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Note to Teachers

Listed below are several items of interest concerning the

diffraction and spatial filtering demonstrations:

(1)

(2)

The diffraction demonstrations are of importance be-
cause they give the student an opportunity.to relate
the mathematics of diffraction theory to physical
reality. The irradiance distribution of a particular
diffraction pattern can be calculated and then com-
pared with the observed irradiance pattern. The spa-
tion filtering demonstrations are important because
the student can identify the Fraunhofer pattern of an
object with the spatial-frequency spectrum of that
object. Furthermore, he can manipulate the spectrum
of the object and observe the effects on its image.
These demonstrations should be suitable for presenta-
tion in optics courses in which diffraction is dis-
cussed, either at the graduate level or advanced
undergraduate level. The time spent in setting up
the demonstration will vary considerably depending on
the equipment available, experience of the instruc-
tor, etc. The demonstration time itself can vary
from 15 minutes to an hour and depends on the pro-
ficiency of the class, the desired outcomes, etc
Student reactions at the Optical Sciences Center,

University of Arizona, have been very good.
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(3) The equipment costs may vary widely- depending on

quality, size, power output, etc. Suggested suppli-

ers, with approximate costs, are given below:

(a)

(b)

(c)

Laser. A laser with power output of 1 to 5 mw
should be sufficient, and the cost should be
between $300 and $1,000. The author used a
Spectra-Physics Model 120 He-Ne Laser, supplied
by Spectra-Physics, Inc., 1250 W. Middlefield

Road, Mountain View, California 94040

Lenses. Microscope objectives and cemented-

doublet telescope objectives can be obtained for
$5 to $25 depending on quality. Possible sup-
pliers are Edmund Scientific Co., 555 Edscorp
Building, ‘Barrington, New Jersey 08007; or Rolyn
Optics Co., 300 Rolyn Place,. Arcadia, California
91006

Accessories. Optical benches, lens holders,
carriages, etc., may be purchased from Klinger
Scientific Apparatus Corporation, 83-45 Parsons
Boulevard, Jamaica, New York 11432; Ealing Beck,
England, c/o The Ealing Corporation, Optics Divi-
sion, 2225P Massachusetts Avenue, Cambridge,
Massachusetts 02140. Costs will vary with

quality.
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(4) Photographs of diffraction patterns and spatially-
filtered images can be found in the three references
given at the end of the text, as well as in numerous
bther books on optics.

(5) Other information of use to teachers is included in

the text.
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DIFFRACTION AND SPATIAL FILTERING

I. Diffraction.

It is well known that there are many situations for which
theories based on geometrical optics, or ray optics, do not ade-
quately describe the behavior of light. To illustrate, let us
consider the experiment depicted in Fig. 1; an aperture is illu-
minated by a collimated beam of light, and the irradiance patterns
at various planes to the right of the aperture are observed. Ray
theory predicts that each of these patterns will bear a geometri-
cal resemblance to the aperture no matter how great the distance
to the observing plane, but in fact they resemble the aperture for
only a short distance. Beyond the so-called geometrical-optics
region the light begins to spread out due to the phenomenon of
diffraction, and the geometrical resemblance to the aperture is
lost. The light patterns in this region, which is called the

Fresnel region, undergo relatively rapid and dramatic changes as

the distance to the observing plane is increased. Finally, a
point will be reached beyond which only the size of the patterns,
but not their shape, changes with increasing distance. At this

point the Fraunhofer region, or far field, has been reached. 1In

the sections to follow, mathematical descriptions and photographs

of various diffraction pattern will be presented.
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A. Mathematical description of diffraction.

Under certain assumptions, the light distribution in
either the Fresnel or Fraunhofer regions can be represented quite
compactly by a general mathematical expression, which we shall
present below. Our discussions will be based on the coordinate
system of Fig. 2, and we make the following assumptions:

1. The incident light consists of normmally-incident,
quasi-monochromatic, linearly-polarized plane waves of
unit amplitude.

