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We extend the analysis of the motion of the sprung pendulum to show the full
effects of the nonlinear coupling between horizontal and vertical oscillations. We
show that even at modest amplitudes a theory involving second-order terms only
is inadequate to explain experimental results, and suggest that the discrepancy is
due to nonlinear detuning from the exact resonance condition, an effect which

appears only in higher order. Finally, we investigate the effect of damping on the

patterns of motion.

I. INTRODUCTION

Cayton! has given an interesting description of the be-
havior of this simple mechanical system, a weight supported
on a spring and free to move both horizontally and verti-
cally. He was particularly interested in the parametric in-
stability which leads to the growth of transverse oscillations
when the weight is initially set into vertical motion. This is
a fundamentally nonlinear effect, occurring when the ver-
tical frequency is exactly twice the horizontal, and the
system is among the simplest in which such effects can be
demonstrated; it is also an analog of less accessible systems
such as the frequency doubling of laser light in a nonlinear
crystal.

In this paper [ wish to point out that Cayton’s analysis
can be extended to give a more complete picture of the
motion in the form of a set of trajectories in phase space. As
Olsson? has shown, there are two steady-state modes of
oscillation, which can indeed readily be demonstrated ex-
perimentally. However, in presenting some experimental
results I shall show that they differ quantitatively from the
theoretical predictions; computer simulations show that the
difference is real and not an experimental artifact. These
departures can plausibly be attributed to neglected
higher-order terms, and in particular to nonlinear detuning
of the 2:1 resonance condition; we shall show that the effects
of a deliberate detuning are qualitatively similar to those
observed. I have found that it is easy to forget that higher-
order terms may be significant at what seem quite moderate
amplitudes.

Falk? has also shown more rigorously that the trajectories
should be closed, and has given expressions for the time
variation of the amplitudes in terms of elliptic functions.

The detuning produces a characteristic distortion of the
phase-space trajectories. We have also studied the effects
of damping which can produce a different but equally
characteristic distortion if the damping is small. However,
if the damping rates of horizontal and vertical motions are
different, and if the difference exceeds a certain limit de-
pendent on the amplitude, the damping decouples the
horizontal and vertical oscillations which decay away in-
dependently. If the damping rates are the same, the pattern
of motion decays with no fundamental change. We have
made some experimental observations which can be inter-
preted as being consistent with this result.
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II. THEORY

We assume that the pendulum is constrained to move
in a fixed vertical plane, and use Cartesian coordinates with
origin at the equilibrium position of the weight (Fig. 1). It
might seem more natural to use polar coordinates with or-
igin at the point of suspension, as does Minorsky,? for ex-
ample; however, the resulting equations are more complex
and less transparent, while being, of course, exactly
equivalent to those we shall derive.

From Fig. (1) we can write down the equations of motion
in the form

mi = — Tsinf,
my = Tcosf ~ mg,
where T = (] — l},),is the tension in the spring, « is the
spring constant, and /; the unextended length of the spring.

The length of the spring at equilibrium is given by / = /,,
where

a(lp = 1) = mg.

Substituting for T and mg in the equations of motion, and
noting that sinf = x// and cosf = (/o — y)//, we find

mi = — a (lo— lo)x/l,
my = ol = lo)(lo = p)/I = a(lo = 1), (1

where I =[(lo — y)? + x2]1/2is the length of the spring. It
is important to note that the nonlinearity arises purely from
the geometry and not from the properties of the spring
which is assumed linear. If we now substitute for / and ex-
pand the resulting equations to second order in x and y, we
obtain

m¥ = — a(l = lo/lo)x + a(lo/I5)xy,
my =~ ay + (1/2)aly xYI}. 2)
The linear terms give the fundamental frequencies
wy = (a/m)(1 = lo/lo),
wy =a/m,

and our main interest is in the nonlinear resonance given
by wy = 2w, ; the condition for thisis /o = (4/3)/o. In terms
of these frequencies, Egs. (2) become

