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Abstract. In this study, a general technique for the analysis of time-period 
nonlinear dynamical systems is presented. The method is based on the fact that 
all quasilinear periodic systems can be replaced by similar systems whose linear 
parts are time invariant via the well-known Liapunov-Floquet (L-F) transfor- 
marion. A general procedure for the computation of L-F transformation in 
terms of Chebyshev polynomials is outlined. Once the transformation has been 
applied, a periodic orbit in original coordinates has a fixed point representation 
in the transformed coordinates. The stability and bifurcation analysis of the 
transformed equations are studied by employing the time-dependent normal 
form theory and time-dependent centre manifold reduction. For the two ex- 
amples considered, the three generic codimension-one bifurcations, viz, Hopf, 
flip and tangent, are analysed. The methodology is semi-analytic in nature and 
provides a quantitative measure of stability even under critical conditions. Un- 
like the perturbation or averaging techniques, this method is applicable even 
to those systems where the periodic term in the linear part does not contain a 
small parameter or a generating solution does not exist due to the absence of 
the time-invariant term in the linear part. 
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1. Introduction 

The study of systems governed by a set of ordinary differential equations is of great impor- 
tance in diverse branches of science and engineering. Numerous practical applications can 
be found in the areas of quantum mechanics, systems and controls and dynamic stability of 
structures under oscillating loads. In particular, such problems arise in the dynamics of ro- 
tating systems such as helicopter blades (Bramwell 1976; Johnson 1980) and rotor-bearing 
systems (Lalanne & Ferraris 1990). Mathematical modelling of such systems results in 
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nonlinear non-autonomous differential equations which contain explicit periodic functions 
of time. Periodic solutions of these equations physically represent steady-state operations 
under various conditions. The stability of these periodic solutions (or orbits) is determined 
by the equations of perturbed motion about the periodic solutions. In many situations, the 
linearized perturbed equations may be sufficient for the prediction of stability, and therefore 
the problem reduces to a set of linear ordinary differential equations with periodic coeffi- 
cients. The same mathematical problem also arises in the study of nonlinear autonomous 
systems when the stability of a particular periodic solution needs to be investigated. Be- 
sides the stability issues, the linear control problems associated with rotating systems can 
also lead to the same type of equations. For example, the Individual-Blade-Control (IBC) 
technique, used in the control of a helicopter rotor-blade system, produces a set of equa- 
tions with periodic coefficients (Kretz 1976; Mckillip 1985). Therefore the analysis of this 
special class of time-varying systems has been deemed extremely important. 

Hill's method (Lindh & Likins 1970; Yakubovitch & Starzhinskii 1975), perturbation 
techniques (Stoker 1950; Nayfeh 1973) and Floquet's theory (Coddington & Levinson 
1955; Floquet 1983) are some of the most commonly used mathematical methods in the 
analysis of such systems. It is well known that Hill's approach is not suitable for digital 
implementation, especially if one has to deal with a large-scale system. The perturbation 
methods have their own limitations due to the fact that they can only be applied to systems 
where the periodic coefficients can be expressed in terms of a small parameter. Therefore, 
Floquet analysis coupled with a numerical integration code has served as the main tool 
in various applications (Peters & Hohenemser 1971; Friedmann et al 1977; Gaonkar et al 

1981; Sinha & Wu 199t; Wu & Sinha 1994). Floquet analysis is a powerful technique 
which can be easily implemented on a computer and holds most promise in the analysis 
of large-scale periodic systems. According to this technique, stability analysis requires the 
eigen-analysis of the 'Floquet Transition Matrix' (FTM) which is simply defined as the 
state transition matrix at the end of one period. Eigen-analysis and the evaluation of FTM 
are the two major computational problems encountered in the analysis of linear periodic 
systems of large dimensions. Since the F r M  is nonsymmetric, the eigen-analysis problem 
is a difficult one. Some progress has been made in this direction (Cullum & Willoughby 
1986; Gaonkar & Peters 1986), however, the computation of FTM for large-scale sys- 
tems is still a challenging task. Most commonly a fourth or higher-order Runge-Kutta 
type numerical code has been used in a 'single pass' scheme for an efficient computation 
of the FI'M (Friedmann et al 1977; Gaonkar et al 1981). Very recently, Sinha and asso- 
ciates (Sinha & Wu 1991; Joseph et al 1993; Sinha et al 1993; Wu & Sinha 1994) have 
developed a new technique for the analysis of large-scale periodic systems. It has been 
shown that the proposed technique is numerically several times faster than the standard 
codes and at the same time it can also be applied in the symbolic form (Sinha & Juneja 
1991). 

Although the linearized equations play an important role in the stability analyses, they 
fail to provide answers to many questions associated with the nonlinear periodic systems. 
Questions such as how does the solution depend on a control parameter? What kind of 
motion takes place after the loss of stability of the periodic state? Is it possible to identify the 
types of stability loss and critical values of the control parameters in each case etc? In order 
to answer such questions one must investigate the nonlinear equations of perturbed motion 
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including a bifurcation analysis of  the periodic orbit. In many instances certain methods of 
nonlinear dynamics can be applied to obtain information of significant value. It is known 
(Arnold 1988) that the simplest loss of stability of a periodic orbit constitutes a degenerate 
problem of codimension 1. However, if a pair of complex multipliers simultaneously 
cross the unit circle of the complex plane, then we have the Hopf bifurcation of periodic 
orbits. The details are given by Guckenheimer & Holmes (1983) and Arnold (1988). For 
the case of a codimension 2 bifurcating periodic orbit, some qualitative mathematical 
results have also be obtained (Chow & Wang 1985). Qualitative analyses certainly provide 
good insight into the problems, but for engineering applications quantitative methods are 
indispensable. 

