Microcomputers will play an ever increasing role in un-
dergraduate laboratory applications. They provide a
means for solving complex differential equations (and oth-
er numerical problems), collecting and analyzing data, and
demonstrating the overall usefulness of computers in phy-
sics. In use for three quarters so far, our microcomputer
sequence has been very successful. Via these experiments,
introductory physics students show a remarkable grasp of
some physical concepts historically considered to be be-
yond their level. We find we can emphasize the basic
“physical” aspects of the pendulum without burying the
students in advanced mathematics. Further, in the period—
amplitude session, the microcomputer permits a vivid de-
monstration of the scientific method. The students see a
phenomenon theoretically explained, solve the theoretical
problem numerically, and then attempt to test the predic-
tive features of the theory through an experiment. In the
resistance coefficient session, students see the advantages
of using the computer for data collection, storage, and pro-
cessing. Perhaps most importantly, these experiments
serve as an educational example of contemporary techno-
logy applied to “old” problems in a new way.
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13, B. Marion, Classical Dynamics of Particles and Systems, 2nd ed. (Aca-
demic, New York, 1970), pp. 159-165.

2These microcomputers are fully described in A. Osborne and C. S. Dona-
hue, PET /CBM Personal Computer Guide (Osborne/McGraw-Hill,
Berkeley, CA, 1980).

3Q s usually defined via the relation Q ~' = AE /(27E ), where AE is the
energy loss per cycle and E is the maximum stored energy during the
cycle.

“The programs used in the experiments were developed at UCSB. In parti-
cular, the machine language programs which control input and output to
the 6522 VIA timers utilized a few standard sources: A. Osborne and C.
S. Donahue, Versatile Interface Adapter (Synertek, Santa Clara, CA,
1979) and MCS 6500 Instruction Set Summary (MOS Technology, Nor-
ristown, PA ), and the Commodore PET schematic diagrams.

5G. Arfhen, Mathematical Methods for Physicists (Academic, New York,
1970), pp. 273-275.

$The “midpoint Euler method” is a variation of the standard Euler meth-
od commonly used for numerically solving differential equations. [See,
for example, R. W. Hornbech, Numerical Methods (Quantum, New
York, 1975), pp. 189-194.] The variation is affected by calculating the
value of the first derivative at the middle of the interval and using this
“midpoint value” to calculate the value of the dependent variable at the
end of the interval.

"Reference 1, pp. 52-55.

8p reflects friction due to other sources as well, such as the friction
between the pendulum string and the pivot point.
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Plastic cubes (dice) were “loaded’ for asymmetric insertion of brass cylinders, thereby displacing
the mass center from the geometric center of each cube. The statistics of seven differently
“loaded” dice have been studied experimentally, and the results analyzed in terms of a
Boltzmann-like model involving gravitational energy differences among the various orientations.
“Loaded dice” may provide interesting and easily visualized systems for the introduction of
concepts such as activation energy, degeneracy, partition function, and elementary group theory.

INTRODUCTION

One hears of gamblers “loading” dice to get an edge from
their private knowledge of the altered statistics. In order to
explore the effect of mass loading on dice statistics, plastic
cubes (dice) (purchased from Commercial Plastics, Inc., 98-
31 Jamaica Ave., Richmond Hill, NY 11418) were loaded
in various geometries. Results were compared with the pre-
dictions of two empirical Boltzmann-like models. The
pedagogic value of this investigation is that one encounters
calculations involving center of mass, activation energies,
and partition functions. The geometric origin of degener-
acy is clarified by an examination of the models.

DICE GEOMETRIES

Side and top views of die 1 are shown in Fig. 1, together
with parameters of interest. R, is the distance between the
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center of the plastic cube and the center of the cylindrical
brass load. The center of mass is displaced from the geo-
metric center by

Rey =RV, (ps —Pp)/M’ (1)

where V0, are the volume and density of the brass load,
respectively, p, is the density of the plastic, and M is the
total mass of the loaded die. The gravitational potential
energy U of a die is given by U= MgR, where R is the
height of the center of mass above its lowest value
(L /2 — Rey)

The gravitational potential energies of die 1, for various
orientations, are provided in Fig. 2. The lowest energy con-
figuration [Fig. 2(d)] defines the zero of potential energy,
and all energies are calculated with respect to this zero
point. After being tossed, a die tumbles until it comes to
rest. In this article, a die configuration with energy U, will
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Fig. 1. Side and top views of die 1, with the brass load indicated by shad-
ing. R, measures the distance from the center of the brass to the geometric
center of the cube.