2. The aperture is large compared to the wavelength of
the incident light, but small with respect to the dis-
tance between the aperture and the observation screen

3  All observations are restricted to the paraxial
region, i.e., to within approximately 15° of the
z-axis

We shall describe the desired light distribution initially by its
complex amplitude, a scalar quantity that corresponds to either
the electric or magnetic field strength. If the complex amplitude
transmittance of the aperture is designated p(x,y), then the com-
plex amplitude distribution just to the right of the aperture is

given by

u(x,y,0) = p(x,¥), 1)
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and, to within a multiplicative constant, the complex amplitude
distribution in the observation plane may be written as (Ref. 1)
)dadB. (2)

p(a,B)e

© .oom .. fox B
J 57 (@2+ 2) -j. (—— +
ux,y,z) = - ” Az e \lz Az

Here A is the wavelength of the light and z is the distance
between the aperture and observation planes. This expression may
be recognized as the Fourier transform of the product of the aper-
ture function and a quadratic-phase factor. 1In general it is
difficult to evaluate, but as we shall see, it can be evaluated
with relative ease in certain special cases. The light pattern we

observe visually is the irradiance, which is given by

E(x,y,2) = |ulx,y,z)|?, 3)

and we now calculate this quantity for a few special cases

Fraunhofer diffraction.

If the distance z is large enough with respect to the
aperture size, then the quadratic-phase factor of (2) is approxi-
mately unity wherever the aperture function in nonzero. Thus
u(x,y,z) is simply the Fourier transform of the aperture function

alone, i.e
u - 1 P 35- DA (4)
(x,y,2) Az \Az ’ Az P

where p(x,y) and P(£,n) are a Fourier-transform pair, and £ and n
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are the spatial frequency variables associated- with the x- and y-
directions, respectively. Thus the irradiance of the observed

pattern is

1\%,,(x 2
E(X,)’,Z) = (E) IP(-)\_Z- ’ j\%)l (5)
Example 1: Consider the rectangular aperture of Fig. 2,

with height d and width b. Then

b d
1, x| = > and lyl < =%

p(x,y) =
0, elsewhere. (6)

Therefore,

P(g,n) = bd sinc(bg,dn), (7
where

sinc(g,n) = (&) sin(m) (8)
and finally,

bd\? . b d
E(x,y,2) = (;;) 51nc2(x§ , X%)‘ (9)

This expression is valid for z >> (b2+d2)/A. Note that the peak
irradiance varies as the square of the aperture area and inversely
as the square of the distance z, while the linear dimensions of
the pattern vary directly as the distance z and inversely as the

dimensions of the aperture. A normalized profile of this



irradiance distribution along the x-axis is shown in Fig. 3, and
except for scale, it is the same along the y-axis.

Example 2: For circularly-symmetric aperturé functions,
the Fourier transform becomes a Hankel transform‘of zero order.
For the case of a clear circular aperture of diameter d, the

transmittance function is given in polar coordinates by

1, r s d4d/2
p(r) =
0, r > d/2. (10

The Hankel transform of this is

dJ, (ndp)
P(p) = o) (11)
where Jl is the first-order Bessel function of the first kind and
p is the radial frequency variable in polar coordinates. Thus the

irradiance is given by

dr
2J . (<X
_ [nd?\2 1( Az)
E(r,2) = (4Az) ndr ’ (12)
Az

which is the familiar Airy pattern. A normalized profile of this
pattern is shown in Fig. 4, and its peak value and dimensions
depend on d and z in a fashion similar to that for the rectangular

aperture.
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Fig. 3. Irradiance profile of the Fraunhofer diffraction pattern of a
rectangular aperture with sides b and d.
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Irradiance profile of the Fraunhofer diffraction pattern of a
circular pupil of diameter d.
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Fresnel diffraction.

For values of z too small to satisfy the Fraunhofer condi-
tions, we have Fresnel diffraction. The quadratic-phase factor
remains in the integrand of (2), and this integral can only be
evaluated easily for a few special cases, one of which is the
rectangular aperture case (see Ref. 1). The integral can also be
evaluated to find the irradiance of the diffraction pattern of a
circular aperture along the z-axis (r = 0).

Example 3: Consider a circular aperture of diameter d.
For r = 0, the integral of (2) yields (after changing to polar

coordinates)

u(0,z) = 2 sin(%%g), (13)

and the irradiance along the z-axis becomes

2
E(0,2) = 4sin2(78rgz), (14)

For large values of z, the sine function becomes small and may be

replaced by its argument. Thus we obtain

2\2 2
E(0,z) = (%%;) . z >> %7" (15)

which exhibits the same behavior as the peak irradiance of (12).
We see then that the Fresnel and Fraunhofer regions begin to merge
at about z = d2/4x. If we now graph (14), we see that the irradi-
ance on axis becomes zero at various points, which means there

will be dark spots at these points (see Fig. S5).
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Fig. 5. Irradiance distribution along the z-axis in the Fresnel reglon of
a circular aperture of diameter d.
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Fig. 6. Basic laboratory setup for displaying Fraunhofer diffraction patterns
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B. Demonstration of diffraction.