Perturbation and averaging methods (Bogoliubov & Mitropolsky 1961; Nayfeh 1973; 
Sanders & Verhulst 1985) are suitable for relatively smaller systems and in general, their 
applications are limited to systems where the periodic terms as well as the nonlinearities 
can be expressed in terms of a suitable small parameter. Hopf bifurcation of Duffing's os- 
cillator and nonlinear Mathieu's equations are discussed by Awreicewicz (1989) through 
an application of perturbation and harmonic balance methods. On the other hand, one can 
apply standard numerical techniques associated with boundary value problems to analyse 
the situation. These techniques are basically shooting methods and provide strategies for 
calculating branch points and new branches of bifurcating solutions. These methods have 
been exploited by several authors (Seydel 1981, 1987, 1988; Doedel & Kem6vez 1986). 
Shooting methods are quite reliable but they are certainly not free from numerical insta- 
bility difficulties. At the same time, when a system is non-autonomous, the trajectories 
can cross themselves and it is difficult to obtain a general structure of the motion through 
a purely numerical scheme. An attractive alternate method of analysis is provided by the 
technique called 'point mapping'. The idea was introduced by Poincar6 (1899) and later 
developed by Birkhoff (1966), Arnold (1988) and Bernussou (1977). In this approach 
the continuous-time periodic system is reformulated as discrete-time events by defining 
a point mapping called the Poincar6 map. Thus the original non-autonomous differential 
system is replaced by a set of difference equations which do not explicitly depend on 
time. In principle these are easier to analyse and simulate on a digital computer. However, 
one faces serious computational difficulties in application of this technique to real engi- 
neering problems even if the dimensions are small. In order to obtain the corresponding 
difference equations, one must construct an exact or approximate solution of a system of 
nonlinear differential equations. Exact solutions are only possible in very special cases, 
such as those of impulsive excitation problems discussed by Hsu and his associates (Hsu 
& Cheng 1973, 1974; Flashner & Hsu 1983; Hsu 1987). Since one must settle for an 
approximate representation of the point mapping, recent studies (Lukes 1982; Flashner & 
Hsu 1983; Guttalu & Flashner 1989, 1990) have suggested the use of Runge-Kutta type 
algorithm and perturbation technique for obtaining a truncated version of the Poincar6 
map. Following this approach one can discuss the bifurcation of periodic solutions to 
other possible periodic motions or to quasiperiodic and aperiodic solutions (Lindtner et al 
1990). 

One other viable approach is to use the Liapunov-Floquet theorem which allows trans- 
formation of the quasilinear periodic systems into a new set of  similar equations whose lin- 
ear parts are time-invariant. However, it is not a simple task to compute this transformation 
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matrix for a general periodic system. For certain special class of linear systems, it is possi- 
ble to obtain the Liapunov-Floquet transformations as indicated by Lukes (1982). In order 
to determine such a transformation for a general periodic system, one must compute the 
STM as an explicit function of time. Recently we (Pandiyan et al 1993; Sinha & Joseph 
1994; Sinha & Pandiyan 1994; Pandiyan & Sinha 1995) have been successful in developing 
a computational procedure through which the Liapunov-Floquet (L-F) transformation can 
be obtained in terms of Chebyshev polynomials which is suitable for algebraic manipula- 
tions. The inverse of the L-F transformation can also be computed by a similar procedure 
considering the adjoint system equation. 

The development of a procedure for computing these transformation matrices has given 
a clear edge in dealing with a wide range of problems associated with periodically vary- 
ing systems. In this paper, a quantitative analysis of nonlinear dynamical systems with 
periodic coefficients has been presented through an application of the Liapunov-Floquet 
(L-F) transformation. It is shown that the original quasilinear periodic system can be trans- 
formed to a dynamically similar form in which the linear part is time-invariant. The anal- 
ysis of the transformed equations has been carried out through the use of time-dependent 
normal form theory. The solutions thus obtained are mapped back to the original coor- 
dinates by applying the inverse L-F transformations and compared with the numerical 
results obtained by a Runge-Kutta type algorithm. The method is also applicable to sys- 
tems undergoing bifurcations. Such problems are referred to as 'critical cases' and have 
been studied through an application of the centre manifold theory (Malkin 1962; Carr 
1981). For brevity, only codimension 1 bifurcations are considered. In order to demon- 
strate the effectiveness of the proposed analysis procedure, two examples have been studied 
in detail. The first example consists of a nonlinear Mathieu equation, the L-F transfor- 
mation of which has been computed using the Chebyshev polynomials as described in 
§ 3. The solutions of this example have been obtained in stable and centre manifolds for 
some typical sets of system parameters. It has been shown that the proposed technique 
is applicable to a wide class of problems including the situations where the generating 
solutions do not exist and/or the parameter multiplying the linear periodic terms are no 
longer small. It is also shown that in many cases it is possible to obtain approximate 
analytical solutions which compare extremely well with the numerical solutions. The 
results obtained by the traditional averaging method are also presented for comparison 
purposes. 

As a second example, the bifurcation problem of a double inverted pendulum subjected to 
periodic loading is selected. The Hopf bifurcation in a double inverted pendulum subjected 
to a tangential static load has been studied by Sethna & Shapiro (1977) and thereafter 
many researchers have contributed on various bifurcation aspects of such an autonomous 
system. However, when the double pendulum is subjected to a periodic load, the system 
becomes non-autonomous. Periodic bifurcations of such a pendulum has been reported 
by Flashner & Hsu (1983) by the method of point mappings. In this paper, the dynamics 
of this four-dimensional system undergoing a single Hopf bifurcation or a single flip 
bifurcation is investigated in a two-dimensional centre manifold or a single-dimensional 
centre manifold, respectively by applying the time-dependent normal form theory and 
centre manifold reduction. The results of such analyses are verified by using numerical 
simulations. 
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2. Background 

2.1 Mathematical structure of  periodic systems 

In general, many problems of mechanical systems can be reduced to a set of nonlinear 
ordinary differential equations of the form, 

~r = g(y, X, t), (1) 

where y is an n state vector, g ( ) is a continuous nonlinear function of y and t and ~. is a 
set of control parameters. 