be referred to as state 1. In tumbling from one state to
another a gravitational potential barrier must be overcome;
there is an activation energy. In Fig. 2(b), die 1 is shown in
the highest potential energy state between states U, and U,.
The activation energy AE,, is given for this case (tumbling
from state 1 to state 2) by

AE, =Mg[x — (Reyq + L /2)], (2a)
while the activation energy for the reverse tumble is

AE,, =Mg(x — L /2), (2b)
where

x=[(L/24 Rem) +I(L/2}"2 (2c)

Two other parameters, degeneracy and tumbling chan-
nels, are needed to complete the geometry of tumbling dice.
Degeneracy is the number of states with the same energy.
For die 1, the U,, U,, U, energy levels have degeneracies
(g;) of 1, 4, and 1, respectively. Degeneracies are presented
in Table I, for all dice.

The second parameter, the number of tumbling channels
(n;) is the number of ways by which a state with energy U,
can tumble through one 90° rotation, to a state with energy
U,. From a given starting state, there are four possible 90°
tumbles into other states. The remaining state is not direct-
ly accessible via a 90° rotation. In the terminology of atomic
physics, there are four allowed transitions from a given
state into adjacent states; the transition to the remaining
state is forbidden.! For die 1, there are four channels cou-

Table 1. Mechanical properties of dice (cgs units used throughout).
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Fig. 2. Die 1 in various states of gravitational potential energy: (a)
U, =128 000 erg, (b) U, + EA |, = 207 900 erg, (c} U, = 63 900 erg, and
(d) U; =0erg.

pling state 1 (energy U,) to the four states with energy U,.
Thus for die 1 (and 2, 3 also),

np=4

n,, =1, sinceonly one of the four possible tumbles will
flip a state 2 to a state 1;

n,; =1, for the same reason as above;

ny, =4

ny; =ns;, =0, since these states do not couple directly
through a single 90° rotation;

n,, =2, since a state 2 can couple directly with two
adjacent degenerate states;

n,, =n33; =0, since states 1 and 3 are not degenerate.

Dice 2 and 3 are identical to die 1 in all respects except
that the brass loadings were smaller. The degeneracies and
tumbling channels have the same numerical values as for
die 1, since the geometries are identical. Die 4 has an “edge
load,” with geometric properties quite different from those
of the “face-loaded” dice, (numbers 1 to 3). Die 5 has a
“corner load”’; a brass cylinder lying along a body diagonal.
The exposed portion of the brass was ground to a corner
configuration. (The determination of the center of mass of
this corner load is an interesting problem in itself.) This die
has only two energy levels, each threefold degenerate.
After tossing die 5, it was modified: three edges were be-
veled (see Fig. 3) in order to determine whether the reduc-
tion in activation energy would affect the statistics measur-
ably. The last ““die” tested was a cylinder, with a brass load

Die Die Die Die Die Die Die
1 2 3 4 5 6 7
Length of side 3.78 3.78 3.78 3.78 2.53 2.53 2.08L
223D
Brass length 1.64 1.15 0.85 3.78 1.97 1.97 0.768
Diameter 2.54 2.54 0.637 0.637 0.396 0.396 0.791
Energy U, (ergs) 128 000 109 000 22 300 82 200 8040 9900 3540
Energy U, {ergs) 63 900 54700 11200 41 100 0 0 1772
n,/EA,, o/ o/ o/ 1/94300  2/14500  2/5870 o/
n/EA,, 4/79880  4/68300  4/52300  2/66800  2/9150 2/7860 4/5340
n,/EA,, o/ o/ o/ 1/42 610 o/
ny/EA,, 2/95800  2/81300  2/55600 0O/ 2/11130  2/10170  2/(20)
ny/EA,; 1/63900  1/54700  1/47700  2/50 100 1/4704
2./8:/8 1/4/1 1/4/1 1/4/1 2/2/2 3/3/0 3/3/0 1/4/1

*The densities of plastic and brass were 1.20 and 8.53 g/cm?>, respectively, (20) rather than zero is used in calculations in order to avoid infinites.
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Fig. 3. Sketches of the seven dice.

in one face. This configuration is essentially the limit of die
3, as the activation energy AE,, is reduced to zero and the
corresponding tumbling reduces to free rolling. The values
of all parameters, for each die, are presented in Table 1.
Their shapes are shown below, in Fig. 3.

