8)
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APPENDIX B

EVALUATION OF n AND - FOR
BINOMIAL DISTRIBUTION

To evaluate the sum

7= fj n (N) =P (B.1)

we note that it is similar to an expression we have al-
ready encountered in considering the normalization of the
binomial distribution, namely,

i (N)ra —pr =1 (B.2)

The difference is that the sum in Eq. (B.1) contains an
extra factor of . But by means of a trick we can convert

- this into the form of the sum in Eq. (B.2).

From here on we drop the limits on the sums, as we
did in Sec. 3, remembering always that n ranges from 0
to N. Now we differentiate both sides of Eq. (B.2) with
respect to p, which is legitimate because the equation is
true for all values of p between 0 and 1, as observed
earlier. The advantage of doing this will appear shortly.
Taking the derivative,

Z<Ir\l]>[nﬁn—1(1 — PN — (N = (1 — )]

=0 (B3)
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This can be rewritten

2(2’) (1 — pyv
- Z(ﬂ:’ ) W — mpr(1 — pyy—-t
w3 ()t = e
= 3(5)wra -

3 (M=t = g+ 4ot — e
= vy (N)ra - @y
We now multiply both sides of the equation by p(1 — p):
yn (f)[(l — Pt = PV + (1~ p)V ]
=my(Nra-p— @9

Combining the two terms on the left side, and using
Eq. (B.2) in the right side

or

Z”(f)ﬁ"(l = o7 = Y tfvan) = Np (B.6)

Now the left side of this expression is just our original
expression for 7, Eq. (B.1); hence we conclude that

= Np (B.7)
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Evaluation of 7 and ¢ for Binomial Distribution

The calculation of ¢2 proceeds in a similar manner.
The variance is given by Eq. (7.6), which we give again
for convenience:

0? = 2 (n — Np)’fw »(n) (B.8)
To evaluate this sum we first rewrite Eq. (B.8) as
o =2 (n* — 2nNp + N*p*)fu,»(n)

= 2 n¥fx(n) — 2Np Z nfy o(n) + N2 2 f »(n)
(B.9)

"The sums in the second and third terms are already
known from Eqs. (B.6) and (B.2), respectively; using
these, we find

o2 = Z n’fwo(n) — (Np)* (B.10)
To evaluate Z n%y,,(n) we differentiate Eq. (B.6):

S (1:) (1 — p)r—

— (N —mp(1 —p)¥ 1] = N
(B.11)

We multiply by p(1 — p) and rearrange terms as before,
to obtain :

) (fzv) (1 — p)r=

=8 3 (M)t = pr = Hpta - p

(B.12)
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Finally, using Eq. (B.6) again,

St (M)t = o = @iy + Mot =)
n
(B.13)
or
2 n’fy(n) = Np(1 — p + Np) (B.14)
Now, inserting this result into Eq. (B.10), we obtain
o? = Np(1 — p + Np) — (Np)* = Np(1 — p) = Npgq
(B.15)

or
¢ = VNpg (B.16)

as stated in Sec. 7.
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APPENDIX C
DERIVATION OF GAUSS DISTRIBUTION

Following is a derivation of the Gauss distribution func-
tion from some plausible assumptions. It is not intended
as a substitute for empirical verification of this distribu-
tion, but as evidence that it can be derived from basic
considerations. To be honest we must state that the
mathematical derivation can be simplified considerably
by making use of an approximation formula for fac-
torials of large numbers (Stirling’s formula). The use of
this formula has been avoided here because, to a reader
who is not familiar with its derivation, the development
of the Gauss distribution using it is not likely to be very
convincing.

We begin by assuming that the random error in a
measurement is composed of a large number N of ele-
mentary errors, all of equal magnitude ¢, and each
equally likely to be positive or negative. With these
assumptions, we can calculate the probability of occur-
rence of any particular error in the range (—Ne) to
(4 Ne). Having done this, we take the limit of this dis-
tribution as the number N becomes infinitely large
and the magnitude ¢ infinitesimally small in such a way

that the standard deviation of the distribution remains
constant.

First, we note that the probability for n of the ele-
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mentary errors to be positive and the other N — n to be
negative is given by the binomial distribution with
¢ = q = }%. The corresponding error, which we shall
call y, is given by

y=ne — (N —n)e=(2n— Ne (C.1)
The probability of occurrence of this particular error is

N!

