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By Patricia F. Bronson and Robert L. Bronson

Wcighting and shaving dice are the usual methods
employed to cheat at dice. It is common knowledge that a
game played with loaded dice will not have the same
outcome as a game played with normal, or unbiased, dice.
Dice are loaded by adding small weights just below the
surfaces of some of the sides. This weighting changes the
probabilities with which certain numbers appear, increas-
ing the probability of rolling the number on the face that is
opposite to the face with the weight.1 The statistics of dice
can also be changed by changing their shape from that of
a perfect cube. It is for this reason that dice are milled to
an accuracy of 0.0025 mm (0.0001 in).

We have constructed dice with the shapes of parallele-
pipeds not to cheat but to add a new twist to an old game
of chance. In this paper we consider not only the change
in the probabilities brought about by a change in the shape
of dice but present a simple physical model to explain the
change. The model is based on the concepts of stable and
unstable equilibrium, energy wells, and motions of the
center of mass.

The Problem

When a die is tossed, its initial orientation and velocity
are unknown. It hits the ground and tumbles. To write
down an equation of motion and solve it seems not only
impractical but impossible. Let us approach the problem
from another perspective. The die is thrown and it tumbles
across the table losing kinetic energy as it goes. At some
point it will have lost enough energy so that it can no longer
roll over an edge onto the next face but, instead, falls
backwards. At this point the die can be considered to be
trapped in a specific orientation. We hypothesize that the

probability of it coming to rest in a specific orientation is
directly proportional to the depth of the potential energy
well swept out by its center of mass as it rolls across a face.

With the roll of a normal die, an equal probability of
rolling a one through a six is expected. The reason is
intuitively obvious, there being no way to distinguish the
sides except by their labels. Consider a cube of length {
made of a homogeneous material (see top of Fig. 1). The
center of mass of the cube lies in the geometrical center, a
distance & = [ /2 directly above the center of its base of
support. Because of the cubical symmetry, the center of
mass will always lie the same distance above the base of
support, independent of the side on which the die rests.

Consider now a die that has been deformed into a
parallelepiped so that two of its six sides are parallelo-
grams of acute angle 6. The length of a side is still { , but
the geometrical center of the die is now closer to the four
square faces while remaining the same distance from the
faces that are parallelograms. This die is represented by
the two drawings in the bottom of Fig. 1. On the lower left
side of Fig. 1 we depict the center of mass a distance
h' = h sin 6 from the square surface upon which it rests.
Rotating the bottom of this figure toward the observer
yields the figure on the lower right side of Fig. 1. From this
diagram it is easy to see that the center of mass lies a
distance & from the base of support, which is the face that
has the shape of a parallelogram.

When resting on a side, the configuration of a die is one
of stable equilibrium. That is, when displaced slightly from
that position (in this case rotated about an edge) and
released, it will return to its original position. If a die is
rotated 45° so that the center of mass lies directly above an
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to sweep out a curve, which represents
the potential energy well for the motion
of the die as it rolls across that particular
face.? It is obvious from these diagrams
that the shape of the potential energy
wells and their depths (W, W}, and W,)
A depend upon the shape of the cross sec-
h tion. The law of conservation of energy
V- '} - tells us that the die will not get out of the

well unless its kinetic energy exceeds its
— f—> mass times the gravitational constant at
the surface of the earth times the depth
of the well—mgW. It is our hypothesis
that the probability of the die coming to
/)’é!r rest on a particular face is proportional
to the depth of its potential energy well.
We propose verification of this hypoth-
esis by verifying the formula

A
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where P'/P is the ratio of the probabili-
ties of any two sides, W'/W is the ratio
of their well depths, and k a proportion-
Fig. 1. (Top) A cube of length has its center of mass a distance & = { /2 from the ality constant.