Let ~ (t) denote a known periodic solution (of period T) of (1) such that the perturbation 
x(t)  about the periodic motion ~(t) can be defined as 

y(t) = y(t) + x(t). (2) 

Substituting (2) in (1) and expanding the right-hand side in Taylor series about ~(t) 
yields 

y~(t) 1 03 gi XjXkXl .iQ(t) = Og____ii 1 02gi XjXk + + " ' ' .  
Oyj xj + 20yjO-----yk ]y(t) 3! OyjOYkOYt y(t) 

The above equation may be rewritten as 

= A(t, X)x + f2(x, t, )~) + f3(x, t, ~.) + . . .  + fk(x, t, )~) + O(Ixl k+l, t) 

(3) 

(4a) 

o r  

= A(t, X)x + F(x, t, •) (4b) 

where fk( ) contain homogeneous monomials in xi of order k. A(t, X), fk(x, t, L) and 
F(x, t, X) (suitably defined in terms of fk ( ) ' s )  are T periodic functions. The linear part of 
(4) is, of course, given by 

:~ = A(t, X)x; A(t, ~.) = A(t -t- T, ~.). (5) 

The stability and response of (5) can be discussed using the well-known Floquet theory. 
We are interested in the analysis of (4) and determine its behaviour as the control 

parameter )~ varies. 

2.2 Results from Floquet theory (Floquet 1983; Coddington & Levinson 1955) 

Theorem 1. Each state transition matrix (STM), • of  (5) can be written as the product 
of  two n × n-matrices as 

~( t )  = L(t)e tC (6) 

where L(t) is T-periodic and C is a constant n x n matrix. L(t) and C, in general, are 
complex. 
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Remark 1. There exists a complex matrix C such that 

M = e cT, (7) 

where M can be expressed as 

M---- ~ - l ( o ) ~ ( T ) .  (8) 

Remark 2. Izi, the eigenvalues of M are called the characteristic multipliers and the sta- 
bility condition can be expressed as [/zi[ < 1, i = 1, 2 . . . . .  n. 

COROLLARY 1 
Each state transition matrix ~P ( t ) can also be factored as 

dP(t) = Q(t)e  Rt (9) 

where the matrix Q(t) is real and periodic with period 2T and R is an appropriate real 
matrix. 

COROLLARY 2 
The Liapunov-Floquet transformation 

x(t) = L( t ) z ( t )  (10) 

reduces the original time-varying system (5) to 

~(t) = Cz(t) (11) 

which is time-invariant. 
Moreover, the 2T-periodic transformation 

x( t )  = Q(t )z ( t )  (12) 

produces a real representation given by 

~(t) = Rz(t) (13) 

3. Computation of L-F transformation matrix via Chebyshev polynomials 

It has been shown by Sinha and associates (Sinha & Juneja 1991; Sinha & Wu 1991; 
Joseph et al 1993; Sinha et al 1993; Wu & Sinha 1994) that the STMs of linear periodic 
systems can be obtained in terms of  the shifted Chebyshev polynomials of  the first kind. 
The technique is efficient and since the STM is expressed as an explicit function of time 
t, it is suitable for algebraic manipulations as well. In fact, if the dimension is small, the 
STM can be expressed in a closed form as an explicit function of  system parameters as 
shown by Sinha & Juneja (1991) for the case of Mathieu equation. 

In order to compute the L-F  transformation matrix, L(t),  one needs to find the STM 
• (t) associated with the linear system given by (5). If A(t) in (5) is commutative, then 
L(t) can be computed as 

L(t) = e Br(t) (14) 
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where Br ( t )  can be obtained in a closed form as shown by Lukes (1982). For a general 
A(t), first, the Chebyshev polynomial expansion technique is used to compute the STM 

(t). In this technique, the solution vector x(t) and the periodic matrix A(t) in equation (5) 
are expanded in terms of the shifted Chebyshev polynomials in the interval [0, T] as shown 
below. 

S--1 
i * $*T (15) xi (t) ~ Z brsr (t) ~ (t)b i, i = 1, 2 . . . . .  n 

r = 0  

s--1 

A ( t ) ~ . ~ d i r J S * r ( t )  - - s * r ( t ) d  ij, i , j  = 1,2 . . . . .  n (16) 
r = 0  

where b / are unknown expansion coefficients ofxi (t), d~ J are known expansion coefficients 
of Aij (t) and s* (t) are the shifted Chebyshev polynomials of  the first kind. For convenience 
in algebraic manipulation an n x nm Chebyshev polynomial matrix is defined as 

S(t) = I ® s*X(t), (17) 

where ® represents the Kronecker product (Sinha & Wu 1991), and I is an n x n identity 
matrix. Using the definitions in (15), (16) and (17), x ( t )  and A(t) can be rewritten as 

x(t) = S(t)b, A(t) = S(t)D (18) 

A(t)x(t) = S ( t ) 0  b (19) 

where 6 = { b l b E b  3 . .  .bn} T is an nm x 1 vector, D = [dildiEd i3.. . d / J ] ,  ij  = 1, 2, 3, 
4 . . . .  n, is an nm × n matrix and I) is an nm x nm product operation matrix (for details 
see Sinha & Wu 1991). 

Substituting equations (18) and (19) in the integral form of equation (5), the unknown 
constant b can be determined by a set of  linear algebraic equations. Therefore, the solution 
vector x can be determined from equation (15). However, the computation of ~( t )  requires 
a set of solutions of (5) with n initial conditions: xi (0) = (1, 0, 0 . . . . .  0), (0, 1, 0 . . . . .  0), 
(0, 0, 1, 0 . . . . .  0) . . . . .  (0, 0 . . . . .  1). By defining the resulting set of Chebyshev coefficient 
vector 6~s of the n solutions in a matrix form, the STM can be written as (see Sinha & 
Juneja 1991; Sinha & Wu 1991; Joseph et al 1993; Sinha et al 1993; Wu & Sinha 1994), 

• (t) = S(t)l], (20) 

where I~ = [blbzb3 • • • I~n] and ~(0)  = I. It has to be noted that the STM is valid only for 
0 < t < T since the shifted Chebyshev polynomials of the first kind are defined over the 
interval [0, T]. When t > T, the STM can be evaluated using Floquet theory (Yakubovitch 
& Starzinskii 1975) as 

¢~( t )=[d~(g)][~(T)]n;  t = ~ + n T ,  ~-E[O,T], n = 1,2 . . . . .  E. 