Fean(®) = et

For future reference, we compute the standard
deviation of y. Because each elementary error is as
likely to be positive as negative, the mean value of y is
zero. Therefore the standard deviation is given simply by

o? = 2 yYuap(n) = 2 (2n — N)?%fy1p(n)  (C.3)

This sum is easily evaluated with the help of Egs. (B.1),
(B.2), and (B.14), setting p = % in all these:

o? = 4€* 2 n’fy(n) — 4Ne*Z nfy(n) + N2 2 fu(n)
N 1 N
= 2 _ = - - 22Y 22
4e2<1 2+]§> 4Ne2+Ne

= €N (C4)
o =eVN (C.5)
To simplify notation in the following developments,
we introduce a new index , defined by the equation
2r=2n—~ N (C.6)
One immediate advantage of this change is suggested
by Eq. (C.1), which now becomes simply

y = 2re - (CT)
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(C.2)

Derivation of Gauss Distribution

Note that since the range of n is 0 to N, the range of r
is from —N/2 to +N/2, in steps of unity. Furthermore,
if N is even, r is always an integer, while if N is odd, r is
always a half-integer. In either case, the quantities
N/2 4 r and N/2 — r which appear below are always
integers.

We now express the probability for the error y = 2re
in terms of the index 7, using Eq. (C.6) in the form
n =r 4+ N/2. Equation (C.2) then becomes

!
Juan(r) = 7 N];,
22 1 oN
( > r). ( 5 + r). 2
The next larger possible value of the error y results from
replacing 7 in Eq. (C.7) by (r 4+ 1). This error is then
larger by an amount 2¢; so we call it y + 2¢. The cor-

responding probability is obtained by inserting (r 4 1)
for r in Eq. (3.8):

Suwapr +1) =

(C.8)

N
(%’—r—l)!(]-;—’+r+1>!zzv

(C.9)

Thus if we call f(y) the probability of occurrence of
error y, we have

SO) =

N!

_ N
=N N
(E—r—1>!<§+r+l>!2”’
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These expressions are both rather complicated, but we
note immediately that their gquotient is fairly simple.
That is,

fyt+2) _ _(N2—1n)! (/2 + !
fO) (N2 =1 = DVN/2 + 71+ 1)!

_ N/2 =7
N2+ 41
Next it is necessary to perform a somewhat tricky
maneuver. Keeping in mind that we are eventually
going to let N— o and €e— 0 at the same time, in
such a way that the product ¢2 = €2N remains constant,
we now regard y as a continuous variable and f(y)
as a function of this variable. Because € is small, we can

approximate f( » -+ 2¢) as follows:

Fr + 20 = f(5) + 2e %f(y) (C.12)

(C.11)

Also, to facilitate taking the limit, it is convenient to

express 7 and € in terms of y, &, and o, using Egs. (C.5)
and (C.7) as follows:

2N o .
=2 e € v (C.13)

Inserting Eqs. (C.12) and (C.13) into Eq. (C.11),
f0) + @o/VNF () _ _N/2 = yVN/20

S N/2 + yVN/2¢ + 1
(C.14)
where we have introduced the abbreviation f' = df/dy.
Rearranging,
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Derivation of Gauss Distribution

26 f'(49) _ _N/2 — yV'N/2q

VN3 N2+ yVN/26 +1 @'15)
and

£ - __y/e*+1/VNe (C.16)

) 1+ (y/V'No + 2/N)

Now, at last, we are ready to consider the limit of
Eq. (C.16) as N— o while ¢ is constant. Clearly, in
both numerator and denominator, the second term be-
comes very small compared to the first, if V is sufficiently
large. So in the limit the terms containing 1/v'N and
1/N both vanish, and we have simply

f}i((yl)l = -2 (C.17)

This is a differential equation for the desired function
Sf(9); it is easily solved by noting that

o _4d
S dy fG)

Making this substitution and integrating both sides of
the equation, we find

2
Inf(y) = —é{; + const (C.18)
We represent the integration constant by In 4, where 4

is another constant, and take antilogs of both sides, to
obtain

f(9) = Ade~viiee (C.19)

The value of the constant 4 is determined by re-
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calling the interpretation of f(y) discussed in Sec. 9.
The quantity f(y) dy is the probability that a single error
will fall in the range y to y - dy. Since the total probabil-
ity for the error to fall somewhere in the range of values
of y (which is now, strictly speaking, — to 4w) is
unity, we must insist that

f_: Ae—v/2" = 1
or

1
A= ——-__fw — (C.20)
e o

Making the substitution z = y/V/2¢, we obtain
A~ = V3¢ j_"; e dz (C.21)

‘The integral in this expression is evaluated in Ap-
pendix D and has the value V. Hence

1

4= Vs (C.22)
and

£(3) = «/%“;a emvi2e (C.23)

Finally, we express the function in terms of the observa-
tions rather than their errors. If y is the error correspond-
ing to an observation x, and the true value of the observed
quantity is m, then y = x — m. In terms of x,

1
f(x) __\/2——

e

¢ (a2 (C.24)
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Derivation of Gauss Distribution

This form is usually called the Gauss distribution, or
normal error function. :

In the preceding discussion, the Gauss distribution
has been shown to be an approximation of a distribution
closely related to the binomial distribution, valid when
the number N of independent events becomes very
large. By similar methods it can be shown that any
binomial distribution approaches the Gaussian form if
N is very large and p is finite. Thus for large N we can
represent a binomial distribution (which is very un-
wieldy for large N) by a Gauss distribution with the
same mean and standard deviation as the binomial,
namely, m = Np and o = (Npg)'/?, respectively. Thus
for large N we have approximately

]

firae) = s
1
V2w Npq

It should be noted that this is not a suitable approxima-
tion if p is extremely small. If p grows small as N grows
large, then the appropriate approximations lead instéad
to the Poisson distribution, discussed in Sec. 8.

