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D Y N A M I C S  O F  AN I N V E R T E D  P E N D U L U M  

WITH A VIBRATING SUSPENSION 

A. N. Mar)~ata UDC 621.891 

An inverted (turned around) pendulum is a peculiar phenomenon in mechanics. It is usually unstable at its highest 
position, since the smallest perturbation disturbs its equilibrium and returns it to its initial stable state. The pendulum becomes 
stable in this position if the suspension point oscillates (vibrates) with the necessary frequency and amplitude. In this case, the 

weight undergoes periodic deviations from the vertical poskion. 
The fact that the pendulum stabilizes in the above circumstance is unusual enough to have attracted the attention of a 

wide range of specialists in physics, mechanics, the theory of vibration, the theory of stability and control, and other fields. 
At various times, pendulum dynamics have been studied by such noted Soviet and foreign scientists as N. N. Bogolyubov, J. 

Stoker, P. L. Kapits, K. G. Valeev, and V. N. Cheloma. Detailed investigations of the theory of the vibration of inverted 

pendulums have been made in recent years by T. G. Strizhak [5, 6]. The present article offers a historical overview of these 

studies. 
In all of the best-known works [5], the dynamics of inverted pendulums has been studied as a closed system. These 

investigations have reliably established that the stability of the vibrations of such bodies can be characterized by the Mathieu 

equation, with regions of stability being determined on an Ains-Strett diagram. The qualitative and quantitative aspects of the 
vibration process have yet to be thoroughly explored. We believe that somewhat more accurate resuks can be obtained by 
regarding an inverted pendulum as an open nonequilibrium dynamic system. 

The notion of studying individual objects (biological, economic, ecological, social, etc.) and open nonequilibrium 
systems is associated with the Brussels school of I. Prigozhin [4]. Adherents of this approach have shown that, depending on 
the conditions, a system either degrades or adapts to a new form of organization (such as oscillation). Prigozhin referred to 

such open nonequilibrium systems as dissipative structures. These structures are formed and remain intact as a result of an 

exchange of energy (mass, information) with the environment under nonequilibrium conditions (at branch points [4]). 
Mechanical systems in which energy is transferred from sources (by friction, streams of air or gas, vibrations, etc.) 

to working elements are also open and nonequilibrium. In this article, we study an inverted pendulum with a vibrating 
suspension point as an open system transmitting vibrational energy (vibrations) to a working element. A study was made 

previously [1, 2] of open nonequilibrium systems in the form of a Froude pendulum and a rolling mill. In these systems, 
external energy was transferred from the source to the working element by friction. 

1. Figure la presents a diagram of the inverted pendulum. It consists of a weightless rigid rod 001 having a mass point 
O 1 of mass m at its end. The suspension point of the pendulum coincides with the origin of the stationary coordinate system 

XOY. Figure lb shows a diagram of the vibration of the inverted pendulum. Here, suspension point O moves together with 

the movable coordinate system XIOY over the path +__I at the linear velocity _V. The character of motion of the suspension 
point moves in this manner, the mass point O l, of mass m, will undergo complex motion relative to the movable coordinate 
system XIOY. 

Proceeding on the basis of the results presented in [5], we can construct a differential equation that describes the 
complex motion of point O 1. The equation is based on the theorem of the increment of the kinetic energy Tzx of point O t in 
each cycle of motion of movable (noninertial) coordinate system X1OY. First we write the increment of the kinetic energy of 
01 as it moves in inertial coordinate system XOY. 

T a =a i • [R(n - Oa) + n • cos (= _ oA) __. l l, (1.1) 
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Fig. 1 

where G r = mg.sin(Tr _+ 04) is the tangential component of the force of gravity on point O1; R(~r + 04) + R'cos(Tr + 04) 

_+/], is the displacement vector of O 1 . 

If we consider that T 4 = (m.R'd20ffdt2).[R(~r + 0a) + R.cos(Tr _+ 04) + / ] ,  where F i = m.R.d204/dt 2 is the inertial 

force on point O t and the expression in the brackets corresponds to the distance 001 (Fig. lb), and if we then insert the values 

of Tzx and G r into (1.1), after completing the transformation we obtain 

+Rm 

m R - [ R ( ~ + I ) _ t l -  d - - - ~ +  

d20^ 
- - ~ ' - (  --.+ 0A) = -- m g R ( ar. + 1)sirl0&. 