EXPERIMENTAL RESULTS

Each die was held by opposite corners and tossed with
some top spin, to ensure tumbling and randomization of
orientation during flight. A number of surfaces were tested
for adequate friction to promote tumbling, and a flat auto-
mobile floor mat (corrugated side down) was used. Carpet
and other materials into which the edge or corner of a die
might sink were deemed unsuitable, as they would affect
the activation energies associated with tumbling. Re-
bounding off a foam rubber backstop at an angle helped to
reorient the die, and reduce conservation of its linear and
angular momentum. Each die was tossed a minimum of
600 times (generally while watching a football game), and
the results tabulated directly with a programmable calcula-
tor. These results are presented (Table II) as the fraction of
tosses yielding the highest energy state (f}), and the fraction
yielding the next lower energy state (f,). Where a set of
tosses was repeated, all results are shown, as well as the
averages of f; and f;,.

SEARCH FOR AN EMPIRICAL FORMULA

In seeking an expression that would predict the statisti-
cal behavior of these loaded dice, I was guided by the equa-

tion for the fraction (f;) of quantized systems in the /th ener-
gy level? U:

fi =8 exp( — U//kT)/Z, (3)

where Z is the partition function,® kT is the thermal ener--
gy, and the other symbols are identical to those already
introduced. The numerator is the product of the relative
probability of finding the system in a state with energy U,
and the degeneracy of that state. The denominator Z is the
sum of all such relative probabilities; thus the sum of all f;
equals 1.0. In systems described by Eq. (3), elevated tem-
perature (kT') provides the energy needed for promotion to
states with higher energy (U,).

In our system, initially abundant energy gradually de-
grades toward zero as the die tumbles. So long as it has a
total energy greater than the activation energy for the next
tumble, the die is able to continue its motion. When its
kinetic and potential energy do not exceed the next activa-
tion energy, the die will come to rest. It is clear that activa-
tion energy is what enables a die to come to rest in a state of
higher potential energy. (A sphere, loaded off center, will
always come to rest in its orientation of lowest potential
energy.) Specifically, activation energy inhibits the tum-
bling of a die from a state into an adjacent state.

In modifying Eq. (3), kT cannot simply be replaced by an
activation energy. There are four allowed tumbling chan-
nels leading out of a given state, and they do not generally
have the same activation energies.

Two expressions for f; that incorporate activation ener-
gies are

& U ny )
= Gen( - T IE @
and
g; ’ " n.
fi=%en|-(v/sm)s 2| )
4 ,; Y ,; EA,;

The difference between the two expressions is that in Eq.
(5), tumbling from a state into an isoenergetic state is not
included in the sums. Several tests of reasonableness were
applied to Egs. (4) and (5}, namely:

(@) If EA;; = 0, where U, > U}, and n; = 0, then f; must
equal zero. That is, if there is a channel coupling a higher
energy state to one of lower energy, with no activation bar-
rier, the die cannot avoid rolling down into the lower ener-
gy state. Both equations pass this test.

(b) If all EA; are infinite, f; = g,/6. (Six is the limiting

Table IT. Values of f; and f;, the fractions of dice throws that yield energy states U, and U,, respectively. Multiple results are shown where experiments
were repeated. The predictions of Eqs. {4) and (5) are tabulated. Values of the partition function are also presented.

Experiment Die 1 Die2 Die 3 Die 4 Die 5 Die 6 Die 7
Nilfy 0.10/0.56 0.09/0.54 0.15/0.62 0.24/0.29 0.33/0.66 0.32/0.68 0.05/0.85
hEh 0.07/0.57 0.10/0.61 0.085/0.54 0.21/0.26 0.26/0.74 0.07/0.74
A 0.12/0.58 0.08/0.57 0.13/0.64 0.18/0.22 0.24/0.76 0.07/0.79
hh 0.055/0.53 0.16/0.62 0.16/0.25 0.25/0.75 0.05/0.80
K 0.07/0.55 0.20/0.26 0.06/0.74
Average f,/average f, 0.083/0.56 0.09/0.57 0.13/0.61 0.20/0.26 0.27/0.73 0.06/0.78
Eq. (4) (11712 0.077/0.54 0.076/0.54 0.15/0.63 0.15/0.30 0.33/0.67 0.19/0.81 0.34/0
Eq. (4) (Z) 2.63 2.63 4.51 3.63 447 3.69 1.52
Eq. (5) (1/1>) 0.058/0.66 0.06/0.66 0.13/0.67 0.13/0.31 0.29/0.71 0.22/0.78 0.11/0.67
Eq. (5)(Z) 3.50 3.50 4.97 3.56 4.25 3.85 4.55
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value of Z.} No tumbling is possible in this case. Both equa-
tions pass this test.