R

¢~ m—Np)/2Npq (0.25)
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APPENDIX D

EVALUATION OF NORMAL ERROR
INTEGRAL

In developing the Gauss distribution, it is n(;ceséary to
know the value of the integral

I= f_: e dx

We denote the value of the integral by I. Then, since
the variable of integration has no effect on the value of
the result, we write

r= f " eTds [T e (D.1)

Now Eq. (D.1) can also be interpreted as the double
integral over the x — y plane of the function

e"-zze—'ﬂz = e—($2+y’)
That is,

I = /_“ f_“ e~ @ dx dy - (D2)
It may help to interpret this integral geometrically.
Think of a tent whose floor is the x — y plane and whose

height above the x — » plane at any point (x,y) is
o= @+

Then the integrand

e~ @t dx gy

represents the volume of a column above the element of
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Evaluation of Normal Error Integral
floor area dxdy. Thus the quantity I? is just the total
volume enclosed by the tent and its floor.

Now we transform Eq. (D.2) into polar coordinates,
using as the element of floor area dr (r df) instead of
dx dy, and using r* = x? + »2. We thus obtain

= /rr:ow /;:2’ e~ "rdrdf (D.3)

‘This integral now can be expressed in terms of two inte-

grals, each of which contains only one of the variables,
as follows:

I? = fowe"’r dr [/02" d0] (D.4)

"The integration on 6 is trivial and gives simply a factor

27. The r integral can be evaluated by making the
substitution 72 = u.

2 = Zw/;)” e *Ydu=1 (DS)
Thus
I= /_: e~Pdx = V7 (D.6)
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Table I. Values of the Gauss Function* Table Il. Integrals of the Gauss Function*

¢—#/2 are given for various values of ¢.

Values of the function i
2w |
|

. i [T
Values of the integral sz / e—#/2 dt are given for various values of
T Jo

Each figure in the body of the table is preceded by a decimal point. T. To evaluate Eq. (9.22) in the text, use the relation