(21) 

Once • (t) is known, the T-periodic complex matrix L( t )  or the 2T-periodic real matrix 
Q(t)  can be computed in the following way (Pandiyan et al 1993; Sinha & Joseph 1994; 
Sinha & Pandiyan 1994; Pandiyan & Sin_ha 1995). Since ~(0)  = I, L(0) = LT = I, the 
Floquet Transition Matrix (FTM) ~ ( T )  can be written as 
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dp(T) = e cT,  (22) 

where C i's a n x n constant complex matrix. By performing an eigenanalysis on qb(T), 
the matrix C can be computed easily. Then the T-periodic L-F transformation matrix is 

L(t) = ~ ( t ) e  - c t .  (23) 

In order to evaluate the 2T-periodic real L-F transformation matrix Q(T), first we note 
that (cf  Yakubovitch & Starzinskii 1975), 

• (2T) = ~2(T) = eCre c*r  = e 2Rr, (24) 

where C* is the conjugate matrix of C, the n x n constant real matrix R = [C + C*]/2 
and the 2-T periodic L-F matrix can be represented as 

Q ( t ) = ~ ( t ) e - R t ;  0 < t < T; 
Q ( r + T ) = ~ ( r ) Q ( T ) e - R r ;  T <  ( T + r )  < 2 T ;  0 < z  < T. (25) 

It should be noted that Q(t) = Q(t + 2T). 
If one is interested in finding L - l ( t )  or Q- l ( t ) ,  then there are two avenues. L(t) and 

Q(t) may possibly be inverted through the use of a symbolic software like MACSYMA/ 
MATHEMATICA/MAPLE. However, this is neither realistic or even possible at this point 
in time. The other approach is to first find the STM qJ(t) of the adjoint system 

~0 = - A  T (t) w, (26) 

and use the following relationship (cf  Yakubovitch & Starzinskii 1975), 

~ - 1  (t) = aF T (t). (27) 

The computation of ~ - l ( t )  is critical in determining L -1 (t) or Q- l ( t ) .  For example, 
L-1 (t) can be evaluated utilizing the properties of the adjoint system as shown below, 

L-1  (t) = [¢p(t)e-Ct] -1 = eCtdp -1 (t) = eCtaI ~T (t). (28) 

Such an approximation of L-F transformations has been found to be extremely convergent 
(Pandiyan et al 1993; Sinha & Joseph 1994; Sinha & Pandiyan 1994; Pandiyan & Sinha 
1995) and since it is periodic with period T, the elements Lij(t)  and Qij(t) have the 
truncated Fourier representation~ 

q 

Lij(t) "~ y ~  Cn exp( i2Jrn t /T) ,  i = ~ (29) 
n=--q  

ao q :r n t q 7r n t 
Qi j ( t )  ,~ --~ + ~ an cos ~ + y ~  bn sin 

n = l  n = l  

respectively. 

(30) 

Since complex matrix L(t) (or the real matrix Q(t)) can be computed as a function oft ,  all 
algebraic manipulations involving this matrix can be done in symbolic form using MATH- 
EMATICA or MACSYMA. Li-f (t) and Q~I (t) have similar Fourier representations. 

In this study only the real L-F transformation Q(t) has been used to make it more 
appealing to the engineering community. A 12- to 15-term Chebyshev expansion has been 
found to yield extremely accurate representation of Q(t). The accuracy of Q(t) is directly 
dependent upon the convergence and accuracy of the STM qb(t) itself. A convergence 
study in the computation of ~( t )  has been reported by Joseph et al (1993). 
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4. Time-dependent normal forms and centre manifold reduction 

4.1 Normal forms 

The fact that A(t) is time dependent in (4), a direct application of normal form theory is 
not possible. Using the transformation 

x(t) = Q(t)z(t), (31) 

(4) takes the form 

= Rz + Q-l(t){fz(z,  t) + f3(z, t)'}, (32) 

where R is an n × n constant matrix and nonlinear terms of order four and higher have 
been neglected, since for generic codimension 1 bifurcations, the fourth order terms do 
not affect the local stability behaviour (Arnold 1988). The form of (32) is amenable to 
direct application of the method of time dependent normal forms (TDNF) for equations 
with periodic coefficients as shown by Arnold (1988). 

Equation (32) in its Jordan canonical form can be written as 

= Jy + w2(y, t) + w3(y, t) (33) 

where J is the Jordan form of matrix R and wk(y, t) are 2T-periodic functions and con- 
tain homogeneous monomials of  yi of order 2 and 3. Using a sequence of near identity 
transformations of the form 

y = v + hr (v, t), (34) 

where hr (v, t) is a formal power series in v of degree r (r = 2, 3) with periodic coefficients 
having the principal period 2T, (33) can be reduced to its simplest form 

i) -~ J1) q- w 2 ( v ,  t)  -q- w3(v, t). (35) 

It is important to note that the w2(v, t) and w3(v, t) contain only a finite number of 
Fourier harmonics. This is due to the fact that the solution of the resulting homotogical 
equation depends on the resonance condition relating the eigenvalues of J and the Fourier 
frequencies of Wr(V, t) (Arnold 1988). It should be pointed out that the solution of the 
time-dependent homological equation requires the solution of a large set of linear algebraic 
equations even for a 2 x 2 system. For example, if for such a system, the L-F transformation 
matrix Q(t) is represented by a fifteen-term complex Fourier expansion and let us say that 
the degree of the monomials r = 3, then one needs to solve (2 × 124) equations in blocks 
of 31. 

4.2 Centre manifold reduction 

In situations where some of the eigenvalues of J in (33) are critical, the stability of (33) can 
be discussed in the centre manifold via time-periodic centre manifold theorems. Applica- 
tion of the normal form procedure to the reduced set of  equations in the centre manifold 
is found to retain the stability characteristics of the original n-dimensional system. In the 
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following, a theorem due to Malkin (1962) has been utilized to develop a practical method 
for finding the centre manifold relations for the time-periodic systems. 