center of any face. (Bottom) Two orientations of a parallelepiped, with four faces that

are squares and two that are parallelograms, are represented here. The parallelogram

is identiﬁ_ed by its acute angle 6. In- the figure on the lower left the base is { and the The Die and Its Wells

height I sin 6. The center of mass lies a distance i’ = k sin 6 from the faces that are Tt us Takist the Fices of ths. die for
square. Rotating the bottom of this figure toward the observer yields the figure on the :
lower right. From this diagram it is easy to see that the center of mass lies a distance reference. Let the sides that are paral-
h from the base of support, which is the face that has the shape of a parallelogram. lelograms be labeled 3 and 4. When the
die is resting on either of these sides the

edge, the configuration is one of unstable equilibrium and center of mass is a distance & above the
with the slightest provocation it could fall either way. face in question. Resting on a 3 yiclds a toss of 4 and vice

Two cross-sectional diagrams of dice as theyroll across versa. These sides are distinguishable only by their labels.
a face from edge to opposite edge are represented in Fig. The four remaining sides (1, 2, 5, and 6) are squares, and
2. Figure 2 (top) has a cross section that is square, whereas the center of mass is a distance A’ above the face in
Fig. 2 (bottom) has a cross section in the shape of a question. Rolling a 1 means the die is resting on a 6, rolling
parallelogram. In each figure the center of mass is shown a 2 means it’s resting on a 5, and vice versa. These four
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Fig. 2. The potential energy wells swept out by the center of
mass as dice roll from edge to face to opposite edge are shown.
The wells can be symmetric (top) as in the case of a square, or
asymmetric (bottom) as in the case of a parallelogram.

sides are also identical except for their labels. Let the
probability of rolling a 3 or a 4 be P

The well depth W’ has one symmetric and one asymmetric
component as shown in Fig. 3 (bottom). The components
are calculated to be

(R N A & ;_ (3)
Wi=r.-h —-hsme[sin(e/z) 1]

(S L A < —1____ (4)
W, =r'y—h" = hsiné [cos(9/2) 1]

and

Wiy =r'3—h" =h [,/1+sin29 —sin9] Q)

The well depth is the average of these four according to
the equation W' = (W'1 + W, + 2W'3) /4.

The Experiment and the Ratio of Probabilities

We had three dice constructed using the angles 30°, 45°,
and 60° for 8. These dice were milled to an accuracy of
0.0025 mm. According to the Laplace-Gauss theorem,
9604 throws of a suspect die are required to test for a bias
to within one percent with 0.95 confidence.* Accordingly,
each die was rolled 9500 times. The authors, one of whom
was a student and thus did most of the tossing, tabulated
the results by hand. Our cumulative efforts are presented
in Table I. Ideally, we expected P; = P, = Ps = Pg and
P = P,, but we noticed that the dice showed preference
for certain sides and that this preference became more
obvious with decreasing angle 6. We attributed this to the
fact that as 6 decreases so does the volume and mass of the
die, making the smaller die more sensitive to minor devia-
tions in measure and homogeneity. Therefore, the ratio
P'/P was found by averaging supposedly identical sides.
The results, along with those of a perfect cube, are tabu-
lated in Table II. The data P'/P vs W'/W were sent through
a least squares fit and are plotted in Fig. 4. The fit is good,

(since P3 = P4) and the probability of
rolling a 1, 2, 5, or 6 be P’ (since
Py =P, = Ps = Py).

Three cross sections of the die, taken
through its center of mass, are repre-
sented in Fig. 3. Note that none of the
cross sections are squares, although
there are four square faces on the sur-
face of the die. The well of depth W
associated with P is a symmetric well
across both orientations. The top of the
well will be the distance from the edge
to the center of mass, labeled r in Fig. 3.

Its magnitude is v/ h? + h'2. The well

depth Wis the difference between r and
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Fig. 3. Geometry for the wells, W and W', in Egs. (2) through (5). (Top) The well W
will have a depth r — h. (Bottom) The well W’ is found from the average of three

different depths W'y =r'y — h', W2 =r's — h’, and twice W3 =r's — h'.
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Table I. The results of 9500 throws of the three dice. 1 (6)
P=——_
2(2K + 1)
0 1 2 3 4 5 6 total
d
60° 1890 1914 949 964 1908 1905 9530
45° 2180 2079 493 494 2027 2227 9500 P o= K @)
30° 2474 2587 193 215 2123 1908 9500 2(2K + 1)

with an average relative deviation of less than two percent.
The linearity of this graph verifies the hypothesis that the
ratio of the probabilities is proportional to the well depths,
and the slope of the line 2.166 becomes the proportionality
constant k in Eq. (1).