: 1 o000 |o0t]o002]003]|004]005] 006|007 | 008|000 1 [T 1 [T
Vor e~t2dt =2 —= | ¢-t/24
0.0 39808 {39892 | 39886 | 39876 | 39862 | 39844 | 30822 | 39797 | 39767 | 39733 : 2 J-r1 27 Jo
01139695  |39654'| 39608 | 39559 | 39505 | 30448 | 30387 | 39322 | 39253 | 39181 2 A related function which i . i
0.2 | 39104 39024 | 38940 | 38853 | 38762 | 38667 | 38568 | 38466 | 38361 | 38251 i nciion which is sometimes used is erf 2, defined by .
03138139  |38023 | 37003 | 37780 37654 | 37524 | 37391 | 37255 | 37115 | 36973 ! .
0436827  |36678 | 36526 | 36371 | 36213 | 36053 | 35889 | 35723 | 35553 | 35381 z fr= L o
¥ : erf z v e dx
05 |35207  |35029 | 34849 | 3467 | 34482 | 34204 | 34105 | 33912 53718 | 33521 T
06133322 |33121 32918 | 32713 | 32506 | 32297 | 32086 | 31874 | 31659 | 31443 The values given h 5
07 131205 |31006 | 30785 | 30563 | 30339 | 30114 | 20887 | 29658 | 29430 | 29200 . Bach foumern e b equal to ¥ erf (T/V'2).
0.8 | 28969 28737 128504 | 28269 | 28034 | 27798 | 27562 | 27324 | 27086 | 26848 ch higure in e body of the table is preceded by a decimal point.
0.9 | 26600 | 26369 | 26129 | 25888 | 25647 | 25406 | 25164 | 24923 | 24681 | 24439
T 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.0 124197 |23955 23713 | 23471 | 23230 | 22988 | 22747 | 22506 | 22265 | 22025 o0 | 00000 00399 | 00798
1121785 |21546 | 21307 | 21069 | 20831 | 20594 | 20357 | 20121 | 19886 | 19652 o1 |o398s | 04380 | 04776 | 03172 | 03367 | 0063 | oRase | verey | ooiss | Saase
1.2 | 19419 19186 | 18954 | 18724 | 18494 | 18265 | 18037 | 17810 | 17585 | 17360 0.2 | 07926 08317 | 08706 | 09095 | 09483 | 09871 | 10257 | 10642 | 11036 | Lizo0
13117137 | 16915 | 16694 | 16474 | 16256 | 16038 | 15822 | 15608 | 15395 | 15183 o | 1353 15510 | 16576 | 1aes0 | 13005 | 1385 | 14008 | 14e31 | 14803 1519
1.4 | 14973 14764 14556 | 14350} 14146 | 13943 | 13742 {13542 | 13344 | 13147 f 05 | 10145 rou57 | 15847 17724 { 18082 | 18439 | 18793
y 20194 | 20450 { 20884 | 21226 | 21566 | 21904 | 2
15112052 |12758 12566 | 12376 | 12188 | 12001 | 11816 | 11632 | 11450 | 11270 07 | 33504 2007 | 2237 | 23009 | 2301 | 26215 | 2a0a7 | aaney | zorrs | 25400
16 |11002 110015 {10741 | 10567 | 10396 | 10226 | 10059 | 09893 | 09728 | 09566 08 | 28814 29103 | 20389 | 29675 | 30055 | 3094 | 5051; | s0ues | seacy | 2952¢
‘ 17109405  |09246 | 09089 | 08933 | 08780 | 08628 | 08478 | 08329 | 08183 | 08038 09 | 31594 51859 | 32121 | 32381 | 32630 | 32694 | 33147 | 9908 | ssess | ouoay
‘ 18 |0789s  |07754 | 07614 {07477 | 07341 | 07206 | 07074 | 06943 | 06814 | 06687 1.0 | 34134 54375 | 34614 | 34850 | 35083 | 35315
: 1906562  |06438 06316 | 06195 | 06077 | 05959 | 05844 | 05730 | 05618 | 05508 13| 8esss | 50050 | soscs | 3707 | 3726 | 37499 | 37605 | S7a00 | Saion | Jerde
_; - 877 | 39065 | 39251 39435 { 39617 | 39796 | 3997
20105309 |05202 05186 | 05082 | 04980 | 04879 | 04780 04682 | 04586 | 04491 VMR |doun | dos | soon | dcems | atias | atsos | aiees | sieat | 41172
] 21| 04398 | 04307 | 04217 | 04128 { 04041 | 03955 | 03871 | 03788 | 03706 | 03626 I D i 07 | 42647 | 42786 | 42922 | 43056 | 43189
{ 52103547 | 0347003394 03319 | 03246 | 03174 | 03103 | 03034 | 02965 | 02898 - 448 | 43574 | 43699 | 43822 | 43043 | 44062 | 44179 | 44
{ 23 02833 |02768 | 02705 | 02643 | 02582 | 02522 | 02463 | 02406 | 02349 | 02294 Dl e s | wee | o | ssess | 35 | 4o | 4003 | 2848
2402239 | 02186 | 02134 | 02083 [ 02033 | 01984 | 01936 | 01888 | 01842 } 01797 18 | 46407 48485 | 48562 | 46636 | 48712 | 40704 | seme | Aohod | 40245 | 6327
2.5 |01753  |01709 | 01667 | 01625 | 01585 | 01545 | 01506 | 01468 | 01431 | 01394 20 i 7L | 4TEOT | 47920 | 47801 | 47441 | 47500 | 47558 | 47615 | 47670
; . 0 | 47725
{ 26 |01358 0132301289 | 01256 | 01223 {01191 | 01160 | 01130 | 01100 | 01071 21 | s8212 36257 | da300 | 4a04; | $2953 | 47952 | 45030 | no7r | 4vize | 4eic
277|0t042 {01014 00987 | 00961 | 00935 | 00909 | 00885 | 00861 | 00837 | 00814 22 | 48610 | 48645 | 48679 | 48713 | 0745 | 48775 | 45800 | 4004o | 40870 | 46003
{ 2800792 |00770| 00748 | 00727 | 00707 | 00687 | 00668 | 00649 | 00631 | 00613 54 | 19180 40502 | 45357 | 43010 | 49035 | 4061 | 40086 | 49111 | 49134 | 40158
29100595 | 00578 | 00562 | 00545 | 00530 | 00514 | 00499 | 00485 | 00470 | 00457 o 5 | 49266 | 49286 { 49305 | 40324 | 49343 | 0361
‘§_ : : 49306 | 49413 | 49430 | 49446 | 49461 | 49477 | 40492 | 49
3.0 | 00443 28 | 3354 5087 | 4560 | 49573 | 49985 | 49508 | 49609 | 49621 43635 | 4943
| g hirna s 28 | 49734 49752 | 49760 | 49767 | 49774 | dorar | sores | deve | 49728 | 40736
? 2(‘51 gggg}?zg :-z :::;3 49819 | 49825 | 49831 | 49836 | 49841 | 49846 | 49851 | 49856 4936?
P . 2 5
; 5.0 | 000001487 3.5 | 4997674
i 4.0 | 4999683
i . 4.5 | 4999966
L * This table was adapted, by permission, from F. C. Kent, “Elements of 5.0 | 4999997133
: Statistics,” McGraw-Hill Book Company, Inc.;lNew Yorlk, 1924.
: A more complete table is “Tables of Normal Probability Functions,” * This table was adapted, b jssi : « i tics
National Burcau of Standards, Washington, 1953, Y Hill Book Gompany, Inc. N Yor, famg, o conts “Elementsof Statstics” McGra-
160 of Stamxi!;ﬁ,c\%gglllﬁ:g:::,lei353? ables of Normal Probability Functions,” National Bureau
161
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Table I1l. Maximum Deviations for Table IV. Values of x2*