(1.2) 

tn Eq. (1.2), we considered that the work of the conservative force G r on closed linear path + l  is zero, as is the work 

done by this force on the closed arc +R-04. The increment of kinetic energy R2m d20ffdt2(+04) = mu-du corresponds to the 

work AT~ = ~-mudu done by the inertial force F i on the small closed arc +R0/,, where u = R-d0A/dt, where r/is the relative 
viscosity of the medium in which mass point 0 t of mass m is vibrating. Allowing for the fact that sin 04 -~ 0zx, after 
completing the necessary transformations we obtain 

d2Oa ~IV dot, ~IR dOa 2 (n  + 1 )  
- -  + ' g " 0 A = 0  (1.3)  d t  2 R(z~ +l)  __.i at R(n+l)__. / ( - '~-)  +R(~+I)__. /  

o r  
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Fig. 2 

V.r/  2 _  g ( y  + 1) 
f=R(:x+l) -±l '  wO-R(:g+l )±l '  

Here,/3 and ~o are the damping factor and the angular frequency of natural vibration of the bob of the pendulum. 

For actual pendulums of the type being discussed, when R >> I I I, the parameters B and ~0 of differential equation 

(1.3) are simplified as follows 

• v - ~  2 #_ (1.5) 
ft=0,5 R ( ~ + I )  and °JOl= R" 

The bon of the pendulum 01 undergoes complex periodic motion relative to the moving coordinate system XIOY 

during each period of travel of the suspension (Fig. lb). To describe such motions, it is necessary to determine the vector of 

linear velocity of the bob u = R.dO,a/dt, having expressed it in terms of the vector of linear velocity V of the suspension and 

the vector of relative velocity u I = R .df f jd t  of the mass concentrated at point 01, i.e., 

dOA V d~A dOa dlPa f o r  - -  + + , (1.6) 
R .  at = . . - V + R  .... at at - 7  at 

From this 

Vt 
0 A = ± -~" + ~'&. (1 .7)  
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Inserting the values of dOa/dt and Oa from (1.6) and (1.7) into (1.3) and considering that 

dO~ d~,, dO, due~ 
u=R-d-i-= ± v + R-dF ,  ~ = u A =  ± v -  R-Zi-= - R-7 i -  ,, o ~ = ~ o  A, 

we obtain Mathieu's differential equation with the right side [5-7] 

d2~0A V" ~/ d~PA g(at + 1) 
dt 2 - R ( a t  + 1) -+ l" d--'~ + R(at + I) __ l'C°StOlt'~0A= 

R ' r /  (_~tA) Z g ( ~ + l )  
- R ( ~ ' ~ ) ± l  - R ( : ~ + l ) ± l  "sinwlt' 

(1.8) 

where ~1 = V/R is the angular frequency of the parametric excitation acting on the mass point O 1 (the bob of the pendulum). 

Differential equation (1.8) can be changed to the more compact form 

d2~OA 2f l .d~A 2. co6o91t. ~/,A = R-~/ ( ~ t 2 )  2 
d t 2 - - - ~  + t° O R ( ~ + I ) _ + I  --w02-sinw t. (1.9) 

2. Differential equations (1.3) and (1.9) characterize the motion of the bob (mass point O 1 of mass m) of the pendulum 

during each cycle of motion of the coordinate system X1OY connected with the suspension point (Fig. lc). The sequence of 
motion of point 01 is represented in Fig. 2a in the form of arcs of a graph. The initial arcs 0 - 1 - 2  of the graph correspond 

to the estimate of the phase-plane vector 0 - a - b  shown in Fig. 2b and obtained from a qualitative analysis of Eq. (1.3) for 
the case l > 0, V > 0 (Fig. lc). In this case, in the inertial coordinate system the bob is accelerated at the velocity d0zx/dt 
by variable positive nonlinear feedback. The pendulum follows the motion of the suspension as it deviates from its previous 
path. As soon as the angular velocity of the bob (point O1) reaches d0A/dt = V/R, its acceleration is complete and point V/R 
begins to follow the suspension point at a constant angular velocity V/R. The segment a-b represents this section of movement 

of the image point of phase-plane vector 0 - a - b .  
The equilibrium regime in the motion of point O t is characterized by the end of segment a - b  of the phase-plane vector 

(Fig. 2b), where 0A = 0 (1.3). This regime lasts only an instant, because the terms V2~/R[R(Tr + 1) + / ]  in the left and right 

sides of Eq. (1.3) cancel out. Since the suspension continues to move in accordance with the program (Fig. lc), an 

uncontrollable coupling develops and the dynamics of the bob (point O1) is described by differential equation (1.9). 