© 1980 American Association of Physics Teachers 146



Fig. 1. Coordinate system and dimen-
sions. O is the equilibrium position of the
weight, and @ the position of the end of
the spring with the weight removed. We
usc Cartesian coordinates with origin at

%= — wlx + wlyxy/l3, 3
¥=—wly+ (1/2)wlox¥/B. 4)

These equations have a simple interpretation in two limiting
cases: when x <« y and p oscillates at its natural fre-
quency

y = yOCOS(wyt + lp):

Eq. (3) becomes a Mathieu equation which for w, = 2w,
has solutions for x with exponentially growing amplitude;
on the other hand, when y << x and x oscillates at its natural
frequency

x = xgcos(wyt + @),

Eq. (4) represents a forced simple harmonic motion
(SHM), which for w, = 2w, is driven resonantly, so that
the solution for y has its amplitude increasing linearly with
time. Taken together, these cases suggest a cyclic process
in which energy is continually exchanged between the two
modes of oscillation, and this solution is indeed well
known.

We can find a more general solution by a straightforward
application of the “stroboscopic” method.4 We set

x = xg(t) cos[wyt + ¢ ()], (5)
y = yo(t) cos[wyt + Y (1)], (6)

where xq, yo, ¢, and ¥ are slowly varying functions. Since
there are now four unknown functions instead of two, we
are free to introduce two further relations between them.
We choose to set

X = —w,xo(t) sinfwyt + ¢ (1)],
which requires that
Xocos(wyt + ¢) — pxosin(wyy + @) = 0, @)
and similarly
yocos(wyt + ¥) — Pyosin(wyt + ) = 0. (8)
We also define the energy £, by
Ey = (1/2)32 + (1/2)wix? = (1/2)wixd,

so that Eq. (3) becomes

dE, I
D w? éyxx

We substitute in this equation the expressions for x, y, and
X, and average over one complete cycle of the x oscillation
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assuming that the slowly varying functions are effectively
constant. This yields

dEx _ _ 1l

= Zl_zw wxx3yosin(2¢ — ), )
and a similar procedure leads to
_‘_"fi ij_%w}wxx({yo sin(2¢ — ), (10)
so that
dE. _ _dE,
dt d’

and the total energy £, + E, is a constant of the motion of
this order. Finally, Eqs. (9) and (10) suggest that it is useful
to define 6 = 2¢ — , and we obtain an expression for the
rate of change 8 = 2¢ —  from Egs. (7) and (8); averaging
this in the same way we obtain the result

—)—lo (l xo ) cosf.

4yold\2 wy (n
In all these cases the average is over a time interval of
27 /w,. We now simplify Eqs (9)-(11) by making explicit
the relationships /o = (4/3)/; and w, = 2w,; we also sub-
stitute for E,, E, in terms of xo and yg, and finally express
the equatlons in dlmensmnless variables

X=xpflo, Y=ypollo, 7=w,.
These steps yield
%\j = - %XYsmﬂ
dgi—/ %Xz sin, (12)
E = %Q/L)A%_“—YZ cosf.

The first two of these equations lead to
X2+ 4Y? = const
= X3, say,

as an expression of the conservation of energy, and using
this to eliminate Y we obtain

ax_ _ ~X(X2 X2)1/2sin#, (13)
dar

9 _303/0x2-X}

- 4—————(X2 — X2 cosf. 14)

The motion can therefore be represented by trajectories in
the (X,0) plane, which satisfy the equation

dX | Xo X2
0= 2% Gx - e
which can be integrated to yield
X2(X% —~ X2)1/2¢cosf = const, (15