Chauvenet’s Criterion The table gives values of x? which have various probabilities of being
-each value of N (N = number of observations) the table gives the excerded by a sample taken from the given parent distribution. ‘ The

F:lr eacf Z/; such that the probability of occurrence of deviations number of degrees of freedom is v. To illustrate: For a sample with

value of d;

) 10 degrees of freedom, the probability is 0.99 that it will have
i 2N. s
larger than the given value is 1/ x* > 2.558 and 0.001 that x? > 29.588.

N d; / o N dc/ o Probability
H 14
5 1.65 30 2.39 | 099 098 | 095 | 090 [ 080 | 0.20 | 010 | 0.05 | 0.02 | 0.0t |0.001
6 1.73 40 2.49 1| 00457 0.0%628/ 000393 0.0158; 0.0642] 1.642| 2.706| 3.841| 5.412] 6.635 ] 10.527
50 2.57 2 | 002011 00404} 0103 | 0.211 | 0.446 | 3.219] 4.605| 5.901] 7.824| 9.210|13.815
7 1.81 . 3 | 0115 | 0185 | 0352 | 0.584 | 1.005 [ 4.642| 6.251| 7.815| 0.837{11.341 | 15.268
8 1.86 60 2.64 410297 | 0429 | 0711 | 1.064 | 1.649 | 5.989] 7.779] 9.488 | 11.668 | 13.277 | 18.465
9 1 80 274 : 5] 055 | 0752 | 1.145 | 1.610 | 2.343 | 7.289( 9.236)11.070{ 13.388 | 15.086 | 20.517
10 96 100 2.81 610872 | 1134 | 1,635 | 2204 | 3.070 | 8.558(10.645 12,592 { 15.033 | 16.812 | 22.457
N 7| 1239 { 1.56¢ | 2167 | 2833 ] 3.822 | 9.803|12.017 | 14.067 | 16.622 | 18.475 | 24.322
12 2.04 150 293 8 | 1.646 | 2.082 | 2733 | 3.490 | 4.594 [11.03013.362 [ 15.507 | 18.168 | 20.090 | 26.125
2.10 200 3.02 9 | 2088 | 2532 | 3395 | 4.168 | 5.380 | 12.242 | 14.684 | 16.919 | 19.679 | 21.666 | 27.877
14 . 10 | 2.558 | 3.059 | 3.940 | 4.865 { 6.179 | 13.442]15.987 | 18.307 | 21.161 | 23.209 | 29.588
16 2.15 300 3.14 .

. 400 3.23 11 f 3.053 | 3609 | 4575 | 5578 | 6.989 |14.631|17.275 | 19.675 | 22.618 ] 24.725 | 31.264
18 2.20 . 12 | 8571 | 4.178 | 5226 | 6304 [ 7.807 | 15812 18.549 | 21.026 | 24.054 | 26.217 | 32.900
20 2.24 500 3.29 13 | 4107 | 4765 | 5892 | 7.042 | 8.634 |16.985]19.812 | 22.362 | 25.472 | 27.688 | 34.528

3.48 14 | 4660 | 5368 ) 6.571 | 7.790 { 9.467 | 18.151 | 21.064 | 23,685 | 26.873 | 29.141 | 36.123
25 2.33 1000 . 15 | 5.229 | 5985 | 7.261 | 8.547 |10.307 | 19.311 | 22.307 | 24.906 | 28.259 | 30.578 | 37.697

16 | 5.812 6.614 7.962 9.312 |11.152 120.465 { 23.542 | 26.296 | 29.633 | 32.000 | 39.252 -
17 1 6.408 7.255 8.672 110.085 | 12.002 | 21.615 ] 24.769 | 27.587 { 30.995 | 33.409 | 40.790
18 | 7.015 7.906 | 9.390 |10.865 |12.857 | 22.760 | 25.989 ] 28.869 | 32.346 | 34.805 42.312
19 | 7.633 | 8.567 110.117 }11.651 |13.716 | 23.900] 27.204 30.144 | 33.687 | 36.191 | 43.820
20 | 8260 | 9.237 110.851 |[12.443 |14.578 [25.038 | 28.412 | 31 410 { 35.020 | 37.566 | 45.315

