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In the space of the system parameters, the stability charts are determined for the de
and damped Mathieu equation defined as x¨ ~t!1k ẋ~t!1~d1« cos t!x~t!5bx~t22p!.
This stability chart makes the connection between the Strutt-Ince chart of the da
Mathieu equation and the Hsu-Bhatt-Vyshnegradskii chart of the autonomous se
order delay-differential equation. The combined charts describe the intriguing stab
properties of an important class of delayed oscillatory systems subjected to param
excitation. @DOI: 10.1115/1.1567314#
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1 Mathematical and Historical Backgrounds
Dynamic problems are often composed in the form of differe

tial equations. The qualitative analysis of these differential eq
tions, and that of the corresponding dynamic phenomena, ca
supported by stability charts that show the stability of the sys
for a range of system parameters.

In this paper, the stability chart of the delayed damped Math
equation

ẍ~ t !1k ẋ~ t !1~d1« cost !x~ t !5bx~ t22p! (1)

is constructed. This equation combines the effect of parame
excitation on the delayed and damped oscillator.

The three special casesb50, «50, andk50 are known from
the literature@1–3#. These cases will be overviewed briefly in th
following subsections.

1.1 Time Periodic Systems. Parametric excitation often oc
curs in mechanical systems, when some characteristic prope
of the system change periodically in time. The vibrations of rot
ing shafts with non-symmetric cross-section, the dynamic beh
ior of gears, or vibrations in belt drives of machine tools are
described by time periodic systems.

The general form of linear periodic ordinary differential equ
tions ~ODEs! reads

ẏ~ t !5A~ t !y~ t !, A~ t !5A~ t1T! (2)

Here, the coefficient matrix is time periodic.
For periodic ODEs, stability condition is provided by the Fl

quet Theory@4#. If y(T)5Fy(0), thenF is called principle ma-
trix, monodromy matrix or Floquet transition matrix. The eige
values ofF are the characteristic multipliersm j ( j 51,2, . . . ,n)
calculated from

det~mI2F!50 (3)

If m is a characteristic multiplier, andm5exp(lT), thenl is called
characteristic exponent@5#.

The trivial solution y(t)[0 of system ~2! is asymptotically
stable, if and only if all the characteristic multipliers are in mod
lus less than one, that is, all the characteristic exponents h
negative real parts.

Three basic types of stability losses can be classified accor
to the location of the critical characteristic multipliers.
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1. The critical characteristic multipliers are a complex p
moving out of the unit circle, i.e.,umu51 andum̄u51 in the criti-
cal case. This case is topologically equivalent to the Hopf bif
cation of autonomous nonlinear systems and calledsecondary
Hopf or Neimark-Sackerbifurcation of a corresponding nonlinea
system.

2. The critical characteristic multiplier is real and moves o
side the unit circle at11. The arising bifurcation is topologically
equivalent to the saddle-node bifurcation of autonomous nonlin
systems and calledperiod onebifurcation of a corresponding non
linear system.

3. The critical characteristic multiplier is real and moves o
side the unit circle at21. There is no topologically equivalen
type of bifurcation for autonomous nonlinear systems. This cas
calledperiod twoor period doublingor flip bifurcation of a cor-
responding nonlinear system.

Generally, for periodic systems, stability criteria cannot
given in closed form, only approximation methods can be us
Such an approximation method is the Hill’s infinite determina
method developed by Hill@6# and Rayleigh@7#. The most straight-
forward and less accurate method is the piecewise constan
proximation of the coefficient matrix@8,9#. There are other meth
ods described in the book of Nayfeh and Mook@10#: the
Lindstedt-Poincare technique and the method of multiple scale
novel approach, the method of Chebyshev polynomials, was
veloped by Sinha and Wu@11# and improved by Sinha and
Butcher@12#. Bauchau and Nikishkov@13# worked out a numeri-
cal algorithm for extracting the dominant characteristic multiplie
without the explicit computation of the principal matrix. The
applied their method for rotorcraft stability evaluation.