C say, so that the trajectories form closed loops; C is an
additional constant of the motion. The trajectories are
shown in Fig. 2. There are two degenerate trajectories
consisting of the equilibrium points X = [(2/3)X,]!/2, 8 =
0 or 7, which represent steady-state oscillations; all other
trajectories involve the cyclic transfer of energy between
the two fundamental oscillations, and for C = 0 we have a
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Fig. 2. Predicted trajectories in (X,8) from Eq. (15). Half of each tra-
jectory is shown; it is completed by its mirror image in AB or EF. Each
is labeled by the value of C normalized to its maximum value (2/3v3)XE.
The limiting trajectory C = 0 giving complete transfer is represented by
ABCD (or EBCF, which is indistinguishable).

limiting trajectory in which the transfer is complete: this
is represented by the rectangles ABCD or EBCF in Fig. 2.
It is readily shown that these limiting trajectories are tra-
versed only in infinite time, since for X << Xy, sinf = 1, Eq.
(13) gives

dX 3

L - 2 xx,
dr g

X « exp(— (3/8)X07),

and the point C is approached but never reached. Trajec-
tories in the neighborhood of the equilibrium points can be
followed explicitly by linearizing Eqs. (13) and (14) about
these points: this is straightforward and shows that small
closed loops are traversed in a time

7o = 87 /3 Xo;

the dependence on X being exactly as expected for a sec-
ond-order nonlinear process.

In the terminology of Minorsky* the equilibrium points
are “centers”; the corners of the rectangles forming the
limiting trajectory are “saddle points.” (I use the term
“limiting trajectory” loosely: strictly we have four separate
trajectories for C = 0, forming the four sides of the rec-
tangle, but complete trajectories lie only infinitesimally far
away from them, and in fact, we anticipate that higher-
order effects will ensure that even the limiting trajectory
can be traversed in a finite time.)

At the equilibrium points the amplitudes are in the
ratio

yo/xo= Y/X=1/2¢/2.

The motion in the (x,y) plane at equilibrium traces out
parabolas

¥/yo =% (1 —2x%/xj),
_the sign being negative for § = 0 and positive for § = .

1. EXPERIMENT AND COMPUTATION

The general features of the predicted motion, including
the existence of the equilibrium points and the cyclic tra-
jectories, have been confirmed with several pendulums
constructed by different students. In the case to be de-
scribed, the pendulum was 38 cm long when weighted at
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resonance: the weight consisted largely of a battery and light
bulb which was (fortuitously) very nearly the required
weight for resonance. Thus the motion in physical space
could be recorded straightforwardly on film. Some typical
results are shown in Fig. 3. There was little tendency in this
case for the plane containing the motion to rotate. (This was
not always the case, and some pendulums seem very bad in
this respect for no very obvious reason. In the bad cases,
deliberate attempts to remove the degeneracy of the hori-
zontal oscillations, as, for example, by designing the pivot
to facilitate swinging in one plane, have proved rather in-
effective.)

The main experiment with this pendulum was to inves-
tigate how the time for one complete cycle varied with initial
conditions. The pendulum was released from rest at dif-
ferent values of x and y (which thereby define initial am-
plitudes x¢ and yo at ¢ = 0), and the cycle time measured
as a function of x¢ and y¢. The results are shown as a con-
tour diagram in Fig. 4.

In this diagram, the dimensionless amplitude Xy is con-
stant along ellipses x3 + 4y3 = const. On every such curve
we expect the cycle times to reach a maximum (in principle
infinite) for xo = 0 and for yg = 0. In fact, as can be seen
from Fig. 4, maximum cycle times are found for xo = 0 and
on a curve yo = x3/2lo, which represents approximately the
track of a pendulum of fixed length /.

It is apparent that this result could not be reproduced by
the theory of Sec. 11, since there xg and y, are taken to be
quantities of the same order. However, before discussing
it as a higher-order effect we shall present the results of a
computational simulation, which confirm that the effect is
not due to any experimental artifact.