{ bl . 3 21 8.897 9.915 111.591 }13.240 |15.445 | 26.171 | 29.615 | 32.671 | 36.343 | 38.932 46,797
22 | 9.542 110600 |12.338 |14.041 |16.314 | 27.301 | 30.813 33.924 | 37.659 | 40.289 | 48.268
23 110.196 |11.293 |13.091 |14.848 }17.187 | 28.429 32,007 | 35.172 { 38.968 | 41,638 | 49.728
‘ it 24 110.856 111.992 113.848 |15.659 | 18.062 | 29.553 | 33.196 36.415 | 40.270'| 42.980 | 51.179
I 25 |11.524 112,697 [14.611 [16.473 | 18.940 | 30.675 34,382 37.652 | 41.566 | 44.314 [ 52.620

26 112,198 [13.409 15379 {17.292 |19.820 | 31.795 | 35.563 38.885 | 42.856 | 45.642 | 54.052
27 112.879 114125 116.151 }18.114 |20.703 | 32.912 | 36.741 40.113 | 44,140 | 46.963 | 55.476
28 113,565 {14.847 |16.928 [18.939 §21.588 | 34.027 37.916 { 41.337 | 45.419 | 48.278 { 56.893
; 29 114.256 115.574 |17.708 |19.768 |22.475 | 35.139 | 39.087 | 42.557 46.693 | 49.588 | 58.302
[ 30 [14.953 |16.306 |18.493 |20.599 | 23.364 | 36.250 | 40.256 43.773 [ 47.962 | 50.892 | 59.703

- * This table is reproduced in abridged form from Table IV of Fisher and Yates, “Statistical
! ’ Tables for Biological, Agricultural, and Medical Research,” published by Oliver & Boyd,
Ltd., Edinburgh, by permission of the authors and publishers.
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Table V. Correlation Coefficients*

The table gives values of the correlation coefﬁcieflt r which.have
certain probabilities of being exceeded for observations of vam?bles
whose parent distributions are independent. The number of pairs of
observations is N. To illustrate: for a sample of 10 pairs of observa-
tions on unrelated variables, the probability is 0.10 that it will have
r > 0.549, and the probability is 0.001 that r > 0.875.

Probability

N :
0.10 0.05 0.02 0.01 0.001
3 0.988 0.997 0.999 1.000 1.000
4 0.900 0.950 0.980 0.990 0.999
5 0.805 0.878 0.934 0.959 0.992
6 0.729 0.811 0.882 0.917 0.974
7 0.669 0.754 0.833 0.874 0.951
8 0.621 0.707 0.789 0.834 0.925
10 0.549 0.632 0.716 0.765 0.872
12 0.497 0.576 0.658 0.708 0.823
15 |1 0.441 0.514 0.592 0.641 0.760
20 0.378 0.444 0.516 0.561 0.679
30 0.307 0.362 0.423 0.464 0.572
40 0.264 0.312 0.367 0.403 0.502
60 0.219 0.259 0.306 0.337 0.422
80 0.188 0.223 0.263 0.291 0.366
100 0.168 0.199 0.235 0.259 0.327

* This table is adapted from Table VI of Fisher and Yates, “Statis-
tical Tables for Biological, Agricultural, and Medical Research,”
published by Oliver & Boyd, Ltd., Edinburgh, by permission of the
authors and publishers.
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ANSWERS TO PROBLEMS

CHAPTER |
1. (o) —8.02% 13. (@) 0.30 m/sec?;
‘ (6) —0.366% 0.10 m/sec?
. (a) 0.0402 ® T .
’ E‘Z; 8.5 X (172))~8 14. AF, = —Fsin 0 A8
3. Increases g,,/; Fcos zﬁfe A0
: no, 20 mph W/ Fy = —
4. 40 mph; no, 20 mp! AR = ot8 48
5 4% 15. {a) 0.005
6. 20.131b ) 2 x 10~
7. (a) 0.5 X 10~ © 104
(6) 0.005 @) 0.4
9. Yn(n — 1)(3/4)* (e) 0.04 ~
10. (a) 1.003 16. m=3,0=V2 a="5%
(&) 1.002 17. (a) 3.50
(¢) 1.002 (5) 4.17
11. (@) 0.2 cm, 0.2 cm (c) 3.50°
' EZ; 0.0019; 0.040 18. ¢ = 0.0024, a = 0.0018
‘12 (@ 6=0 20. Standard deviation
() 0 = 45° 2. a=e/2,0=eV3
CHAPTER 11
1. 8; ves, 3% 7. %9, 15303, 1
2. (a) % 8. ¥, 14, 1%; yes
&) (%6)* 9. %o
) (%)* 10. (a) 0.28
(@) 0 (6) 0.010
3.2,3,4,5,6; (c) 0.060
Y% %, As, %, %63 11. 0.349, 0.388, 0.263
4 3%4’ :@‘*’ 3%2’ 3%2’ }//i“’ 12. Roughly 20%
5 é%gsz, oo Yo Yo 13. ¥, %6, 2%16 (6)%6)"
6. Y06 14. 252
166