For apertures with dimensicns on the order of millimeters
or centimeters, the distance z must be quite large to observe
Fraunhofer diffraction. This would seem to make a demonstration
of diffraction quite difficult to perform; however, such a demon-
stration is possible with the use of a positive "Fourier-trans-
forming'" lens and some auxiliary optics. The basic setup is de-
picted in Fig. 6. The Fraunhofer pattern of the diffracting
aperture is observed in a plane conjugate to the pinhole, and the
location of this pattern therefore depends on the focal length of
L. (The pinhole is not absolutely necessary, but without it the
observed pattern may contain some unwanted artifacts.) In addi-
tion, Fresnel diffraction can be viewed in the region between the
diffracting aperture and the Fraunhofer plane. Many of the de-
sired patterns will be too small to observe easily, but with a
properly chosen reimaging system, magnified images of these pat-
terns, and of the diffracting aperture as well, can be projected
onto a screen and viewed with the unaided eye. A configuration
used successfully by the author is shown schematically in Fig. 7,
and it allows the demonstration to be set up in a reasonably small
space (less than three meters), but other reimaging systems may
also be used. (The description of the required equipment is
listed in Table I.) With L, at position A, the aperture will be

imaged onto the observation screen with a magnification of about
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60. Actually, L2 forms an image of the aperture somewhere to the
right of LS’ and then L3 and the 10X microscope objective produce
the final image. As L2 is moved to the right, the Fresnel region
is imaged onto the screen, and finally, when L2 reaches fosition
B, the Fraunhofer pattern will be displayed with a magnification
of approximately 75. (Note that the locations given in Fig. 7 are
for the particular set of lenses listed, and different locations
will be required for other lens combinations.) There may be some
vignetting with this set up, but it usually will not be serious
enough to ruin the demonstration. If necessary, however, more of
the Fraunhofer pattern can be observed by moving the diffracting

aperture closer to the Fraunhofer plane. A photograph of the

system is shown in Fig. 8.

Procedures.

Once the system is properly set up and aligned, the fol-
lowing observations should be made:

1. Observe the images and diffraction patterns of several
rectangular apertures with dimensions between 0.5 and
3.0 mm (see Fig. 9). Note the inverse dependence of
the Fraunhofer pattern width on aperture width, and
also note how the peak irradiance increases with
aperture area.

2. Repeat Step 1 for several circular apertures with

diameters between 0.5 and 3.0 mm (see Fig. 10)
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Fig. 8.

Photograph of the system used to obtain diffraction patterns and images of Figs., 9-22,



Fig. 9. Fraunhofer diffraction pattern of rectangular aperture of

'§
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e
!
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(a) height 3.0 mm and width 1.5 mm
r e TR T - s i o

T RN e T T i il e s s
(b) height 3.0 mm and width 0.6 mm.
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10. Fraunhofer diffraction pattern of circular aperture of

r—-m.‘wﬂ'_a_.-.-. e L T i —

‘diameter 2.7 mm

diameter 1.0 mm,
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3.

Repeat Step 1 for a triangular aperture of approxi-
mately the same size, and note how light is diffracted
in directions perpendicular to each side (see Fig.
11). Can you think of an aperture shape that will
produce a diffraction pattern resembling a "five-
pointed star?" (Note that star images obtained with
reflecting telescopes have "points" due to diffraction
by the spider assembly.)