(c) If the energy of an upper state (U;) increases, f; de-
creases. This is characteristic of Eqgs. (4) and (5), and of
course of Eq. (3).

(d) A gedanken experiment appears to eliminate Eq. (4)
from consideration. Die 4 has two uppermost states (U, ),
which are coupled through a single 90° tumble (n,, = 1). It
is simple to visualize (though not so simple to construct) a
die of this geometry, with the edge opposite the loaded edge
rounded off so that EA,, = 0. Equation (4) predicts that
f, =0 for this case; solely because of a free transition
between two upper states. This seems unreasonable, and
Eq. (5) was designed to overcome this difficulty.

The predictions of Egs. (4) and (5) are presented in Table
II, below the experimental results. Values of the partition
function Z are also presented, as calculated from each
equation. Comparing values of f; and f,, calculated from
Eqgs. (4) and (5), with the average experimental values, it is
seen that Eq. (4) is somewhat closer to the experimental
values for dice 1 to 5. Equation (5) is a bit closer for die 6,
but in the case of die 7, Eq. (4) fails completely, while Eq. (5)
shows fair agreement with the experimental results. It may
be noteworthy that Eq. (4) provided better agreement with
the experimental data for the cases where the dice were
cubical, and Eq. (5) where there was deviation from the
cubic form.

CONCLUSIONS

Features of this investigation are that it is macroscopic,
simple in concept, and easy to carry out. One can readily
observe the effect of activation energy, as a die fails to com-
plete a tumble and settles back to rest. The geometric na-
ture of degeneracy, as a consequence of symmetry, is evi-
dent. Finally, a simple computer program can be written
for a given die, which calculates f}, f5, and Z. It is worth-
while and interesting to explore the effect on Z of varying
the die geometry.
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A real “thought” experiment for the hydrogen atom
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The absolute square of the normalized position-space wave function of the electron in a hydrogen
atom is interpreted as the probability distribution for observations of the position of the electron.
This is only a thought experiment, since the electron’s position cannot be observed. The first
observation of the momentum distribution of the electron directly verifies the probability
interpretation of the momentum-space wave function.

The recent direct measurement by Lohmann and Wei-
gold' of the momentum probability distribution of the elec-
tron in ground-state atomic hydrogen has significance in
the teaching of quantum mechanics. From the very begin-
ning of quantum physics the problem of the hydrogen atom
has played a central role. First, it was the subject of daring
and far-reaching speculations by Bohr. Later, it was the
first problem tackled by Schrédinger® with his new wave
mechanics and it also emerged as a prime example of the
success of quantum mechanics in the first papers on this
subject by Heisenberg. Since then it has played a leading
role in the teaching of quantum mechanics as well as serv-
ing as a most important heuristic tool. Its central impor-
tance in the teaching of quantum mechanics is not only due
to the fact that the Schrddinger equation can be solved

_exactly in this case, but also because the solutions form the
basis for approximate solutions for other atoms and mole-
cules and the angular solutions are valid for any central
field problem. As a heuristic tool it has been used to shape
our intuition and to inspire many different expositions.

The solution of the Schridinger equation for the hydro-
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gen atom is usually carried out using the position represen-
tation, and the wave functions #,,,, (r), which are solutions
of the equation, are to be interpreted as probability ampli-
tudes. Born was the first to suggest in 1926 that the square
modulus of the wave function represents the probability
density of finding the electron at a position  with respect to
the center of mass of the atom. This is the simplest physi-
cally real quantity that can be derived from 3. However,
although |¢,,,,, (r)|? is stated to be a physical observable, it
has never been directly observed. The standard texts all
show only calculated values of |#,,,, (r)|* and discuss it at
most by means of thought experiments. The nearest one
can come to a measurement of position information for an
atom is to measure the probability distribution for the
transfer of momentum to a scattered x ray or electron.?
This is called the charge form factor. For high enough ener-
gy it is essentially the Fourier transform of the electron
position distribution summed for all electrons. Except in
the case of the hydrogen atom this technique does not allow
one to measure information for individual values of n, /, or
m.
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