15. 27,405
16. 945

17. 231,525
18. 140, 725

Answers to Problems
19. 521/391131;
no, 4 X 521/39!131
20. }4165; no
22, 0.614

CHAPTER 11
L. Y64, %2, %4, He, 1964, 342, Ya; ves

2. 36; 5254296, ®°% 206, 15% 296, 2%{206, K296, 0

3. 0.887, 0.107, 0.006

4, 4Ns ZN, O: ZS: 4'S§ %6, %5 %5 %: %6
5. For m blocks north, P,, = N1/(N/2 + m/2)(N/2 — m/2) 128

6. 0; N1/2

7.4N,2N,0,28,45; Y56, 1356, 5456, 198455, 8456

8. For m blocks north,
N!

m

9. N/2 blocks south;

(3N/4)uz

10. () 7 = 73; ¢ = 27
(¢) 61

11. 7.8, 2.0

12. 0.135, 0.270, 0.270,
0.180, 0.090, 0.036,
0.012, 0.003, 0.001; 8

13. 1.78, 1.36; 1.33

16. 0.632

17. 1.3 X 107%; very unlikely

18. 0.0014; coin is probably
asymmetric

(5E2) (552), () @)

19. a = (2/m)12 ¢
20. 0.383
21. 0.674 o; no; 0
22. 3,1.22
23. (a) 0.175

(&) 0.338
24. (&) /7

€ m

(d) Infinite
25. (&) 2b/%w

(c) m

{d) 8(4/m — )12
26. 0, 4/V'2, 4 Af, V2 n4f

CHAPTER 1V

1. 7.6 X 10¢
2. 0.0114
3. 3N

4, ¥ = (5)1/4 + 3(5)2/4
1/0’,»2 = ]V/tf],2 + 3N/0’22
7. 0.22 m/sec?
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Answers to Problems

8. () 0.023in.,0.017 in.
(6) = 11.000 = 0.012 in., !

w = 8.500 % 0.006 in.

() 4 =93.50 % 0.11 in.

INDEX

Accuracy, 3

x? test, definition of, 82

9. No; difference is much larger than o N = % Answers to problems, 166-168 interpretation of, 83-84, 163
10. 0.83%; ¢ 5 S S Ze Approximations, and binomial Combinations, 30-33
11. (e) 0.900 :I:°0.09 S2 BB e theorem, 19-20 Compounding of errors (sec Prop-
(6) 64”-;1: 12 &= A using derivatives, 4-7 agation of errors)
13. (a/N) A Arithmetic mean (se¢ Mean) Consistency, tests for, 109-110
14. R =Z V2 Vili where A= |N Zt 2Z¢ Average (se¢c Mean) Correlation, 126-132
15. x = 0.96, = 0.015 Ze Zer Zp Average deviation (se¢ Mean de-  Correlation coefficient, linear,
16. a = 30%6° e Ze 3 viation) 130
5 = g;g/i 18, y = 1.34x — 0.29, interpretation of, 130-132, 164
if all errors have same if y errors are normal and Bibliography, 165 )
3 normal distribution x errors negligible Binomial, expansion of, 33-34 Data, rejection of, 76-80
o 17. ) B Tt Ze 19 NIILC; — (ZL)(ZC) Binomial coefficients, 32—34 Degrees of freedom, 84-85
st S I8 * NZI2 — (ZL)? sum of, 34, 54 Derivative, partial, 6-7
T2 B S . Binomial distribution, 48-57 Deviation, 12-13
i 20. 3ZiC/N(N + DN +1) _ examples of, 48-53 in fit of straight line, 120
N Oz e J mean o.f, 5‘.1, 147-148 in least-squares calculations,
E It st 2 normalization of, 54 112, 117, 123-125
T T S : ! standard deviation of, 56-57, of mean, 93-94
v = 148-150 Dispersion, measures of, 12-18
P ; variance of, 56-57, 148-150 Distribution of random errors,
1 i ‘ Binomial theorem, 33~34 64-66

Blunders, 3, 77 (Se¢ also Binomial distribution;

Gauss distribution; Parent

: . distribution; Poisson dis-
i Calibration errors, 2 tribution; Probability dis-
[ Cauchy distribution, 90, 96 tribution; Sample distri-
; Central-limit theorem, 64-65, 96 bution; Standard distri-
. Chance errors, 2-3 bution)

ool ' Chauvenet’s criterion, 78-80, 162

‘ “ X? test, 80-86, 163

; for continuous distribution,

Error function (see Gauss distri-
85-86 bution)