Example: The Damped Mathieu Equation.The caseb50 of
Eq. ~11! gives the traditional damped Mathieu equation:

ẍ~ t !1k ẋ~ t !1~d1« cost !x~ t !50. (4)

This equation was first discussed by Mathieu@14# in connection
with the problem of vibrations of an elliptic membrane. Stephe
son@15# used an approximate Mathieu equation, and proved,
it is possible to stabilize the upper position of a rigid pendulum
vibrating its pivot point vertically at a specific high frequency.

The stability chart of the Mathieu equation~4!, the so called
Strutt-Ince diagram was first published by van der Pol and St
@1# in 1928. In Fig. 1, the Strutt-Ince diagram is shown fork
50, 0.1 and 0.2. Fork,0, the system is always unstable. Th
domains denoted by S refer to a stable system, the domains
noted by U61 refer to an unstable system. At the stability curv
bounding the domains U11 and U21 , there are period one an
period two instability, respectively.
er
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1.2 Delayed Systems. It has been known for a long time
that several problems can be described by models including
effects. One of the classical examples is the predator-prey m
of Volterra @16#, where the growth rate of predators depends
only on the present quality of food~say, prey!, but also on the pas
quantities~in the period of gestation, say!. The first delay models
in engineering appeared for wheel shimmy by von Schlippe
Dietrich @17#, and for ship stabilization by Minorsky@18#.

One of the most important mechanical applications is the c
ting process dynamics. After the extensive work of Tlusty et
@19#, Tobias@20# and Kudinov@21,22#, the so-called regenerativ
effect has become the most commonly accepted explanation
machine tool chatter@23,24#. This effect is related to the cutting
force variation due to the wavy workpiece surface cut in the p
vious revolution.

Delayed equations also arise in robotics applications, e.g. t
manipulation with information delay can be mentioned@25–27#.
Time delay also arises in neural network models, where the in
actions of the neurons are delayed@28#.

The systems, where the rate of change of state is determine
the present and also by discrete past states of the system
described by retarded differential-difference equations~RDDEs!.
The initial-value problem of general RDDEs was first correc
formulated by Myshkis@29#. Since then, several books appear
summarizing the most important theorems, like the books of M
shkis @30#, Bellman and Cooke@31#, Halanay @32#, Hale @33#,
Kolmanovskii and Nosov@34#, Stépán @23#, Hale and Lunel@35#,
and Diekmann et al.@36#.

A linear autonomous RDDE with a single delayed term has
form

ẏ~ t !5Ay~ t !1By~ t2t! (5)

where A and B are n3n matrices andt.0. The characteristic
function of system~5! reads

det~lI2A2Be2lt!50 (6)

Opposite to the characteristic polynomial of autonomous OD
this characteristic function has, in general, infinite number of
ros. The sufficient and necessary condition for asymptotic stab
of ~5! is that all the infinite number of characteristic roots ha
negative real parts.

The first attempts for determining stability criteria for secon
order RDDEs was made by Bellman and Cooke@31# and Bhatt
and Hsu@37#. They used the D-subdivision method@38# combined

Fig. 1 Strutt-Ince stability chart of the damped Mathieu equa-
tion „4…
Journal of Dynamic Systems, Measurement, and Control
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with a theorem of Pontryagin@39#. A more sophisticated method
was developed by Ste´pán @23# applicable even for the combina
tion of several discrete and continuous time delays. A novel
proach was developed by Olgac and Sipahi@40# for linear systems
with a single delay.

Example: The Delayed Oscillator.The case«50 of Eq. ~11!
gives the second order delayed oscillator

ẍ~ t !1k ẋ~ t !1dx~ t !5bx~ t22p! (7)

Although the stability chart~see Fig. 2! in the parameter plane
(d,b) has a very clear structure, it was first published correc
only in 1966 by Hsu and Bhatt@2#. According to Kolmanovskii
and Nosov@34#, this chart was also published in the literature
Russian, often referred there as Vyshnegradskii diagram. For
casek50, the stability boundaries are lines with slope11 and
21. Fork50.1 and 0.2, the stability boundaries are not lines a
more. Thed5b line is associated to saddle-node instability,
the other boundary curves represent Hopf instabilities.