Let us assume that (33) has nl eigenvalues that are critical and n2 eigenvalues that have 
negative real parts. Therefore, (33) may be rewritten in the form 

{ ~ : } = [ J c  jOl lY:}  +[wc2]+ws2 [Wc3],Ws3 (36, 

where the subscripts c and s represent the critical and stable vectors, respectively. Accord- 
ing to the centre manifold theorem, there exists a relation (Malkin 1962; Pandiyan & Sinha 
1995) 

Ys = h(yc: t), (37) 

such that h(yc, t) is of the form, 

h(yc, t) = Z tJsn(ml'"mnl)'-\tr)y 1 ml " "" yn~ nl ; ml + . . .  + mnl _ > 1, (38) 

where B71"''ran1 (t) are periodic coefficients with period 2T. The relation ys given by 
equation (32) can be obtained as the formal solutions of the equations (see Malkin 1962; 
Pandiyan & Sinha 1995) 

n l  
Oys , ~  Oys 
O---t- + ~=10yc (Jsys + Ws) = Jcyc + Wc (39) 

where Wc = Wc2 + Wc3 and Ws = Ws2 + Ws3 are nonlinear vector monomials of the 
critical and stable states of the system, respectively. It is important to note that the resulting 

• . . • . . m l  ""ran 
solutaons will be meamngful only if the coefficients Bs 1 (t) are also periodic. Although 
there exists an infinite number of expansions similar to (38) which have finite coefficients 
and also satisfy (39), there is only one with periodic coefficients. This result was first 
reported by Malkin (1962). 

As a result of substitution of (38) in (39), a set of differential equations in terms of the 
unknown coefficients B m~'''m"~ (t) is obtained in a form 

d B  ( m l ' ' ' m n l )  . _ ( m l ' " m n  1) ~ ( m l . . . m n  1) 

s dt ~jBs = tJs (40) 

where X j, j = 1, 2 . . . . .  n2 are the eigenvalues of the stable part of the system and 

CJml...m,1) are the known integral rational functions of the periodic coefficients on the 

fight hand side of (40). The c o e f f i c i e n t s  n ~  m l  ""mnl) Can be obtained by formally solving 

the above set of differential equations. For this p u r p o s e ,  n} m l"'mn 1 ) is assumed in the form 
of a finite Fourier expansions as 

l B~ml'"mnl)(t)=ao+~anCOS(~)+bnsin(~) ( 4 1 )  

n = l  

where 7 ~ = 2T. Substituting (41) in (40) and equating like terms on both sides of the 
equation, a set of algebraic equations in terms of the unknown coefficients an and bn are 
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obtained. The constants an and bn c a n  be computed by solving these algebraic equations and 
~ ( m l , . . r n n  I ) 

therefore the coefficients t~s can be determined in the form of (41). Substitution of 
(32) in (36) clearly decouples the stable and critical states and, hence, the problem reduces 
to the investigation of stability of an-n 1 dimensional system in the centre manifold. The 
resulting system of n l periodic equations is of the form 

Yc = JcYc + W* (42) 

where vector W* contains nonlinear monomials which are functions of Yc only. 

5. Applications 

To demonstrate the applicability and effectiveness of the suggested approach, two ex- 
amples are considered. As a first example, a nonlinear Mathieu equation is considered 
for which the L-F transformation has been obtained using the computational algorithm 
discussed in § 3. Although this is a simple example, it brings out the key points clearly 
and shows the superiority of the proposed methods over the classical methods such as 
averaging, perturbation, etc. Whereas the results of the proposed technique, based on L-F 
transformation and normal forms, provide reasonably good solutions even for moderately 
large parameters multiplying the nonlinear terms, the traditional averaging procedure is 
applicable only when the parameters multiplying the periodic terms and the nonlinear 
terms are both small. 

In the second example, the dynamicbehavior of a time-periodic double pendulum under- 
going various bifurcations is examined. In particular the critical dynamics under secondary 
Hopf and flip bifurcations are studied in detail. 

5.1 Example 1. Mathieu equation with cubic nonlinearity 

Consider the Mathieu equation with cubic nonlinearity in the form, 

5/+ 8:t + (or + 13 cos wt)x + E x 3 = 0, (43) 

where 8, or,/3, ar and E are the parameters of the system. In the state space form the above 
equation is rewritten as 

2 1 =  0 1 Xl + (44) 
X2 --  (Or q- fl COS O)t) 8 X2 

where {~l, :t2} r = {x, ~}r. Following the steps described in § 3, the 2-T periodic real 
L-F transformation matrix Q(t) can be computed for a given parameter set. Applying the 
transformation x = Q(t)z, (44) is transformed to 

rR,1  121{zl/+Ql t,{ 0 / 
z2 = [_R21 R22.] z2 -E(Ql lZ l  + Q12z2) 3 ' (45) 

where R U are the elements of the real matrix R and Qij are the elements of the L-F trans- 
formation matrix Q(t). It is to be noted that the nonlinear part of (45) can be expressed in 
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Fourier form due to the periodic nature of the Liapunov-Floquet transformation. Equation 
(45) can be written in the canonical form as 

{;;1_[o o][y;] 
+ 6  / ftl(t' r)y3 + fl2(t '  z)y2y2 + fl3(t '  r)YlY 22 + f14 (t, r)y23 / 

| f21 (t, r)y3 + f22(t, r)y2y2 + f23(t, r)y 1 y2 + f24(t, r)y23 ] 

(46) 

where r = 2T, A = {~1, )~2} are the eigenvalues of R and the periodic coefficients 
f i j(t ,  r); i, j = 1 . . . . .  4 are expressed as 

l ( 2 7 t )  l ( ~ _ ~ )  
fij(t,  z ) =  a~ j + ~_, a i'j cos - -  + ~ b~ j sin . (47) 

n=l n=l 

After experimenting with various sets of system parameters, it was observed that I ----- 15 
provided quite accurate representations of functions f/j (t, ~'). This has been reported earlier 
by Pandiyan et al (1993). It is also consistent with the number of  Fourier terms taken in 
the representation of the L-F  transformation Q(t). 