168 ; 169




Index

Errors, calibration, 2
fractional, 6
kinds of, 2-3
propagation of, 3-8, 96-101
random, 2
systematic, 2
true, relation to deviations, 13

Factorial, 30

zero, 32-33
Fractional standard deviation,

17-18

calculations with, 99-101
Frequency, 81, 84

(See also Probability distribu-

tion)

Gauss distribution, 64-76
derivation of, 151-157
examples of, 67, 72, 74-76
experimental basis of, 64—66
integrals of, 158-159, 161
mean of, 70-71
mean deviation of, 73
measure of precision of, 72-73
modified, 79-80
normalization of, 69-70, 158—

159
relation to binomial distribu-
tion, 157
standard deviation of, 71-72
values of, 160
variance of, 71-72
Goodness of fit, 80-86
170

Infinite parent distribution, 45
comparison with sample, 80~82

Least squares (see Method of least
squares)
Least-squares sum, 105, 107, 111
and variance of mean, 110-111
Line of regression, 129

Mean, 9-12
of binomial distribution, 55—
56, 147-148
definition of, 9-10
of Gauss distribution, 70-71,73
of Poisson distribution, 60-61
of a probability distribution,
42-43
standard deviation of, 92-96
variance of, 92-96
weighted, 10-12, 108-109
standard deviation of, 18,
108-109
Mean deviation, definition of,
14-15, 17
of Gauss distribution, 73
Measure of precision of Gauss dis-
tribution, 72-73
Method of least squares, 101-126
examples of, 103, 112-119
generalizations of, 123-126
observations of unequal weight,
107-109
one unknown, 101-103
several unknowns, 115-126
straight line, 117-123

CAOE

Mistakes, 3, 77
Most probable value; 104-105,
108-110
standard deviation of, 92-95,
105-109
for straight line constants, 120—
121

Normal distribution (se¢ Gauss

distribution)

Normal equations, 118-120, 124-
126

Normal error furiction (see Gauss
distribution)

Normalization, binomial distri-
bution, 54

Gauss distribution, 69-70, 158—
159

Poisson distribution, 60
probability distribution, 40,
60-61, 68—69

Observation equations, 116-117,
124-126
nonlinear, 125

Parameters of distributions, 59— ~

60, 66-73
Parent distribution, 45
comparison with sample distri-
bution, 80-82
Partial derivative, 6-7
Per cent standard deviation, 17-
18

Index

Permutations, 29-30
Poisson distribution, 57-64
examples of, 57-58, 61-64
mean of, 60-61
normalization of, 60
relation to binomial distribu-
tion, 58-59
standard deviation of, 61
variance of, 61
Precision, 3
of the mean, 95-96
Principle, of least squares, 102,
117
(See also Method of least
squares)
of maximum likelihood, 103—
104, 107-112, 117
Probability, balls in an urn, 27—
28
compound, 25-27
definition of, 23-25
for dice, 25-27
flipping pennies, 23-25
meaning of, 23-28
Probability distribution, for con-
tinuous variable, 66-71
examples of, 39-44
mean of, 42-43
meaning of, 39-42
normalization of, 40, 60-61,
68-69
standard deviation of, 44
variance of, 44
(See also Binomial distribution;
Gauss distribution; Pois-
son distribution)

17




Index

Probable error, 90
Problems, 18-22, 34-38, 86-90,
132-138
answers to, 166168
. Propagation of errors, 3-8, 96—
101
examples of, 99-101

Radioactive decay, 57-58, 61-62
Regression, line of, 129
Rejection of data, 76-80
Residual (see Deviation)
Root-mean-square (rms) devia-
tion (see Standard deviation)

Sample of a distribution, 45
mean from, 45-46
standard deviation from, 45-46
Sample distribution, comparison
" with parent distribution, 80-
82
Scatter or spread (sec Dispersion)
Standard deviation, 15-18
of binomial distribution, 56-57,
148-150
calculations with, 96-101
definition of, 15-18
fractional, 17-18
calculations with, 99-101
of a function of observables,
96-101
of Gauss distribution, 71-72
of least-squares results, 100,
108, 114, 121-123
172

Standard deviation, of mean,
92-96
and least-squares sum, 110-
111
significance of, 93, 95-96
per cent, 17-18
of Poisson distribution, 61
of probability distribution, 44
significance of, 74-75
Summation symbol, 10, 16-17

True value, 8, 13
existence of, 8-9

Variance, of binomial distribu-
tion, 56-57, 148-150
definition of, 15
of Gauss distribution, 71-72
of least-squares results, 106,
108, 114, 121-123
of mean, 92-96
of Poisson distribution, 61
of probability distribution, 44
of variance, 106-107
of weighted mean, 18, 108-109

Weight, unequal, observations of,
9-12, 107-110
Weighted mean, 10-12, 108-109
standard deviation of, 18, 108-
109
variance of, 18, 108-109
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