1.3 Time Periodic Delayed Systems. A linear periodic
RDDE with a single delayed term has the form

ẏ~ t !5A~ t !y~ t !1B~ t !y~ t2t!, A~ t1T!5A~ t !,

B~ t1T!5B~ t ! (8)

The Floquet theorem can be extended for these systems as i
shown by Halanay@41#, but an infinite dimensional linear opera
tor, the so-called monodromy operator, is defined instead of
finite dimensional fundamental matrix of the traditional Floqu
theory@5,33#. This operator can be defined byyT5Uy0 , where the
continuous functionyt is defined by the shiftyt(q)5y(t1q),
qP@2t,0#, andT is the principal period of system~8!.

The nonzero elements of the spectrum ofU are called the char-
acteristic multipliers of system~8!, also defined by

Ker~mI2U!Þ$0% (9)

instead of~3!. Similarly to the periodic systems, ifm is a charac-
teristic multiplier, andm5exp(lT), thenl is called characteristic
exponent.

The trivial solution of system~8! is asymptotically stable, if and
only if all the ~infinite number of! characteristic multipliers are in
modulus less than one, that is all the characteristic exponents
negative real parts. Similarly to time periodic ODEs, the thr
types of stability losses can be identified according to the loca
of the critical characteristic multipliers: thesecondary Hopf, the
period one, and theperiod twoinstability routes.

For periodic RDDEs, the operatorU has no closed form, so no
closed form stability conditions can be expected. For pract
calculations, only approximations can be applied. An alterna
of Hill’s infinite determinant method was used by Seagalman a
Butcher@42# to determine stability properties of turning process
with harmonic impedance modulation. Another approach w
used by Insperger and Ste´pán @43# when the discrete time delay i

Fig. 2 Hsu-Bhatt-Vyshnegradskii stability chart of Eq. „7…
JUNE 2003, Vol. 125 Õ 167
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approximated by special continuous ones, and the infinite dim
sional eigenvalue problem is transformed into an approximate
nite dimensional one. The time finite element method was de
oped by Bayly et al.@44# and applied for interrupted cutting
processes. Insperger and Ste´pán @45# developed the so-called
semi-discretization method for the approximate stability inve
gation of general time periodic delayed systems, like equati
containing distributed time delay or multiple time delays. Nume
cal simulation is also a possible way for predicting stability pro
erties@46,47#.

Example: The Delayed Mathieu Equation.The casek50 of
Eq. ~11! gives the delayed Mathieu equation

ẍ~ t !1~d1« cost !x~ t !5bx~ t22p! (10)

The stability chart of this equation was constructed by Insper
and Ste´pán @3#. Their work was based on the general theorem, t
the numberm5elT is a characteristic multiplier of system~8!, if
and only if, there exists a nontrivial solution in the formy(t)
5p(t)elt, wherep(t)5p(t1T). They showed analytically tha
for any«, the boundary curves in the plane (d,b) are straight lines
shifted along the boundary curves of the Strutt-Ince diagram.
«51, the stability chart in the plane (d,b) can be seen in Fig. 3
where dashed lines refer to period two loss of stability, continu
lines refer to period one loss of stability. A domain denoted by
refers to an asymptotically stable system, while U refers to in
bility. The frame-view of the 3-dimensional stability chart in th
space (d,b,«) is shown in Fig. 4.

2 Delayed Damped Mathieu Equation: Analytical In-
vestigation

The equation of our interest is the delayed damped Math
equation

ẍ~ t !1k ẋ~ t !1~d1« cost !x~ t !5bx~ t22p! (11)

The special casesb50, «50, andk50 was introduced in the
previous section. Here, the general casebÞ0, «Þ0, andkÞ0 is
investigated. Still, Eq.~11! is also special in the sense, that th
time delay is just equal to the time period of the parametric ex
tation. Lots of applications, like milling operations, satisfy th
condition.