The subsequent motion of point O 1 is characterized by the direction of the arcs 2 - 3  - 0  in Fig. 2a (or the phase-plane 
vector b - c - 0  in Fig. 2b). Here, the body begins to move in a complex manner relative to coordinate system X1OY. The body 

initially moves in accordance with b - c - 0 ,  and the relative angular velocity d~b,a/dt is low. Thus, the main perturbing factor 
in the right side of (1.9) is the term w02.sino~l t. However, an increase in relative angular velocity dC/Jdt is accompanied by 
an increase in the term (R-~/R(Tr + 1) + /)(d~b2/dt) 2 in the right side of (1.9), which stabilizes the motion of the body 
(decreases the angle ~ba(t)). The so-called "standing" regime begins when relative angular velocity d~bJdt = V/R (when d0a/dt 

= 0, in accordance with (1.6)). Here, the velocities of the suspension and the bob are coordinated so that it appears that point 
01 momentarily stops. Such motion of the body corresponds to displacement of the image point along section c - 0  of the phase- 

plane vector in Fig. 2b. 
The body begins to move in the equilibrium regime at point 0 (Fig. 2b), when ~b a = 0, and the terms -2/3"d~bzx/dt 

and (R.~/R(Tr + 1) ___ /)(d~b2/dt) 2 in the right and left sides of Eq. (1.9) cancel out when d~ba/dt = V/R. Uncontrollable 
coupling develops in this case, and the bob continues to move in accordance with phase-plane vector 0 - a - 0  in Fig. 2b (or 
over arcs 0 - 4 - 5  in Fig. 2a). This vector is described by Eq. (1.3) when l < 0. Further motion of the body corresponds to 
vector b - c - 0  in Fig. 2b, in accordance with Eq. (1.9), when l < 0. 

In the general case, the "upper" ( 0 - a - b - c - 0 )  and "lower" ( 0 - a - b - c - 0 )  sections of the phase-plane vector in 
Fig. 2b are asymmetric because the parameter l has different signs in the coefficients of differential equations (1.3) and (1.9). 
Only when r(Tr + 1) >> l (1.5) do the phase-plane vectors ( 0 - a - b - c - 0 )  and ( 0 - a - b - c - 0 )  become symmetrical, i.e., 
only then does the lower vector become the transformation of the upper vector (Fig. 2b). 
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The character of oscillation of the angle ffzx(t) (or 0~(t)) during the period T of motion of the suspension 0 (Fig. 2c) 
can be evaluated by a qualitative analysis of Eqs. (1.3) and (1.9) at l > 0 and analysis of the analogous equations for l < 0, 

as well as the phase-plane vectors in Fig. 2b. It follows from analysis of this figure that the period of vibration T 1 .~ T 2 of 

the body (point O1) is roughly halved compared to the period T. For the case when r(~r + 1) >> l, the oscillations of ~zx(t) 

become strictly symmetrical relative to the time axis T 1 = T 2 (Fig. 2c). 

The process of motion of mass point 01, of mass m, in an inverted pendulum with a vibrating suspension (Fig. lb) 
represents a cyclic transition from equilibrium states at point 0 in noninertial coordinate system X1OY to an equilibrium state 
at points b and b' in inertial system XOY (Fig. 2b and c). 

3. Let us now evaluate the conditions which ensure that the oscillations of ffzx(t) (Fig. 2c) will be stable (steady). An 

analysis of Eq. (1.3), characterizing the motion of point O 1 and the image point on sections 0 - a - b and 0 - a' - b' of the phase- 

plane vectors in Fig. 2b, shows that these vectors are stable in character. The motions of 01 corresponding to sections 0 - a - b  
and 0 - a '  - b '  in Fig. 2b are described by" Mathieus; differential equations with the right side in the form of (1.9). The stability 
of such motions is conveniently studied by means of an Ains-Strett diagram [1, 4, 5, 10]. To do this, we need to change the 

left side of (1.9) to standard form by making the variable substitution ~,~ = ye -~t (or y = ~zx.e~b. Then 

d2y + 69o2" colt) = O. (3.1) dt 2 _ (/~2 cos • y 

We make the following substitution in order to change over to dimensionless coefficients in Mathieu's equation (3.1): 

2~ dy ~o~ dy andd2Y % t = 2 T ;  t = - - ; - ~ - - - ~  ~ dt 2 = ( ~ )  • After inserting these values into (3.1) we obtain 
a_zz 

t o  t d r  2 • 

_ _  2 ( 3 . 2 )  d Z y _  4 . ( f lZ_o)0 . cos21 r ) . y=0 .  
d r  2 ~?  