In order to obtain a solution of equation (46) using TDNF, consider a near-identity 
nonlinear transformation 

Yl = u -[- gll(t,  z')u 3 -[- gl2(t, T)u2v 4- gl3(t, z)uv 2 -b gl4(t, z)v 3, 
(48) 

Y2 = v q- g21(t, r)u 3 q- g22(t, z)uv 2 -t- g23(t, r )uv  2 -t- g24(t, z)v 3, 

where the periodic coefficients gij(t, "r); i, j = 1 . . . . .  4 are once again of the form given 

by (47) but with unknown constants an and/~n- Substituting (48) in (46) and solving the 
resulting homological equation as described earlier, the unknown constants t~,, and/~n can 
be evaluated. In situations when there is no resonance, the Fourier series assumed for 
gij (t, •) and its derivative are found to be convergent (Arnold 1988). On the other hand, 
if resonance takes place, the unknown constants of the corresponding periodic coefficient 
cannot be determined and some nonlinear terms remain even after the normal form reduc- 
tion. As long as there is no resonance, all nonlinear terms are eliminated and the reduced 
normal form is just the linear part of  (46). Therefore, the solution of  the nonlinear Mathieu 
equation in the original coordinates can be obtained by substituting back all the intermedi- 
ate transformations. Even when some of the nonlinear terms remain due to resonance, the 
resulting equation can still be used to provide many useful conclusions about the stability 
and dynamical behaviour of the system. Such procedures are described by Bruno (1989) 
and Hale & Kocak (1991). 

In order to obtain an approximate solution of (46) via the time independent normal form 
(TINF) theory, variations of the periodic coefficients of nonlinear terms are neglected in 
comparison with their predominant means. This approximation results in an equation of 
the form 

{Yl] = I O 1 0 I { Y l } - I - l a 3 Y ~ + a 4 y 2 y 2 q - a 5 f ~ l y 2 - [ - a 6 y 3 [  (49) 
Y2 ~'2 Y2 / b3y3 + b4y2y2 + b5Yl y22+ b6~3/' 
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where yl and Y2 are the approximate states and a j,  bj, j = 3 . . . . .  6 are the means of the 
periodic coefficients of (47). To apply the TINF theory, consider a nonlinear near-identity 
transformation of the form 

Yl = u q- p l u  3 q- p2u2v q- p3uv  2 Jr- p4 v3, 
(50) 

Y2 = v -q- ql u3 q- q2u2v -4- q3uv 2 + q4 v3, 

where Pi and qi are unknown constants. Substituting (50) in (49) and solving the resulting 
autonomous homological equation, (49) can be reduced to a linear form in most of the 
situations except when resonances due to nonlinearity occur. The approximate solutions 
for this case can also be obtained in a fashion similar to the procedure discussed above. It 
is also observed that as long as the system has eigenvalues that are distinct with negative 
or positive real parts, one could completely reduce the system to a linear form. 

At this point an application of the traditional averaging procedure to (43) is briefly 
discussed. Assume a generating solution of the form (cf Sanders & Verhulst 1985), 

z2(t) 
x( t )  = zl (t) cos og0t + - -  sin mot, (51) 

O90 

where o92 = c~ and zi, i = 1, 2 are the slowly varying coefficients of the solution. Using this 
solution in (43) and averaging over the principal period 2zr/co, one gets a set of quasilinear 
autonomous differential equations with cubic nonlinearity in the averaged coefficients ~ as 

{Zl}= F R°l R°21 {Zl I q_ E [t]3z~ +- a4z2z2 + a5zlz2 q- a6z3/, 
z2 [ R  °, R°2] z2 [b3z~ +/~4z2z2+gs~,z~ +/~6z31 (52) 

where hi and/~i, i = 3 . . . . .  6 are the constants depending on the parameters of the system 
and R ° are the elements of the constant matrix R °. However, the eigenvalues of the matrix 

R ° will be quite different from those appearing in (49). The solution of the above equation 
can be discussed via the TINF theory. 

5.2 Case studies 

In the following, several case studies are presented by selecting various sets of parameters 
or,/3, 8 and E in the Mathieu equation given by (43). The parameter o9 is selected as 2zr in 
all cases of this study. 

Case 1. Trajectories in stable manifold (c~ 5~ 0): Parameter set 1: c~ = 10.0;/3 = 0.2; 
8 = 1.8974; E = 0.3; Note that the parameters/3 and E multiplying the periodic and 
the nonlinear terms respectively are selected small. The suggested approaches, including 
the traditional averaging, are applied to this set and the results, along with the numerical 
solution, are presented in figure 1. It is understandable that all the methods predict the 
behaviour of the system correctly due to the smallness of the parameters/3 as well as E. 
For brevity, the coefficients of near-identity transformations for the normal forms are not 
recorded in this paper. 
Parameter set 2: a = 0.5;/3 = 4.0; S = 0.4243; e = 0.3; For this case,/3, the parameter 
multiplying the periodic term, is selected to be 8 times larger than or. From figure 2, 
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F i g u r e  1. C o m p a r i s o n  o f  so lu t ions  o f  M a t h i e u ' s  equa t ion  wi th  cub ic  nonl inear i ty :  c~ = 10, 

/3 = 0.2,  3 = 1.8974,  ¢ = 0.3.  

it is observed that except for the averaging method, all other techniques predict similar 
trajectories which finally approach the fixed point (0, 0). 

Case 2. Equation without generating solution (or = 0): Note that when ot = 0 the 
fundamental frequency o9o of the autonomous part of (43) is zero and without.a generating 
solution the averaging approach cannot be applied. 
Parameter set: ot = 0; fl = 4.0; 3 = 0.4243; ¢ = 3.0; This set shows that the behaviour 
of the system is well predicted by the suggested techniques when compared with the 
numerical solution even though the nonlinearity parameter E is 10 times larger than the 
value used in set 1. The comparison is shown in figure 3. 

The coefficients of the near-identity transformations for the TDNF as well as TINF 
methods are once again omitted for brevity. 

