Diffraction and Fourier Optics

Ethan Brown Derrick Toth

Document Title/Description

1

Fourier Transforms in Optics

Definitions:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k) e^{-ikx} dk \qquad F(k) = \int_{-\infty}^{\infty} f(x) e^{ikx} dx$$

- k is angular spatial frequency
- x is spatial variable (position)
- · Fourier transforms are the inverse functions of one another
- They take you from real space to image space

Joseph Fourier http://en.wikipedia.org/wiki/Image: Fourier.jpg

In optics, if you model your aperture by a function, then the Fourier transform of that function will give you the E field, which you then square to get the intensity pattern.

Real Space vs. Fourier Space

- (Top Left) Actual Slide
- (Top Right) Actual image in Fourier Space by shining laser through slide
- (Right) Predicted Fourier transform created in ImageJ

Document Title/Description

Babinet's Criteria

- Complementary gratings create the same interference pattern.
- Addition of the electric field intensity

 $E_1 + E_2 = E_{total}$

- For these gratings E_{total} would be zero
- Most of the slides are printed onto, not cutouts

For single slit:

Single Slit **Double Slit** 4s8s

Two slits leads to an additional diffraction pattern within the original diffraction • envelope Document Title/Description 6

One Row – Dots

Two Rows - Dots

Three Rows – Dots

Four Rows – Dots

Rectangular Array – Dots

- As more rows are horizontally stacked, the image localizes more and more vertically
- All rows have 0.12mm spacing
- The first images were taken with 4s exposure time, and the second images were exposed for 6s

• Wider spacing in real space = narrower spacing in image Fourier space

Random Dots

Random A's

- The large-scale diffraction pattern is the Fourier transform of the kind of object the light diffracts off of
- Symmetry is clearly derived from the shape of the object

Rectangular A's

Hexagonal A's

Random A's

- The kind of symmetry of the placement of the A's leads to patterns within the large-scale diffraction pattern
- Symmetry in real space shows up with the same kind of symmetry in Fourier space

Double Layer Diffraction

- ΔL is the difference in path length between light from Layer 1 and Layer 2
- Fringes observed reach a minimum when the light is ½ a wavelength out of phase
- s $\Delta L = (n+1/2)\lambda$, n is a positive integer
- $\cos\theta = \Delta L/s = 1 (n+1/2)\lambda/s$ at minimum fringe points
- The radial distance from center of screen is r = dtanθ

Minimum fringes should occur at $r = d \tan(\cos^{-1}(1 - \frac{(n + \frac{1}{2})\lambda}{s}))$

Double Layer Diffraction - Model

	Rectangular Array (.08 x .12 mm)	Rectangular Array (.12 x .18 mm)	Random Array	Hexagonal Array (.1 mm)	Average
1	4.90	5.00	5.30	6.30	5.375
2	7.20	7.00	7.00	7.88	7.27
3	8.70	8.50	8.70	9.50	8.85
4	10.40	10.00	10.20		10.20
5	11.70	11.40	11.20		11.43

Constants	in	cm			mm
R		54.00	137.16	L	0.088
				λ	6.33E-05

Model					
n	У		Measurements	Percent Error	
	1	6.38E+00	5.38	1.57E-01	
	2	8.24E+00	7.27	1.17E-01	
	3	9.75E+00	8.85	9.24E-02	
	4	1.11E+01	10.20	7.80E-02	
	5	1. Docume	nt Title/Descniption	6.57E-02	

Two Layer Random Dot's Two Layer – Hexagonal

Two Layer – Rectangular

• The double-plane causes circular diffraction due to the phase difference between the planes