These computations were carried out using a fifth-order

(a)

(b)

Fig. 3. Typical patterns (in physical space) generated by the pendulum
weight for different initial conditions: (a) near the limiting trajectory; and
(b) near an equilibrium point.
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Fig. 4. The cycle time measured experimentally as a function of the initial
displacements Xp, Yo for a pendulum of length 38 cm when stationary.
The results are plotted as a contour diagram with contours labeled with
the cycle time in seconds. The dotted portions represent regions near the
equilibrium points where very little change in the pattern occurs and ac-
curate values of the cycle time cannot be measured. The dashed curve is
the path of a pendulum of fixed length.

Runge-Kutta process to solve Egs. (1) directly; the code’
was an adaptation of one developed for following trajec-
tories of charged particles in magnetic fields, and is suffi-
ciently accurate to conserve the total energy to within 1 part
in 108 per step. Trajectories were followed for a variety of
initial conditions consistent with a constant value of Xy =
0.117, typical of experimental amplitudes. Some typical
results are shown plotted as trajectories in the (X,0) plane
in Fig. 5. To obtain these results from the computed values
of x, %, y, and p the phase was defined at each instant by

¢ = tan~! (x/wyx),
Y = tan~! (§/wyp),
0=26-y.

Thus the oscillations of the phase apparent in Fig. 5 are a
measure of the breakdown of the assumption of slowly
varying phase in Egs. (5) and (6). Each trajectory in effect
fills a band in the (X,0) plane. The bands appear to close on
themselves, however, and we have so far observed no ten-
dency for the trajectories to become stochastic. Thus there
exists a constant of the motion other than the energy, al-
though it cannot be given exactly by Eq. (15).

The pattern shown in Fig. (5) resembles that in Fig. (2)
but with significant differences. The trajectory marked L
in Fig. (5) has initial conditions X = Xg, Y = 0, 8 = 0, which
according to Sec. II should define the limiting trajectory,
but it clearly follows a very different path. There is a band
of trajectories which are not closed since # changes mono-
tonically with time (at least when the fast oscillations are
smoothed out), and the equilibrium positions are not sym-
metrical but are displaced from the predicted value of X =
[(2/3)X0]'/2 = 0.095.

To show that these departures have essentially the same
significance as those observed experimentally, we plot in
Fig. 6 the cycle time 7¢ as a function of the initial value of
Y. Clearly these results are also consistent with a maximum
at Y =~ (1/2)X?, equivalent to the result obtained from
experiment, rather than at ¥ = 0 as the simple theory
suggests.

We conclude that the departures from the theory of Sec.
II are indeed due to higher-order terms in the expansion.
We have not attempted to develop the theory to higher
order; instead, in Sec. 1V it will be shown that the results
in Fig. 5 are qualitatively similar to those obtained when
the pendulum is detuned slightly from resonance. Accord-
ingly we suggest that the most important higher-order effect
is a change in the average length of the pendulum leading
to an effective nonlinear shift in the resonance condition and
thus to a detuning of a pendulum which at rest satisfies the
condition for resonance.

IV. MOTION OFF EXACT RESONANCE

If we assume that the resonance condition is not exactly
met we can write

2wy = wy, + bw
or
wy/we =2 —A,

Fig. 5. Trajectories in (X,0)
generated by a computational
simulation based on Egs. (1).
Plotted points are taken from the
computer printout and are joined
up into a continuous curve where
possible. The dashed lines are
smoothed versions for comparison
with Figs. 2 and 7.

0 % e
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Fig. 6. The cycle time 7 as a function of ¥; for fixed Xy = 0.117. The
verticle line indicates the value ¥; = 0.0068 given by the expression ¥ =
(1/2)X?%; the horizontal line indicates the value 7o = 143 given by the
expression 79 = 87/3X, for the cycle time near equilibrium.

say, where A = dw/w, is a measure of the detuning. The
length ratio is then

lh=1-1/2-A)2>~(3-A)/4

for small A. The development given in Sec. II goes through
unchanged as far as Eqgs. (9) and (10) except that the phase
2¢ — Y is replaced by 2¢ — Y + 6wt. We now substitute the
expressions for w,/w, and [y/lo given above and change to
dimensionless variables to obtain the following equations
which replace Eq. (12):

dX_ 3 A\ I

= —Z(l —E)XYsm(9+AT),

v _ 3 .,

av _ 3 16
T 16X sin(f + A7), (16)
b _3(, _ A /DX 40 = 8/)¥?