Table II. The ratios of the probabilities and well depths.

0 P'/P wW'w
90° 1 1
60° 1.991 1.482
45° 4312 2.485
30° 11.14 5.688

Table III. A table of the probabilities for each die.

0 K P P’
90° 1.00 0.1667 0.1667
60° 1.991 0.1004 0.1998
45° 4312 0.0520 0.2240
30° 11.14 0.0215 0.2393

The final relationship is P'/P = 2.166 W'/W — 1.159.
When W'/W = 1 (the case for the nor-

The constant K is just the ratio P'/P in Table

I, and the individual probabilities are listed in
Table III. For a game played with two die, the probabilities
for throwing a 2 through 12 are found by summing the
different ways each number can be thrown. In Fig. 5is a
matrix for finding these sums,4 which are

P(2) = P(12) = P"? (8)
P(3) = P(11) = 2P"? )
P(4) = P(10) = 2P'P + P'* (10)
P(5) = P(9) = 4P'P (11)
P(6) = P(8) = 2P'> + 2P'P + P* (12)
and
P(7) = 4P"* + 2P? (13)

Figure 6 shows histograms of the probability of an event
(throwing a specific number between 2 and 12) vs the
event. For the normal dice (6 = 90°), the probability of
throwing a 7 is the greatest and the probabilities decrease
linearly on both sides. For the 8 = 60° dice, the probability
of rolling a 7 is slightly increased, as is the probability of
rolling a 2, 3, 11, and 12, while the probability of rolling a
5 or 9 is decreased. An interesting plateau develops on
this histogram, showing that the probability of rolling a 3,
4,5,9, 10, or 11 are approximately equal. For the § = 45°

mal die) the value of the fitted line’s P'/P

coordinate is 1.007, exceeding the level
of confidence accepted for the given set
of statistical data. We attach no signifi-
cance to points with either coordinate
less than 1.

—
N

o

A Game Played with Matched

Biased Dice

Before the probabilities of a game
played with two matched irregular dice
can be predicted, the probabilities for a
single die must be normalized; that is,
the sum of all probabilities must be one.
For the perfect cube the normalization
requires 6P = 1 or the probability P =

£~ =2 o
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RATIO OF THE PROBABILITIES

V6. For the parallelepiped, the normal-
ization condition is 4P’ + 2P = 1. Sub-
stituting P’ = KP into this equation and

RATIO OF

2 3 4 5
THE WELL DEPTHS

solving yields P and P’

Fig. 4. A graph of the ratio of the probabilities vs the ratio of the well depths is
presented. The graph is linear with a slope 2.166 and a y intercept of —1.159.
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Fig. 5. A matrix for finding the probabilities of rolling a 2
through a 12 using two identically biased die is presented here.
The entries in the matrix represent every possible combination
of the toss of the dice. The probability of rolling a particular
number can be found by summing the terms enclosed in the
diagonal lines.

and 30° dice, the relative lowering and raising of the proba-
bilities continues, producing a symmetric distribution
about 7 with three distinct peaks. Needless to say, the
statistics involved in playing a game with these dice differ
greatly from the statistics of playing with traditional cubes.

Conclusions

The hypothesis that the probability of a die being
trapped in a specific orientation is directly proportional to
the depth of the potential energy well swept out by its
center of mass as it rolls across a face was verified by
plotting the ratio of the probabilities (found experimen-
tally) to the ratio of the well depths (found theoretically)
and finding it to be a straight line.

In conclusion, we believe that this study in the change
of the statistics of dice due to a change in their shape
provides not only a new twist to an old game but an
interesting lesson on stability and potential energy wells.

290 THE PHYSICS TEACHER MAY 1990

0.2
g
01F -
00 —
— | ]
Z 01F .
¥1]
o
" 00 [ 1
<
(N
S 02f ] 3
b
b—
501 -
m
<
m 0.0
O
o
% 02} ] y
01F a
00 23 456 78910112
EVENT

Fig. 6. Histograms of the probability of an event vs the event for
two identical die are represented here. Individual histograms
are, from top to bottom, the cube, the 60° 45° and the 30° dice.
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