Use a circular diffracting aperture and- start with re-
imaging lens L2 at position A. Slowly move L, to the
right, traversing the Fresnel region, and observe the
irradiance on axis (see Fig. 13). Note how the irra-
diance becomes zero at certain points as predicted by
(14). Repeat for apertures of different diameters,
and note how the spacing of these minima changes with
aperture size

Place a fine wire mesh with approximately 5 to 10
wires/mm (e.g., Buckbee Mears 250 Mesh Nickel) over
one of the diffracting apertures, and observe how the
Fraunhofer pattern now consists of an array of pat-
terns, each of which is just the pattern associated
with the diffracting aperture itself. Note that the
scale of the gzzgz_doés not change as the diffracting

aperture size is changed, but that the size of the
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Fraunhofer diffraction pattern of two circular apertures of
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Fig. 13. (a) 1.7-mm diameter aperture
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Fig. 13. (b) Fresnel diffraction patterns of this aperture at various
distances from it

291



| s P ey s S il h
Fig. 13. (c) Fresnel diffraction patterns of this aperture at various
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Fig. 13. (d) Fresnel diffraction patterns of this aperture at various

distances from it
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Fig. 13. (f) Fraunhofer pattern of this aperture.
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pattern at each point of the array does change. Thus
the scale of the array is governed by the mesh spacing,
while the size of the individual patterns is governed
by the size of the diffracting aperture (see Fig. 14).

6. With the wire mesh and aperture in place, move L2
slowly so that the Fresnel region can be observed
Note how rapidly and dramatically the pattern changes
in this region (see Fig. 15).

Photographs of a number of diffraction patterns not shown

here may be found elsewhere (e.g., Refs. 2 and 3).

II. Spatial Filtering.

As given by (4), the complex amplitude in the Fraunhofer
region of a diffracting aperture is the two-dimensional Fourier
transform of the amplitude transmittance of that aperture. Thus
this complex-amplitude distribution is proportional to the spatial-
frequency spectrum of the aperture function. In an optical system,
the form of an image can be changed by manipulating the spatial-
frequency spectrum of the object. For example, consider the sys-
tem shown in Fig. 7. ;f we place some semi-transparent object at
the plane z = 0 and position L2 such that an image of the object
is cast onto the observation screen, we can significantly change
the appearance of the image by placing various "spatial filters"

in the Fraunhofer plane
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14.

Fraunhofer diffraction pattern of 10-wire/mm rectangular
mesh when the limiting aperture is circular and has a diameter of
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Fig. 15. Fresnel diffraction patterns:
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(a) 10-wire/mm rectangular mesh with circular limiting aperture of
1.0-mm diameter
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(b) coarse nonrectangular mesh but with same limiting aperture as
in (a).
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A. Background.

To see how this is done without getting bogged down in the
mathematics, let us assume that our object is the mesh/aperture
combination depicted in Fig. 16. As you observed in Part I of
this demonstration, the Fraunhofer diffraction pattern of this
combination consists of an array of bright spots (see Fig. 17).
The transmittance function of the mesh, being periodic, can be de-
composed into a linear combination of sinusoidal components with
harmonically-related frequencies in both the x- and the y-direc-
tions. The various bright spots of the Fraunhofer pattern are
related to the Fourier transforms of these sinusoidal components:
the central spot corresponds to the zero-frequency component of
the mesh transmittance; in any horizontal row, the spots immedi-
ately to the left and right of center correspond to the funda-
mental component of the transmittance function in the x-direction;
the second pair of spots in this row correspond to the second har-
monic component in the x-direction; etc. The same behavior is
found for any vertical column of spots, except that these spots
correspond to the various harmonic components in the y-direction.

If we now place a slit "filter" in the Fraunhofer plane to
block out all the light except the single horizontal row of spots
along the £-axis, there will be no variations of image irradiance
in the vertical direction. All of the harmonic components

associated with the x-direction are passed, and so the image has

297



Sl eyl s

Fig. 16.

Diffracting object for spatial-filtering demonstration con-
sisting of 10-wire/mm mesh and limiting aperture of 1.0-mm
diameter.

o

Fig. 17.

Fraunhofer diffraction pattern of object shown in Fig. 16
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the behavior of the object in this direction. In the n-direction,
however, we have eliminated all but the zero-frequency component,
and thus the image irradiance must be constant in the y-direction.
To simplify the following development, we leave this slit
filter in place so that we can work with quantities having varia-
tions only in the x-direction. The complex amplitude distribution

in the image plane can then be approximated by the following

Fourier series:

uim(x,y) = [co + c1c052ngox + c2c052ﬂ(2£o)x
+ c3c052n(3£o)x + o0 px,y)

where p(x,y) is the aperture function and Eo is the fundamental
frequency or The mesi in Ui x-dircceion. Here we have neglected
the system magnification to avoid unnecessary complexity. The

image irradiance is then the squared magnitude of uim(x,y)
B, Goy) = lug (en)?