dr 8 2 Y

X cos(f + AT).
The constant of the motion X, is now given by
X3=X2+4(1 - A/2)Y2

These expressions are exact, but we shall now assume A «
1, and define

0 =0+ Ar. (17
Eliminating Y in terms of X and X as before, we obtain
X _ —EX(X%—-XZ)‘/zsinH’, (18)
dr 8
do’ 3 3X2-2X}
; = g ml/—z costl’. (19)

Although these equations are not immediately separable,
the trajectories can still be expressed in terms of a constant
of the motion in the form
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XUX5— X))/ 2cost
+ (4/3)A(X3 — X?) = const
= (a, say. (20)

We show in Fig. 7 a set of trajectories obtained for different
values of C for Xy = 0.117 and A = 0.01; the main features
qualitatively reproduce those of Fig. 5. The équilibrium
points are now located at ¢’ = 0, X = [(2/3)X]'/2 — ¢, and
0 =7, X =[(2/3)X0]"/? + ¢, where € = (24/2/9)A, and
it can easily be verified that they remain centers.

From Eq. (17) above, a constant §’ implies a continuously
changing phase ¢, and this in turn implies a change in the
oscillation frequencies. The change is, in fact, exactly that
required to cancel the detuning: if we define effective
frequencies w, w}, by

wi=wet P, W, = w,+ Y,

then
2w;-w’y=2wx—wy+9=wx(A+d—6)
dr
{2
—‘wxdT—O.

This is an example of nonlinear entrainment.*

We suggest that the similarities between the patterns
shown in Figs. S and 7 show that the departures from the
simple theory are due to detuning resulting from higher-
order terms. We would not expect exact agreement between
Figs. 5 and 7 since the effective mean length and hence the
detuning will vary during a cycle.

V. EFFECT OF DAMPING

Minorsky? has pointed out that a center is usually a
marginal type of equilibrium point, separating stable from
unstable foci (near which the trajectories spiral towards,
or away from, the actual equilibrium point). Thus where
an equilibrium point appears to be a center, it is likely that
a more realistic physical description will, in general, reveal
it to be properly a focus. The system under discussion il-
lustrates this point, as we shall show by including the effects
of damping. We assume that the damping is linear, but we
allow different damping constants A, and A, for the hori-
zontal and vertical oscillations, respectively. We also assume
that the damping is small, A,, A, < w,. For the sake of
simplicity we consider only exact resonance w, = 2wy. The

—_———
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Fig. 7. Predicted trajectories in (X,8’) from Eq. (20) for a detuned pen-
dulum with A = 0.01, X = 0.117. Trajectories are labeled by the value
of Ca, normalized in the same way as in Fig. 2. The shaded region contains
open trajectories. As in Fig. 2, trajectories are completed by reflection in
8’ = 0 or 7 as appropriate.
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development exactly parallels that in Sec. 11 and leads to
the equations

dx 3 ) 1

E_ —ZXYSIIIH 2A|X,

ay _ 3 _, . 1

—_—= - 21
ar 16X sinf 2A2Y, 1
df _ 2(1/2)/\’2 —4Y2

dT =3 v cosf,

where A = A;/w,, A2 = A\j/w,. These equations have an
obvious interpretation, and it is physically reasonable that
the equation for the phase should be unaltered by including
the damping.