Writing Eq. (3.2) with the dimensionless standard Mathieu equation in the form 

d . ~  + (a - 2q • cos21:)y = 0 ,  (3.3) 
d r  2 

we see that 

a = ~ - R2r/2 °J° 
- oJ? - - [  R ( ~ + I ) _ I +  12; q=2(-~'l)2--V2[R(zt2gR2(~+l)+l)_l]" (3.4) 

Figure 3 shows part of the Ains-Strett diagram for the case being considered. Here, the axes are the dimensionless 
coefficients a and q (3.4). The part of the diagram shown corresponds only to negative values of the coefficient "a". The 
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hatched regions II of the diagram are known [1, 4, 10] to be stable regions, while unhatched regions 1 characterize unstable 

vibrations. 
The authors of [6, 7] used the method of equivalent transfer matrices to examine synchronization of the natural angular 

frequencies of working elements and parametric excitations arising in dynamic systems described by the Mathieu equation. It 
was shown that in the plane of the parameters a and q, the Ains-Strett diagram (see the part of the diagram in Fig. 3) 

determines the regions where a parametric excitation with the angular frequency Wl can (region II) and cannot (region I) be 
synchronized with the natural vibrations of a mechanical system with the angular frequency ~o- The parameters that affect such 
synchronization in an inverted pendulum may be structural variables (R,/), the characteristic viscosity of the medium (r/), or 

the velocity of the moving coordinate system (V). 

Figure 3 shows two trajectories (N O N 1 N 2 N 3 N 4 N 5 N 6 N 7 and N o' N I ' N 2' N 3' N 4' N 5' N 6' N7') of the working 
point in an Ains-Strett diagram with an increase in V and constant values of the parameters R, l, and n. Synchronization is 
absent at the initial points N O and No', so that stable vibrations of an inverted pendulum with an oscillating suspension are 
impossible. The variables become stable when the working point on the Ains-Strett diagram falls within the narrow interval 

N 1 - N  3 (or N 1 ' -N3' )  in the hatched region between boundary lines b2(Tr) and a l(27r). The vibrations with angular frequencies 
~0 and 6ol are synchronized in this case, so that mass point O 1 undergoes complex vibrations of the form shown in Fig. 2c. 

To quantitatively evaluate the main harmonic components of these vibrations, we examine point N 2 inside the interval N i - N  3 
in Fig. 3. It is found that 7r- and 2~--periodic solutions of the Mathieu equation exist simultaneously at point N 2 [t, 4, 5, 10]. 

In fact, 2"~o02/o~i 2 = 8, from which WO/Wl = 2. On the other hand, 2.(~0/2)2/~12 = 8, from which 6oo/O~i = 4. Thus, natural 
vibrations with the angular frequency o~ o occur at point N 2, these vibrations simultaneously including components with the 
angular frequencies 26o 1 and 4oo 1. It is not hard to see that vibrations of O 1 close to angular frequency 2~ 1 occur at point N 1, 

while vibrations of 01 close to 4w 1 occur at point N 3. 
The results obtained in [1, 4, 10] confirm that stable vibrations of an inverted pendulum are possible when the 

frequency ratio w0/Wl is close to two. Using this relation, we find from (3.4) that 

4 ~ gR2(~ + 1), 
V2.[ R ( z ~ + l ) ± l  ]" 

We can use this expression as a basis for choosing the design (R, /) and regime (V) parameters that will ensure 

realization of the above vibration synchronization region in a dynamic pendulum system with angular frequencies w o and 6ol. 
With a further increase in velocity V, the coefficient q decreases and synchronization becomes impossible. 

Synchronization becomes possible and the vibrations of point 01 become stable when the working point falls within the narrow 

hatched region N4-N 5 (or N 4' - N s ' )  between boundary lines bl(27r ) and ao(Ir). 
It is evident from Fig. 3 that the lower the absolute value of the coefficient "a" (3.4), the higher the values of ~o 1 = 

V/r at which stable vibrations of mass point 01 of the inverted pendulum are possible. Stable vibrations of such a pendulum 
within this frequency range were studied experimentally by Academician P. L. Kapitsa and described in [2, 3]. 

4. In conclusion, we will restate the main features of the dynamic processes that take place in an inverted pendulum 

with a vibrating suspension. 
1. For a specified periodic motion of the suspension (Fig. lc), the body of the pendulum (mass point O 1 of mass m) 

undergoes complex oscillatory motion relative to the suspension point (Fig. 2c). 
2. During such oscillation, the body goes from the equilibrium state characteristic of the inertial coordinate system to 

another equilibrium state characteristic of the noninertial coordinate system. There are two alternations between these 
equilibrium states in each cycle of motion of the suspension. 

3. An analysis of the main equations of motion (1.3), (1.9) shows that steady vibrations of the bob of an inverted 
pendulum are excited and sustained as a result of internal positive nonlinear (quadratic) feedback with regard to the angular 

velocities d~bA/dt (1.9) and d0a/dt (1.3) of the pendulum in noninertial and inertial coordinate systems. The character of motion 
of the bob during its vibration is determined by the changes which occur in this feedback. 

4. An inverted pendulum can be used as a generator of steady mechanical vibrations (Fig. 2) when the suspension 
vibrates within certain frequency ranges. 
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