Case 3. The centre manifold case: The application of the suggested techniques to the 
special case when the resonance condition prevails due to the presence of a pair of purely 
imaginary roots is shown in this part. For this case, by applying normal forms, all the 
non-resonant terms are annihilated, however, the homological equation corresponding to 
the resonant terms cannot be resolved. Therefore, some of the nonlinear terms of third 
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Figure 2. Comparison of solutions of Mathieu's equation with cubic nonlinearity: o~ = 0.5, 
/~ = 4.0, ~ = 0.4243, E = 0.3. 

degree stay in the reduced equation and hence, in general, a closed form solution is not 
possible. Under such circumstances it may be possible to neglect the periodic variations 
of the nonlinear coefficients and still retain the stability behaviour of the system. In the 
following, a case study is provided to demonstrate the applications in similar situations. 
Parameter set: a = 4.0;/~ ----- 7.468; 3 = 0; E = 0.3; For this set of parameters, applica- 
tions of the L-F transformation, the Jordan canonical transformation and the near-identity 
transformation (cf (48)) to (46) results in an equation of  the form, 

1~} [ O ° ico0 ' 0 ]  {u} {fl2(t,z)u2v I. = +e f23(t,r)uv21, (53) 

where, fl2(t ,  r)  and f23(t, r)  are complexified periodic functions corresponding to the 
resonant terms and -q-ia~0 = +i0.816 are the eigenvalues of the system. Multiplying ti by 
v and P by u and adding, a linear differential equation in (uv) can be obtained. Therefore, 
the analytical solution of (53) can be found in (uv) which is of the form 

uv = -1 a(x, r ) d x ,  (54) 

where a (t, r)  is a complex Fourier function. The differential equation (53) can be decoupled 
by substituting the solution (54) into (53) and the resulting linear differential equation in 
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Figure 3. Comparison of solutions of Mathieu's equation with cubic nonlinearity: c~ = 0, 
= 4.0, 8 = 0.18974, E = 0.3. 

u can be shown to be of  the form, 

f t = I - i o ) o - F E f l 2 ( t , r ) / ( - f o t a ( x , v ) d x ) l u ,  

I q 1 
ft = - iwo  + e ~ cn exp(i2rcnt/r) u, (55) n=--q 

where Cn are complex  constants o f  Fourier expansion of  the periodic terms and hence 

I (  q ) ] 
u = exp -io)o + E ~., Cn exp( i2~nt /r)  t uo. (56) n=--q 

In a similar manner,  v can also be  computed.  It should be  noted that the stability o f  these 
solutions entirely depend on the real part  o f  the constant coefficient o f  the t ime-varying 
function Cn exp(i2zrnt/r). The solution is stable and/or unstable depending on whether  the 
constant has negative real part  or positive real part, respectively. This observation has also 
been made by Rosenblat  & Cohen (1980, 1981) following an entirely different approach.  
When  the real part  is zero, the solutions are closed orbits and behave like limit cycles.  A 

typical result is shown in figure 4. 
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Example 2. Double inverted pendulum with parametric excitation 

In this example, the bifurcation of a two-mass inverted pendulum subjected to non- 
conservative periodic load is discussed. The nonlinear equations of  motion of  the system 
are of the form (J in  & Matsuzaki 1988; Pandiyan & Sinha 1 9 9 5 )  

~1 = - -0 .5 (n l  + 2B2)q~l + n2q~2 + 0.5k(/p -- 3)01 
+ 0.5~:(2 --/3)02 -- 0.5(q~ 2 + q~2)(0~ -- q~) 
--(/3/k'/12){(01 -- Y02) 3 - (1 -- y)303 } -- ((01 -- 02)2/4) (57) 

x {~:(/3 - 4)01 + ~:(3 + / 3 ( y  -- 2))~b2 - (B1 + 3B2)q~l + 3B2q~2}, 

~2=0.5(B1 + 4Bz)q~l - 2Ozq~2 + 0.5(5 -/5)/¢01 
+ {(,0(1.5 - ×)  - 2)f,}02 + 0.5(05 - 02)(3  2 + b2 z) 
+ (fi~:/12){(01 -- }/02) 3 -- 3(1 -- y)303 } + ((01 -- 02)2/4) (58) 

× {/<(2/~ -- 7)01 + k(5 + / 3 ( y  - 3))02 - (2B1 + 502)q~l 4- 5Bzq~2}, 

where m is the mass, l is the length of  the links of  the pendulum, 01 and 02 the displacement 
angles, q~l and q~z are the corresponding rates, y (0 _< y _< 1) is the load-direction parameter 
and P = P1 + P2 cos wr.  Other symbols appearing in (57) and (58) are defined as bl & 
b2 = damping parameters, BI = bl/ml 2, B2 = b2/ml 2, p = Pl/ml 2, k = k/ml 2 
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k = stiffness parameter, P1 = magnitude of  static load, P2 = amplitude of  the dynamic 
periodic load. Equations (57) and (58) are rewritten in the state-space form as 

292 0 0 0 
293 = 0.5/¢(/5 - 3) 0 .5 /c (2- /5 )  -0 .5(B1 + 2B2) B2 
294 k0.5k(5 - /5 )  /c[/5(1.5 - y)  - 2] 0.5(B1 + 4B2) - 2 B 2  

(59) 

0 
0 

l Y l I [ - - O . 5 ( y 2 - + ' Y 2 ) ( Y l - - Y 2 ) - - ( P ~ Z ) [ ( Y l - - Y y 2 ) 3  
× Y2 -t- --(1 -- y)3y23]/12 -- 0.25(yl -- y2)Z[k(/5 -- 4)yl  

Y3 +~:(3 + / 5 ( y  -- 2))y2 - (B1 + 3B2)Y3 + 3B2Y4]] 
24 [0.5(yl -- 22)(322 -'{- 22) -t-/5k[(yl -- YY2) 3 

--3(1 - y)3y3]/12 + 0.25(yl -- y2)2[/c(2/5 -- 7)yl 

+~:(5 + / 5 ( y  -- 3))y2 -- (2B1 + 5B2)Y3 + 5B2Y4]] 

where {Yl, Y2, Y3, Y4} = {qS1, ~b2, q~l, q~2}. In the following, the dynamics of  a primary 
single Hopf  and a single flip bifurcations of  the above 4-dimensional system is discussed 
via centre manifold principle by reducing the problem to a two and a single dimension 
respectively. 