2.1 Hill’s Infinite Determinant Method. Use the trial so-
lution according to the Floquet theorem of RDDEs in the form

x~ t !5p~ t !elt1 p̄~ t !el̄t (12)

wherep(t)5p(t12p) is a periodic function. Note, thatl is char-
acteristic exponent, that is, if Rel,0, then the solutionx(t)[0 is
asymptotically stable. Expand the periodic functionp(t) in ~12!
into Fourier series

x~ t !5S (
k50

`

Ake
ikt1Bke

2 iktD elt1S (
k50

`

Āke
2 ikt1B̄ke

iktD el̄t

(13)

Fig. 3 Domains of stability of Eq. „10… for «Ä1
168 Õ Vol. 125, JUNE 2003
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Using trigonometrical transformations, expression~13! can be
transformed into the form

x~ t !5 (
k52`

`

Cke
~l1 ik!t1C̄ke

~ l̄2 ik!t (14)

The substitution into the system~11!, and the balancing of the

harmonics e(l1 ik)t and e(l̄2 ik)t yield two systems of equations fo
the coefficientsCk andC̄k , respectively:

«

2
Ck211ckCk1

«

2
Ck1150, k52`, . . . ,̀ (15a)

«

2
C̄k211 c̄kC̄k1

«

2
C̄k1150, k52`, . . . ,̀ (15b)

where

ck5d1~l1 ik!21k~l1 ik!2be22p~l1 ik! (16)

Equations~15a! and ~15b! are satisfied if and only ifl is a
characteristic exponent. Equations~15a! and~15b! are equivalent,
so it is satisfactory to analyze~15a! only. There is a nontrivial
solution of system~15a!, if the number zero is an eigenvalue o
the so-called Hill’s infinite matrix

H~l,d,b,«!5S � � � �

� «/2 c21 «/2 0

0 «/2 c0 «/2 0

0 «/2 c1 «/2 �

� � � �

D
(17)

This matrix represents an unbounded linear operatorH: l 2
Z→ l 2

Z .
Here, l 2

Z is the Hilbert space of the complex sequenc
( . . . ,z21 ,z0 ,z1 , . . . ) with (k52`

` uzku2,`. As it is the case for
~unbounded! linear operators with compact resolvents, the sp
trum of H consists of a countable number of eigenvalues. All
these eigenvalues are of finite multiplicity. The number zero is
eigenvalue ofH if and only if

Ker H~l,d,b,«!Þ$0% (18)

Formula~18! can be treated as the characteristic equation of~11!,
since its roots are the characteristic exponents. This is a refor
lation of ~9! with m5exp(2pl).

In order to carry out calculations, only the truncated system
equations withk52N, . . . ,N is considered. This reduces the in
finite eigenvalue problem of operatorH to the calculation of a
finite determinant

Fig. 4 Stability chart of delayed Mathieu equation „10…
Transactions of the ASME
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D~l,d,b,«!5detS c2N «/2

«/2 c2N11 «/2

� � �

«/2 cN21 «/2

«/2 cN

D 50

(19)

Although this truncation seems to be a rough approximation
still has a sound mathematical basis@48,49#. This approximation
is just the same as the one applied during the construction o
Strutt-Ince diagram. The operatorH is often called Hill’s infinite
matrix, and the terminologyinfinite determinantis also used, al-
though, in fact, it is not a determinant of a matrix.

2.2 Linear Boundary Curves. The system is at the borde
of stability, if the relevant characteristic exponent is pure ima
nary: l5 iv, wherev is called frequency parameter.

It was shown by Insperger and Ste´pán @3# that for the casek
50, bÞ0, Eq. ~19! can be satisfied, if and only ifv5 j /2, j
50,1, . . . , and all theboundary curves are straight lines related
period one or period two instabilities.

If kÞ0, then the proof constructed for the undamped case in@3#
cannot be used. In this case, Eq.~19! can be satisfied for fre-
quency parametersvÞ j /2, j 50,1, . . . as well, and the relevant
characteristic multipliersm5exp(i2pv) can be complex num-
bers. Consequently, additional non-straight boundary curves r
ing to secondary Hopf instabilities may also exist. However,
boundaries related to the frequency parameterv5 j /2, j
50,1, . . . can beinvestigated in the same way as it was done
@3#.

