Diffraction and Fourier Optics

Ethan Brown

Derrick Toth

Fourier Transforms in Optics

Definitions:

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(k) e^{-i k x} d k \quad F(k)=\int_{-\infty}^{\infty} f(x) e^{i k x} d x
$$

- k is angular spatial frequency
- x is spatial variable (position)
- Fourier transforms are the inverse functions of one another
- They take you from real space to image space

Joseph Fourier
http://en.wikipedia.org/wiki/Image: Fourier.jpg

\longleftarrow Real Space

Image Space \longrightarrow

In optics, if you model your aperture by a function, then the Fourier transform of that function will give you the E field, which you then square to get the intensity pattern.

Real Space vs. Fourier Space

1 mm

- (Top Left) Actual Slide
- (Top Right) Actual image in Fourier Space by shining laser through slide
- (Right) Predicted Fourier transform created in ImageJ

Babinet's Criteria

- Complementary gratings create the same interference pattern.
- Addition of the electric field intensity

$$
\mathrm{E}_{1}+\mathrm{E}_{2}=\mathrm{E}_{\text {total }}
$$

- For these gratings $\mathrm{E}_{\text {total }}$ would be zero
- Most of the slides are printed onto, not cutouts

(a)

(b)

Fourier Optics - The Single Slit
 $$
E(Y, Z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(y, z) e^{i k(Y y+Z z) / R} d y d z
$$

For single slit:

$$
A(y, z)=\left\{\begin{array}{ll}
A_{0} \text { when }|\mathrm{z}| \leq \mathrm{b} / 2 \\
0 \text { when }|\mathrm{z}|>\mathrm{b} / 2
\end{array} \quad E\left(k_{z}, k_{y}\right)=F\{A(y, z)\}=\int_{y=-b / 2}^{+b / 2} \int_{z=-a / 2}^{+a / 2} A_{0} e^{i\left(k_{y} y+k_{z} z\right)} d y d z .\right.
$$

Single Slit

Double Slit

- Two slits leads to an additional diffraction pattern within the original diffraction envelope

One Row - Dots

Two Rows - Dots

Three Rows - Dots

Four Rows - Dots

Rectangular Array - Dots

- As more rows are horizontally stacked, the image localizes more and more vertically
- All rows have 0.12 mm spacing
- The first images were taken with 4 s exposure time, and the second images were exposed for $6 s$

One Row - Dots - 0.12 mm

One Row - Dots - 0.08 mm

4s
$6 s$
4s
6s
Rectangular Array - Dots $0.12 \times 0.08 \mathrm{~mm}$

One Row - Dots - 0.06mm

- Wider spacing in real space = narrower spacing in image Fourier space

Random Dots

Random A's

- The large-scale diffraction pattern is the Fourier transform of the kind of object the light diffracts off of
- Symmetry is clearly derived from the shape of the object

Rectangular A's

Hexagonal A's

Random A's

4s

- The kind of symmetry of the placement of the A's leads to patterns within the large-scale diffraction pattern
- Symmetry in real space shows up with the same kind of symmetry in Fourier space

Double Layer Diffraction

Double Layer Diffraction - Model

| | Rectangular Array
 $(.08 \times .12 \mathbf{~ m m})$ | Rectangular Array
 $(.12 \mathbf{x . 1 8} \mathbf{~ m m})$ | Random Array | Hexagonal Array
 $(.1 \mathbf{~ m m})$ | Average |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4.90 | 5.00 | 5.30 | 6.30 | 5.375 |
| 2 | 7.20 | 7.00 | 7.00 | 7.88 | 7.27 |
| 3 | 8.70 | 8.50 | 8.70 | 9.50 | 8.85 |
| 4 | 10.40 | 10.00 | 10.20 | | 10.20 |
| 5 | 11.70 | 11.40 | 11.20 | 11.43 | |

Constants	in	cm		
\mathbf{R}	54.00	137.16	\mathbf{L}	mm
			$\boldsymbol{\lambda}$	0.088

Two Layer Random Dot's

Two Layer - Hexagonal

Two Layer - Rectangular

- The double-plane causes circular diffraction due to the phase difference between the planes