(i) Hopfbifurcation - For the parameter set,/¢ = 2.0, B1 = B2 = 0.016, P1 = 0.5, P2 = 
0.966, y = 0.8, co = 1.0, (46)yields a pair of  complex Floquet multipliers with modulus 
one which corresponds to a single Hopf bifurcation. After normalizing the time with 
coz = 2zrt, the L - F  transformation corresponding to (59) is computed. The application of  
this transformation to (59) leads to the following dynamically equivalent Jordan canonical 
form. / '1 ] 

Y2 = 

293 
294 

I 
-0 .17791 + 1.14613 i 

0 
0 
0 

I y' } 
x Y2 + 

Y3 
Y4 

o o o ]  
-0 .17791 - 1.14613 i 0 0 

0 0.3391 i 0 
0 0 -0 .3391 i 

(60) 
Y~aq(t)y?ly72yr~3y~ 4 

• _ z-\ ml m2 m3 m4 
Y~Dqtt)Yl Y2 Y3 Y4 
Y~ Cq(t)y~l y72y73 y74 

r.~ ml m2 m3 m4 
Y~dqtt)Yl Y2 Y3 Y4 

4 
, ~ m i  = 3  

i=1 

where aq (t), bq (t), gq (t) and dq (t) are the complex vector periodic coefficients consisting 
of  31 elements (this corresponds to the number of  Fourier terms taken in the expansion of  
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L-F  transformation matrix) with period 2T corresponding to all possible monomials of  
order 3 in Yl, Y2, Y3 & Y4. Note that two of the eigenvalues in (60) are purely imaginary 
which is to be expected in this case. The centre manifold relations for this problem are 
assumed in the form 

Yl = B~l(t)Y 3 + B32(t)y2y4 + B~3(t)Y3Y 2 + B34(t)Y 3, 
(61) 

Y2 = B31(t)Y 3 + B32(t)y2y4 + B33(t)Y3Y 2 + B34(t)Y 3 

such that B 3 (t), i = 1, 2 & j = 1, 2, 3, 4 are unknown periodic coefficients with period 
2T. Note that in the above equation the states corresponding to stable eigenvalues are 
expressed in terms of the states corresponding to the critical eigenvalues. 

Substituting (61) in (60), eight ordinary differential equations in B3ij(t), i = 1, 2 & 
j = 1, 2, 3, 4, similar to (40) are obtained. The periodic coefficients appearing on the right 
hand side of these differential equations are nothing but the known periodic coefficients 
corresponding to the cubic nonlinear terms appearing in (60). The unknown periodic 
coefficients B 3 (t), i = 1, 2 & j = 1, 2, 3, 4 can be obtained by formally solving these 

differential equations. In order to obtain a particular solution, B/3j (t) is assumed in the form 
of (41) with unknown constant coefficients and like terms on both sides of the equations 
are equated to obtain a set of linear algebraic equations in terms of the unknowns an and 
bn. The computation of all the unknowns of the B 3 (t)'s requires the solution of a set of  
8 x 31 linear algebraic equations. These algebraic equations can be solved such that each 
of the B/3j (t), i = 1, 2 & j = 1, 2, 3, 4 can be obtained as Fourier series expansions. 
Noting that the problem under consideration consists of only cubic nonlinearities, it is not 
necessary to solve for all the periodic coefficients B 3 (t), i = 1, 2 & j = 1, 2, 3, 4 in the 
centre manifold relation. Instead, it suffices to compute only one coefficient per relation 
in (61). This simplification does not affect the final outcome of the result, since the centre 
manifold relations result in nonlinearities which are of powers greater than three and does 
not influence the stability characteristics. Therefore, for this case, only coefficients B31 (t) 

and B31 (t) are computed. 
Substitution of centre manifold relations (61) in (60) results in differential equations for 

the critical states Y3 and Y4 which contain nonlinearities of cubic and higher orders. Since 
the higher order terms do not affect the stability characteristics, the terms of order higher 
than 3 are neglected. The equations thus obtained are similar to (46) representing a Hopf 
bifurcation behaviour in a two-dimensional system with cubic nonlinearity. Following the 
procedure outlined earlier in the study of Hopf bifurcation of  a single degree of freedom 
system, the application of time-dependent normal forms to these equations provide a 
simplified nonlinear equation similar to (53). The behaviour of  the fixed point of the 
resulting equation is found to be a centre by employing similar methods to those outlined 
by Pandiyan (1994). For brevity, the calculations are not reported here. On the basis of 
the arguments presented for example 1, the motion resulting from the Hopf bifurcation 
is quasi-periodic and bounded. It can readily be seen that the Poincar6 plots provided in 
figures 5a and 5b also confirm this result. 

(ii) Flip bifurcation - Consider the parameters k = 2.0, B1 = B2 = 0.0175, P1 = 0, 
P2 = 0.5, y = 0.895, o9 = 1.1 such that one of the Floquet multipliers of (59) becomes 
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(a) Poincar6 plots - Double inverted pendulum under Hopf bifurcation. 

--0.999938(~ --1) and the system undergoes a flip bifurcation. After the transformation, 
the following Jordan canonical form is obtained 

/ ~ l /  [ -0 .1685 + 0.9557 i 0 0 0 
Y2 _--- 0 --0.1685 -- 0.9557i 0 0 
P3 0 0 0 0 
Y4 0 0 0 -0.0137 

[yl] 
Y2 

× Y3 + 
Y4 

ml m2 m3 m4 
Y~+aq(t)Yl Y2 Y3 Y4 
~bq(t)y~ty72y73y7 4 

m l  m2 m3 m4 
Y~'Cq(t)Yl Y2 Y3 Y4 
E dq(t)y~ly72y73y2 4 

4 

, E m i  = 3  
i=1 

(62) 

where aq (t), bq  ( t ) ,  eq (t) and dq (t) once again are vector periodic coefficients with period 
2T . It is observed that the eigenvalue corresponding to the third state is zero and the 
remaining eigenvalues have negative real parts. The centre manifold relations for this case 
can be assumed in the form 

Yl = B31(t)y3; Y2 = B31(t)y3; y4 = B]l(t)Y 3, (63) 

where B31 (t), B31 (t) and B31 (t) are unknown coefficients with period 2T. These can be 
determined by solving the differential equations in B31 (t), B321 (t) and B331 (t) as described 
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(b) Poincar6 plots - Double inverted pendulum under Hopf bifurcation. 

earlier. The computed coefficients are recorded by Pandiyan (1994). Substituting (63) into 
equation (62) and neglecting the higher order terms beyond the cubics, the one-dimensional 
centre manifold equation is found and since the mean value of the periodic coefficientof 
the reduced centre manifold equation for this case is positive, the fixed point is unstable 
and hence the corresponding 2T periodic orbits in the original coordinates are unstable. In 
a similar way, the fold bifurcation of this system can also be studied. However, the results 
are not included here. 
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