If j is even, that isj 52h, h50,1, . . . , then l5 ih and the
corresponding characteristic multiplier is

m5eih2p5ei2p51 (20)

In this case,ck5d2b2(k1h)21 i(k1h)k, and Eq.~19! gives
the relationf 11(d2b,«,k)50 for the boundary curves. For th
caseb50, the relationf 11(d,«,k)50 serves them511 stability
boundary curves of the classical damped Mathieu equation
fined in the formd5g11(«,k). This means, that straight bound
ary curves exist for thebÞ0 case, in the form d2b

Fig. 5 Period one „continuous … and period two „dashed …

boundary lines for Eq. „11… with «Ä1, kÄ0.1
Journal of Dynamic Systems, Measurement, and Control
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5g11(«,k). In the plane~d, b!, these are lines with slope11 ~see
the continuous lines in Fig. 5!. Along these boundary curves, the
exists a characteristic multiplierm511, and Eq.~11! has a peri-
odic solution of period 2p. This case corresponds to the perio
one instability route.

If j is odd, that isj 52h11, h50,1, . . . , then l5 i(h11/2)
and the corresponding characteristic multiplier is

m5ei~h11/2!2p5eip521 (21)

In this case,ck5d1b2(k1h11/2)21 i(k1h11/2)k, and Eq.
~19! implies the boundary curve relationf 21(d1b,«,k)50. For
the same reason as above, boundary curves exist again in the
d1b5g21(«,k), whered5g21(«,k) gives them521 stability
boundary curves of the classical damped Mathieu equation. Th
boundary curves are straight lines with slope21 in the parameter
plane~d, b! ~see the dashed lines in Fig. 5!. Along these boundary
curves, there exists a characteristic multiplierm521, and Eq.
~11! has nontrivial periodic solution of period 4p. This case cor-
responds to the period two instability route.

This investigation shows that all the period one and period t
boundary curves are straight lines in the~d, b! plane with slope
11 or 21, respectively~see Fig. 5!. However, in addition to these
linear boundaries, secondary Hopf type boundary curves may
exist related to the casesvÞ j /2, j 50,1, . . . , as it wasexplained
above. These curves are determined in the following section
the so-called semi-discretization method.

3 Numerical Investigation by Semi-Discretization
In this section, the semi-discretization method@45# is used to

construct the stability chart of Eq.~11!.
The first step of semi-discretization is the construction of tim

interval division (t i ,t i 11) of length Dt, i 50,1, . . . sothat 2p
5(m11/2)Dt, wherem is called approximation parameter. In th
i th interval, Eq.~11! can be approximated as

ẍ~ t !1k ẋ~ t !1~d1«ci !x~ t !5bxi 2m (22)

where

ci5
1

Dt Et i

t i 11

cos~ t !dt (23)

and

xi 2m5x~ t i 2m!5x~ t i2mDt ! (24)

That is, the time periodic coefficient is approximated by a pie
wise constant one, and the time delayed term is approximate
a piecewise discrete value. This corresponds to a saw-like
proximation of the continuous time delay shown in Fig. 6.

For the initial conditionsx(t i)5xi , ẋ(t i)5 ẋi , the solution and
its derivative at each time instantt i 11 can be determined:

xi 115x~ t i 11!5a00xi1a01ẋi1b0mxi 2m (25)

ẋi 115 ẋ~ t i 11!5a10xi1a11ẋi1b1mxi 2m (26)

where

Fig. 6 Approximation of the time delay for mÄ4
JUNE 2003, Vol. 125 Õ 169
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a005k10 exp~l1Dt !1k20 exp~l2Dt !

a015k11 exp~l1Dt !1k21 exp~l2Dt !

a105k10l1 exp~l1Dt !1k20l2 exp~l2Dt !

a115k11l1 exp~l1Dt !1k21l2 exp~l2Dt !

b0m5s1 exp~l1Dt !1s2 exp~l2Dt !1b/~d1«ci !

b1m5s1l1 exp~l1Dt !1s2l2 exp~l2Dt !

and

l1,25
2k6Ak224~d1«ci !