Now, of course, Xy is no longer a constant of the motion,
and we have to disentangle changes in the pattern of motion
as shown in Fig. 2 from changes simply in the amplitude.
We note that X, determines only the vertical scale of Fig.
2 (and the time taken to traverse the trajectories), but not
the shapes of the trajectories themselves: we can eliminate
the effects of changes in amplitude by defining new vari-
ables W = X/X,, V = Y/Xp. Some tedious algebra then
leads to the pair of equations
aw 3

?T_ = —g W(l - WZ)I/ZX()Sine

— (A= AWl - W2, (22)
df _33/2w2 -1
dr 4 (1 — w212

One result follows immediately: if the damping constants
are equal then these equations become formally identical
with Egs. (13) and (14), and the pattern of motion is un-
changed. For the case A; > A, we confine ourselves to
discussing the stability of the equilibrium points. We first
note that, in general, they are shifted from the undamped
positions: setting simultaneously df/d7 = 0, dW/dT = 0,
we find from Eq. (23) that W = (2/3)!/2 as before (ignoring
the possibility cosfl = 0 which leads to the saddle points) and
substituting the value in Eq. (21), we find

sinfl = — (8/3+/3)(A, — A3)/Xo. (24)

Thus the displacement of the equilibrium points is orthog-
onal to that produced by detuning. We note that these
equilibria exist only for large enough amplitude

Xo> (8/3v/3)| A — As. (25)

We now linearize about these equilibrium points, with the
anticipated result that trajectories around these points are
nio longer closed loops but spiral outwards or inwards, cor-
responding to an unstable or a stable focus, for A; — A, >0
or <0. In the former cdse, the expanding trajectories must
eventually converge onto the limiting trajectory for C = 0
discussed in Sec. 11. This result has a simple physical in-
terpretation: in this limiting trajectory the system spends
far more time oscillating nearly vertically with ¥ > X than
vice versa, so that by moving towards this trajectory the
system minimizes the time it spends in the more highly
damped mode. Conversely, for A; < A, the system will
attempt to maximize the contribution of the horizontal
mode to the motion, and this is achieved by moving towards
the equilibrium points.

Finally, we consider briefly what happens when condition

Xgcosf. (23)
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(25) is not longer satisfied; eventually, this must happen
since Xy is decreasing with time. The two equilibrium points
then come together and vanish: at the same time, the saddle
points become nodes and the system moves towards either
X = 0 (pure vertical oscillation) if A; > A», or X = X, (pure
horizontal oscillation) if A; < A,. Thus for Xg less than the
limit set by Eq. (25), the two oscillations are effectively
decoupled by the damping, and after some time only the
more slowly damped oscillation will remain.

These results have not been tested by experiment in any
detail. We have carried out one set of measurements,
however, in which we noted that changes of the trajectory
would be reflected in changes of the patterns of photo-
graphic records such as those of Fig. 3. Accordingly, we set
a pendulum swinging, exposed films for one complete cycle
at several different times during the lifetime of the motion,
and looked for changes in the shape of the pattern. We
found no evidence for any changes; all dimensions of the
pattern diminished with time in strict proportion within
experimental error. The values of A, and A, were not
measured, but with a roughly spherical weight and air re-
sistance the main source of damping it is quite plausible that
Ay ~ A, in this experiment. In the future we plan to carry
out experiments in which the damping constants are de-
liberately made different (e.g., by the use of vanes attached
to the weight).

VI. CONCLUSIONS

The sprung pendulum is a simple mechanical device ex-
hibiting a variety of nonlinear phenomena. It has already
been discussed as an example of parametric instability; we
have extended the analysis which leads to this to display the
complete range of motion. However, comparison with ex-
periment and computer simulations show that at modest
amplitudes second-order theory is inadequate to explain the
details of the motion. We have suggested that the important
higher-order effect is detuning caused by a change in the
mean length, and have shown that deliberate detuning will
reproduce the observed pattern of trajectories at least
qualitatively. We have discussed the effects of damping on
the pattern of trajectories and have shown, in particular,
that there is no effect if the damping of horizontal and
vertical motions is the same. Some limited experimental
evidence is consistent with this. Finally, we have shown that
for unequal damping constants the changes in pattern have
a simple physical interpretation.
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