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The System
● Spring acts as pendulum arm

● Vertical oscillation unstable for arbitrarily 
small amplitudes when

: pendulum frequency

: spring frequency

Setting ms = 0 gives the frequencies 
for the light spring approximation.

Note: the pendulum 
component of the motion is 
modeled using the small 
angle approximation.



Past Work

● Vitt and Gorelik studied small amplitude oscillations in the 2:1 resonance

● Cayton did numerical simulation and noted how the swinging plane was “apparently 
arbitrary”

● Rusbridge used a light bulb and film to record a swinging pendulum and similarly 
commented “some pendulums seem very bad for no obvious reasons (rotation of the 
swinging plane)”

● Lai studied slow varying amplitudes. He assumed that the finite spring mass should 
not affect the results

● Anicin and others studied the stability of small amplitude oscillations. They 
graphically determined instability of a particular amplitude as a function of mass

● Peter Lynch and others published the paper “The CO2 Molecule as a Quantum 
Realization of the 1:1:2 Resonant Swing-Spring with Monodromy”

From Pokorny’s Paper



An Intuitive Explanation of the Instability at 2:1 Resonance

● At left position, spring force has a component rightward, and vice versa.

● At 2:1 spring to pendulum frequency resonance, spring phase is same for all angular maxima.

● Pendulum frequency angular dependence becomes significant for large oscillations (small angle 
approximation breaks down), taking the system out of resonance, which reduces horizontal amplitude, 
which brings the system back into resonance, which increases horizontal amplitude. This cycle continues 
as long as the system has energy.
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Unstable Regime
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A Brief Analysis (see end of ppt for more detailed analysis)
With Lagrangian mechanics, we can easily find the equations of motion.

kin

We then use the variational equation to 
study the instabilities.

However, this cannot be done analytically.  Instead, we 
solve these numerically in Mathematica.

The region shown above is the unstable regime.  Contour lines denote the maximum eigenvalue of M(2π) 
(lighter colors->greater eigenvalues->greater instability). Note that the system is unstable for all a>0 at 
p=1/3, corresponding to the 2:1 spring frequency: pendulum frequency ratio, so the system is unstable 
at this resonance for arbitrarily small oscillations.



Lab Setup

Apparatus mounted on steel frame. Track made of 
unistrut bolted to frame. Release guide is on a fine‐
adjustable stage. Top surface of stage has been 
leveled. Graph paper on white background for 
measurement of horizontal displacement. Camera 
mounted approx. on level with pendulum bob. 



Pendulum bob consists of bolt 
assembly, added masses secured 
with wingnut + lock washer, 
Pointer at end of bob that fits 
slightly into release guide to help 
stabilize release. That the bob is 
significantly spatially extended 
rather than pointlike is a possible 
source of error.

Note! The bob likes to tilt, but 
this can be corrected by rotating 
the added masses. More on next 
slide. 

The spring is secured to the hook 
with a zip tie. The directional bias 
thus introduced is a possible 
source of error.

The spring is slightly wonky (see bottom left), a possible 
source of error.

Also, the basement of Nielson is subject to constant high‐
frequency (relative to the spring) vibration due to the air 
handling unit = possible source of error.



The Amazing Josh Villatoro Bob Tilt Correction Algorithm™

● Note that the added masses are not circularly symmetric. They have a notch removed 
to allow for easy attachment. Their centers of mass are somewhere along the axis 
through the notch, on the other side of the center. 

● First, align all of the notches and rotate them until they are parallel with the direction 
of tilt of the bob. This will either make the tilt maximally better or maximally worse. 
Doesn’t matter which.

● Now, separate the weights into two equal-mass groups. Rotate their notches away 
from the tilt axis by equal amounts. This draws the center of mass in towards the 
bolt. Continue rotating until minimum tilt is achieved. This is the minimum possible 
tilt for that amount of mass. Past a certain total added mass, the tilt is completely 
correctable, up to the manual dexterity of the experimenter.



Data Explanation

● We took two data series, corresponding to 1 horizontal and 1 vertical “cut” across 
the phase-space graph. The horizontal cut tested instability vs added mass, the 
vertical cut tested instability vs initial amplitude.

● For the horizontal cut, the predicted region of instability is an interval. For the 
vertical cut, there is a critical amplitude above which the system is unstable.

a

p



Data and Videos: Mass vs Instability
● Constant initial vertical amplitude = 

½ inches = 1.27cm

● Max horizontal displacement 
tracked by eye by two observers 
looking along orthogonal axes, with 
eyes level with pendulum bob. Both 
observers note the max horizontal 
displacement they see. The reported 
max for a given trial is the greater 
of the two observed maxes.
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●Amplitude vs Instability
● Constant added mass of 45g
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Discussion of Results

Our results fit predictions roughly. Possible sources of error include:

● Zip tie attachment of spring to frame

● Shape of pendulum bob

● Wear in the spring between measurement of the spring constant and performance of 
the experiment

● Vibration of the building

● Rotation of swing plane causing max amplitude observations to be somewhat 
ambiguous.



Theoretical Analysis
Using Lagrangian mechanics, we can easily find the equations of motion.

Making variables dimensionless and grouping the 

system constants into 1 parameter:

kin



Theoretical Analysis
We can then convert the system into six first order differential equations.

We want to study vertical oscillations about the bottom equilibrium, so the oscillations have 
the form



The Variational Equation

The stability can then be analyzed by studying the variational equation

where                       is the Jacobian matrix (matrix of component-wise partial 
derivatives) evaluated at the lower equilibrium.

M(t) gives the time evolution of the system, i.e. x(t)=M(t)x(0).

Since the system is periodic about the equilibrium point, we only need to consider M(2 
Pi).  

The system is stable if the maximum norm of the eigenvalues of M(2π) is 1, i.e. they lie 
on or within the unit circle in the complex plane.

The system is unstable if the maximum norm of the eigenvalues of M(2 π) is greater 
than 1, i.e. at least one is outside the unit circle in the complex plane.

Note: For a full explanation of the variational equation, see Arrowsmith “Introduction to 
Dynamical Systems” or Arnol'd “Ordinary Differential Equations”.



Explanation of the Variational Approach

The system of equations may be written in matrix form:

ሶݔ						 ൌ 					ݔܣ

Perturb the known solution by a small amount ߜ(t) (which changes ܣ to the perturbed 
matrix ܣ′) and take the first order term in series expansion: 

݁஺ᇲ௧ߜሺ0ሻ

If the perturbation causes any of the exponentials in the matrix

݁஺ᇲ௧

to have positive exponents, then the solution is unstable, since those exponentials will 
magnify any small offsets ߜሺ0ሻ in our starting conditions.

In our case, this instability condition is equivalent to 

ݔܽܯ ௜ߣ ൐ 1

Where the ߣ௜ are the eigenvalues of M(2π), M is the matrix from the variational
equation.



The Variational Equation continued

● One case, the resonant case mentioned in the opening slide, is solved by hand in

● To investigate other parameter values, the system must be solved numerically.  
Pokorny's paper gives only the results; see Following_Pokorny's_paper.nb
(Mathematica file) for the complete numerical analysis.

● Investigation of numerical plots yields instability condition
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Sources

“Stability Condition for Vertical Oscillation of 3-dim Heavy Spring Elastic Pendulum”: 

P. Pokorny

Regular and Chaotic Dynamics, 2008

“Motion of the Sprung Pendulum”

M. G. Rusbridge

Department of Pure and Applied Physics, UMIST, 1979

Consultation with Nikola Petrov of the OU Math dept.