2
,

k105
l2

l22l1
, k115

21

l22l1
, s15

2l2

l22l1

b

d1«ci
,

k205
2l1

l22l1
, k215

1

l22l1
, s25

l1

l22l1

b

d1«ci

Equations~25! and ~26! define the discrete map

yi 115Biyi , (27)

where them12 dimensional state vector is

yi5col~ ẋi xi xi 21 . . . xi 2m! (28)

and the coefficient matrix has the form

Bi5S a11 a10 0 . . . 0 b1m

a01 a00 0 . . . 0 b0m

0 1 0 . . . 0 0

] ] ] � ] ]

0 0 0 . . . 0 0

0 0 0 . . . 1 0

D (29)

Fig. 7 Stability boundaries for the Eq. „11… obtained by the
semi-discretization method
170 Õ Vol. 125, JUNE 2003
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So, the connection between the states att i and t i 11 is deter-
mined by the transition matrixBi . The transition matrix between
the states atts and t f can be given as

F~ ts ,t f !5Bf 21Bf 22 . . . Bs11Bs (30)

A transition matrix between the states att0 and t012p would
give a finite dimensional approximation of the monodromy ope
tor of Eq.~11!. Sincet012p5t01mDt1Dt/2, the transition ma-
trix F(t0 ,tm11/2) cannot be given in the form of~30!, only the
approximating transition matricesF(t0 ,tm) or F(t0 ,tm11) can be
used. Note, that these matrices are not principal matrices, s
they give the connection between the states att0 and t012p
2Dt/2 or t012p1Dt/2, and not betweent0 and t012p. The
approximate condition of asymptotic stability is that all the eige
values of these matrices are in modulus less than one.

The transition matrix between the states instantt0 and t2m11
can be given asF(t0 ,t2m11)5B2mB2m21 . . . B1B0 . This is a
transition matrix over the double principle period, that
F(t0 ,t2m11)5F2(t0 ,tm11/2). Consequently, the eigenvalues
F(t0 ,t2m11) give the square of the eigenvalues ofF(t0 ,tm11/2).
Since umu,1 if and only if um2u,1, the stability condition for
F(t0 ,t2m11) is the same as for the matricesF(t0 ,tm) or
F(t0 ,tm11).

The proof of the convergence of the semi-discretization met
is given in @45#.

The closed form stability chart@3# of the undamped (k50)
case serves as a basis to check the semi-discretization meth
comparison of the stability charts obtained by the eigenvalue
vestigation of the transition matricesF(t0 ,tm), F(t0 ,tm11), and
F(t0 ,t2m11) shows, that the best convergence is given by
analysis of the matrixF(t0 ,t2m11). The critical eigenvalue of
F(t0 ,t2m11) is 1 for both the period-one or period-two cases. S
the two cases can be distinguished only by the analysis of ei
F(t0 ,tm) or F(t0 ,tm11).

With a reasonable approximation parameterm520, the infinite
dimensional delayed Eq.~11! is approximated by a 22 dimen
sional discrete system. The eigenvalue analysis of the trans
matrix F(t0 ,t2m11) resulted the stability boundaries shown
Fig. 7.

If we compare the exact stability chart in Fig. 3 to the stabil
chart obtained by the semi-discretization method in Fig. 7 for
undamped reference casek50 and«51, the approximation error
of the stability boundaries turns out to be less than 1%~within line
thickness! for the presented parameter domain with approximat
parameter m520. In @45#, the convergence of the sem
discretization method was presented for increasingm, that is, the
error decreases even further form.20. The same applies for th
stability charts of the damped systems withk.0. The computa-
tion time of one chart in Fig. 7 was in the range of 400 s us
MATLAB routines in a 400 MHz PC.

The straight stability boundaries related to period one and
riod two instabilities show good agreement between the pre
tions of the Hill’s infinite determinant analysis and the results
the semi-discretization method. The charts obtained by the se
discretization method also confirmed that there exist other n
straight boundary curves related to secondary Hopf instabilitie

4 Conclusions
The delayed damped Mathieu equation was investigated

basic problem of delayed oscillators subjected to parametric e
tation. It was proved, that the delayed damped Mathieu equa
also have straight boundary curves with slope11 and21 in the
plane~d, b! for the period one and period two instabilities, respe
tively. It was also shown by the semi-discretization method t
other non-straight stability boundaries are also inherited from
autonomous system where secondary Hopf loss of stability oc
Transactions of the ASME
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