1f we "filter out" any pair of spots located symmetrically about
the origin, we effectively eliminate the corresponding term of
(16) from the image.

Example 4: Let the frequency-plane filter block out all

but the central spot. This eliminates all terms from (16) except
the ¢, term sO that

u.m(x,y) = c.p (x,y)

299



and
Esn(6Y) = e 2p2(x,y). (19)

Thus the aperture is imaged, but not the mesh. (Actually, the
aperture will not be sharply imaged, but this example is quite

instructive nevertheless.)

B.  Demonstration of spatial filtering.

The system used for the diffraction demonstrations should
be used for this part as well (see Fig. 7), and the mesh/aperture
combination of Fig. 16 should be used for the diffracting object
Some sort of filter holder must be devised to block out the vari-
ous spots in the Fraunhofer plane. This can be done by placing a
thin piece of metal, containing a large hole, in the Fraunhofer
plane and then clipping some 3" x 5" cards to it as shown in Fig.

18.

Procedures.

With the system specified above, perform the following:

1. Filter out all but the central horizontal row of spots
and observe that the image variations in the y-direc-
tion do indeed disappear, while those in the x-direc-
tion remain (see Fig. 19).

2. Now repeat step 1, but in addition block out the cen-
tral spot with a piece of fine wire. Using (16) and

(17), predict how the image should look and compare
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Image of object with all vertical sinusoidal components
filtered out.
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and
Em(Y) = c 2p2(x,y), (19)

Thus the aperture is imaged, but not the mesh. (Actually, the

aperture will not be sharply imaged, but this example is quite

instructive nevertheless.)

B. Demonstration of spatial filtering.

The system used for the diffraction demonstrations should
be used for this part as well (see Fig. 7), and the mesh/aperture
combination of Fig. 16 should be used for the diffracting object
Some sort of filter holder must be devised to block out the vari-
ous spots in the Fraunhofer plane. This can be done by placing a
thin piece of metal, containing a large hole, in the Fraunhofer
plane and then clipping some 3" x 5" cards fo it as shown in Fig.

18.

Procedures.

With the system specified above, perform the following:

1. Filter out all but the central horizontal row of spots
and observe that the image variations in the y-direc-
tion do indeed disappear, while those in the x-direc-
tion remain (see Fig. 19)

2. Now repeat step 1, but in addition block out the cen-
tral spot with a piece of fine wire. Using (16) and

(17), predict how the image should look and compare
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Fig. 18. Construction of simple spatial filter.

Fig. 19. 1Image of object with all vertical sinusoidal components
filtered out.
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this prediction with your observation (see Fig. 20)
(Note that if the spacing of the mesh wires is several
times larger than their diameter, then in (16) SR is
much greater than any of the other coefficients. The
result is a '"contrast reversal' effect--the bright
areas become dark and the dark areas become light.
Can you explain this?)

Now block all but the central spot and the first spot
to either side of it. Using (16) and (17), predict
how the image will look, and compare this prediction
with your observation (see Fig. 21). Again note that
if the spacing of the mesh wires is several times

larger than their diameter, then , >> ¢, in (16).

1
Filter out all but the central spot and note how only
the aperture appears in the image, but not the mesh,
as contended in the preceding discussion (see Fig.
22).

Repeat step 3, but now block out the central spot with
a piece of fine wire. The image should have the same
form as in step 3 except that the frequency of the

variations should have been doubled. Can you use (16)

to explain this '"frequency-doubling" effect?

In the above filtering demonstrations, only binary

amplitude filters were used; such filters either pass all of the
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Fig. 20. Image of object with vertical sinusoidal components and
zero-frequency component. filtered out.
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Fig. 21. Image of object with vertical components and all but the
zero-frequency and fundamental horizontal components
filtered out.
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Fig. 22. Image of object when only the zero-frequency component is

passed by the filter.

light incident at a point on the frequency plane, or block it

completely. Phase filters alter the phase of this light, and

complex filters, which are combinations of amplitude and phase

filters, both attenuate and change the phase of the light. For
our demonstration purposes amplitude filters were sufficient, but
those who wish to find out more about phase filters and complex

filters are referred to Ref. 1.
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