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� Introduction

Chaos is a multidisciplinary new science whose study by a large number of people is possible because
of the personal computer� Almost no progress was possible before the advent of the PC because of
the nonlinear equations that are necessary for chaos to occur� Nonlinearity does not of itself guarantee
chaos� i�e�
 it is not su�cient
 but it is necessary� For example
 the �bellringer� mode of the planer rigid
pendulum �Fig� ��
 p� ��
 �st part� is a very nonlinear mode
 but it is not chaotic� It�s an example of
a period� limit cycle� The single biggest problem concerning analytic treatment of nonlinear systems
is probably the failure of superposition� Thus the powerful transform techniques so common to linear
systems cannot be applied�
The dynamics of all cases treated in this monograph is what is called �deterministic chaos�
 a seeming

oxymoron� Actually
 the two words are not incompatible� since the original meaning of the Greek word

chaos
 is not the same as is commonly employed today� The original meaning had to do with the state
of the cosmos before order was established� i�e�
 the creative process� Inherent within the dynamics are
richly organized patterns
 reminiscent of living things�
Chaos implies unpredictability
 but deterministic means that the source of the chaos is mathemati

cally precise� For years
 chaos was seen in various systems
 both mechanical and electrical� No one was
bold enough to recognize that the system itself was responsible for what masqueraded as noise� Instead
it was incorrectly attributed to the environment� Unlike chaos
 noise is devoid �because of randomness�
of the richly organized structures that we now recognize as fractals�
It is now easy
 with the personal computer
 to study a large number of chaotic systems
 both

theoretically and experimentally� The software package
 named TELAWARE
 that is supplied with this
monograph has a large number of algorithmswith which one can �i� illustrate the di�erence between noise
and chaos
 and �ii� investigate a potpourri of chaotic systems
 both experimentally and theoretically�
Concerning the latter
 the theoretical simulations number nearly �	
 many of which are well known
because of their historical signi�cance �such as the Lorenz system and the Logistic map�� Additionally

however
 a number of recently discovered mechanical oscillators are treated in the General Simulations
Menu �GSM�� For more details of the physics concerning these
 refer to the Peters Automated Pendula
�PAPA� section of part I of this monograph�
The experimental investigations are presently limited to the Multipurpose Chaotic Pendulum �MPCP�

sold by TELAtomic
 Inc� The computer algorithms which are used with the MPCP are found in the
Hardware Interface Menu �HIM�
 which is accessed by entering �H� of the introductory menu� Embed
ded within HIM �accessed by entering �P�� is a Pendulum Simulations Menu �PSM�� which contains �
simulations of the conventional pendulum�
The total number of TELAWARE programs is currently ��
 of which � require the MPCP� i�e�
 they

cannot be executed unless the pendulum is physically connected� The menus with which the user �surfs�
through TELAWARE are shown in Figures � through ��
Some exercises which are possible with the PSM are described in part I of this document� The

present part II is concerned primarily with simulations other than the pendulum� Of course
 one may
execute the pendulum programs without owning a multipurpose chaotic pendulum�



Figure �� The TELAWARE Introductory Menu�

Figure �� The General Simulations Menu�



Figure �� The Hardware Interface Menu�

Figure �� The Pendulum Simulations Menu�



� Noise

As with all of experimental physics
 noise is part of the measurement process
 being more important in
some studies of chaos than others� It�s important that one understand the di�erence between noise and
chaos� Noise is external to the system being studied
 and thus environmental� whereas chaos is intrinsic
to the system� For years the chaotic dynamics of several systems were incorrectly thought to be noise�
There are four programs dealing with noise in the GENERAL SIMULATIONS MENU �GSM�� They

are� ���a classical example of Brownian motion
 ���an oscillator that is Brownian motion excited

����the Arrow of Time
 and ����a generator of white noise or ��f noise according to user selection�
The most important of all
 ��f noise
 is one that cannot always be separated from experimental

studies of chaos and complexity� This noise has been known for more than �	 years but it is still not
well understood� It appears that one of the better candidates for explaining it is that due to Bak et
al
 known as self organized criticality �SOC�� The mechanisms responsible for the necessary many body
cooperation are not known
 however� Furthermore
 it should be noted that some experts in complexity
do not believe in SOC�
It has been common to think in terms of a �generic� noise�that which is called �white�
 because

it is very easy to produce white noise with the computer� This overly idealized approximation cannot
be physically meaningful
 except in a very narrow frequency range� Because of the contrasts between
noise and deterministic chaos
 and because noise is infrequently discussed in physics �not to mention
erroneously treated�� this package also contains some algorithms dealing with noise�

��� White noise

White noise �having no frequency dependence� is very easy to generate with the computer
 using the
Basic function
 RND� This function generates variates that are governed by a uniform distribution� It
is recommended that one look at both the temporal and spectral features of this
 and indeed
 all the
noise cases of TELAWARE� One of the two output possibilities from GSM program ��� is shown in
Fig� �� Observe
 in particular
 that the power spectrum �mean value� is essentially �at for this white
noise case� Note� For this and all power spectra of this monograph the frequency plots terminate at ���
the Nyquist frequency�

Figure �� White noise�

�a�� Time dependence �b�� Frequency dependence �loglog plot�

The power spectrum is de�ned� for present purposes� as the sum of the squares of the real and imag�
inary parts of the Fourier transform of the temporal record� As mentioned in part I of this monograph�
the transform is done via the Cooley�Tukey �fast Fourier transform� or FFT	 algorithm� In Fig� 
� as in



all power spectra of this document� the separation between the horizontal dotted lines is a factor of ����
The abscissa may be linear or logarithmic according to user selection� In the latter case� the separation
between vertical dotted lines is a factor of ���

��� ��f Noise

Pink
 or ��f noise is more di�cult to generate with the computer� Moreover
 there are not many
references to be found on the subject� Insofar as generating variates for a given distribution �in general�

the various books written by D� Knuth are good references� A warning is in order� It is commonplace to
do monte carlo processing in which the variates obey Gaussian statistics� Of course this distribution is
not appropriate for positive de�nite quantities
 if the variance is large enough to allow negative values �a
case that actually happened on the U� S� antisatellite program in early studies of the miniature vehicle��
The pink noise generator used here is the one described by Sprott in the manual of his �Chaos

Demonstrations�
 Physics Academic Software ������
 ISBN 	���������
 available from The Academic
Software Library
 Box ��	�
 North Carolina State University
 Raleigh
 NC �������	�� For the one who
would like to program his own computer
 since the AIP package does not have source code� Sprott�s
description of a pink noise algorithm was used to write the following program�

Due to the burgeoning nature of this document� the source code for all of the TELAWARE programs
has not been explicitly included� Anyone desiring speci�c information on these programs �source code	
should contact TEL�Atomic�

REM Basic program to generate �w�hite or �p�ink noise�

DIM u���� ta���� tn���

CLS

KEY ��� CHR���� � CHR��	H
D�

ON KEY���� GOSUB terminate

KEY���� ON

OPEN �trial�dat� FOR OUTPUT AS ��

SCREEN 

COLOR ��� �

CLS

VIEW ���� �������� ����� WINDOW ����� ��������� ���

dt � ����


j � �

PRINT �input noise type����W��hite� or ��P��ink � ��f�

INPUT sp�

CLS

LOCATE 
�� 
� PRINT �press �x� to exit�

IF sp� � �p� THEN LOCATE �� ��� PRINT �PINK NOISE�

IF sp� � �w� THEN LOCATE �� ��� PRINT �WHITE NOISE�

LOCATE ��� ��� PRINT �time�

jm � �

start�

t � t � dt

k � k � �

IF k � ��� THEN CLOSE �


IF k � ��� THEN GOTO terminate

WRITE ��� � � u�n

u� � INT�
 � 
 � jm � RND����

IF sp� � �w� THEN GOTO ��

FOR j � � TO jm

ta�j� � INT�u� � 
 � j�

IF ta�j� �� u� � 
 � j THEN ta�j� � �

IF ta�j� �� � THEN ta�j� � �



NEXT j

GOTO �

�� FOR j � � TO jm � �

ta�j� � 
 � �j � �� AND u�

IF ta�j� �� � THEN ta�j� � �

NEXT j

�

u�� � RND���� IF u�� � �� THEN u�� � � ELSE u�� � �

FOR jj � � TO jm

u�jj� � RND���� IF u�jj� � �� THEN u�jj� � � ELSE u�jj� � �

IF ta�jj� � � THEN tn�jj� � u�jj�

NEXT jj

u�n � u��

FOR jl � � TO jm

u�n � u�n � 
 � jl � tn�jl� � 
 � �jm � �� � 


NEXT jl

LINE �tp� ���� � u�np���t� ���� � u�n�

PSET �t� ��

tp � t

u�np � u�n

GOTO start

terminate�

END

The approximate method used is the following �quoting Sprott�� �Start with an arbitrary �vebit
binary number �which can have a decimal value between 	 and ���� Generate the next number in the
series by randomly changing the bits of the current number in a way such that each bit is changed only
half as often as the bit to its right� To do this
 generate a random integer in the range 	 to ��� This
integer will be divisible by one every time
 by two half the time
 by four onequarter of the time etc�
Thus
 the integer can be used to decide which bits of the current number are eligible for change��
Shown in Fig� �a is the output from GSM program ��� �code above
 extracted from TELAWARE�


after selecting ��f noise� The power spectrum according to the �a record is shown in Fig� �b� The mean
value of the noise �ignoring the lowest frequency section� should fall o� as ��f in a loglog plot�the
basis for the nomenclature� It can be seen from the �gure that the decline is really a little faster than
��f
 which speaks to the di�culty of building a true pink noise generator�
Pink noise is the most commonnoise type in the cosmos
 showing up virtually everywhere� In addition

to electronics cases which abound
 it is even found in the mesodynamic world of mechanical oscillators
�the interested reader may refer to references in the appendix thus labeled in part I of this document��
In this case
 evidently the atoms are playing �musical chairs�� which is necessary for anelasticity and
�on a larger scale� creep� After half a century of noting its presence
 pink noise is still poorly �if at all�
understood�
In comparing �gures � and �
 it can be readily seen that white noise has more high frequencies in

it �the probability of signi�cant amplitude jumps at any point in time is quite high�� This shows up
readily in the autocorrelation
 as illustrated in Fig� �� where the contrast between white �on the left�
and pink �on the right� is marked�

��� Brownian motion

In the present work
 Brownian noise is addressed by way of a particle moving under the in�uence of
a �uctuating force� The dynamics of the particle is described by the Langevin equation �c�f� F� Reif

Fundamentals of Statistical and Thermal Physics
 p� ��	
 McGraw Hill
 New York �������� It can
be shown that the �uctuating force is intimately related to the dissipation �through the �uctuation
dissipation theorem�� The equation of motion of the particle is given by



Figure �� Approximate ��f � � pink� noise�

�a�� Time dependence� �b�� Frequency dependence �loglog plot��

Figure �� Autocorrelation of white noise �left� and pink noise �right��



Figure �� Brownian noise�

�a�� Time dependence� �b�� Frequency dependence �loglog plot��

m
dv

dt
� � �v  F �  F ���

where F is the external force on the particle
 and F � is the rapidly �uctuating �environmental� part
whose average value vanishes� Notice that in all of these noise treatments
 the �uctuating part is external
to the system �thus environmental�
 whereas chaos is internal�
In GSM program ��
 it is the velocity of the particle that is plotted� �The displacement tends to

drift o� screen�� The �uctuating force
 F � 
 is generated using the RND function� One can show that
the velocity noise is proportional to ��f� in the loglog power spectral plot
 as shown on the right in
Fig� �� The temporal record that generated it is shown on the left� Note that a factor of �	 increase in
the frequency is met with a factor of �		 decrease in spectral intensity�
Further observe that the fallo� of the noise with frequency
 in the loglog plot is de�nitely more rapid

than the pink noise case�
Concerning Brownian motion
 Present points out in his classic textbook �Kinetic theory of Gases


McGraw Hill
 N�Y�
 ������
 p� ���� that there are two ways that Brownian motion can be seen� either
by �i� reducing the number of molecules in the collection or by �ii� adopting more sensitive experimental
methods
 to detect and measure statistical �uctuations and to account theoretically for the observed
results� The physics behind these statements is the following �quoting Present�� ����the smaller the
collection
 or sample
 to which statistical methods are applied
 the larger are the percentage deviations
from the average
 or most probable
 behavior� ������ with statistical �uctuations
 it is shown that the
rootmeansquare relative �uctuation varies inversely with the square root of the size of the collection�
The large numbers of molecules involved in all the gaseous phenomena that we have considered ensure
that the statistical �uctuations are ordinarily imperceptible��
It is the second method �more sensitive experimental methods� that has permitted us to study

Brownian motion with an SDC based pendulum� In particular
 as part of the Physics ��	� �intermediate
laboratory� at Texas Tech
 we have been looking at a variety of pendulum interactions with air� Few
realize
 for example
 that the damping of a pendulum does not fall o� rapidly with pressure
 until the
pressure is such that the mean free path is comparable to chamber dimensions� The reason has to do
with momentum transport� Present explains this in his treatment of viscosity according to the kinetic
theory� Quoting from p� ��� �Viscosity in a gas originates
 therefore
 in the molecular transport of
the momentum of �ow in the direction of the velocity gradient �but opposite in sense��� He gives the
following analogy� Imagine two trains on parallel adjacent tracks� �As the faster train overtakes and
passes the slower one
 packages are thrown across from each train to the other� The e�ect is to accelerate
the slower train and decelerate the faster one�� Interestingly
 J� C� Maxwell was the �rst to consider



this problem� He deduced
 from kinetic theory that he developed
 that a pendulum swinging in vacuum
should not experience any change in the log decrement� The students in Phys� ��	� have shown this
to be approximately true until the gas becomes �ballistic�� i�e�
 the mean free path is greater than the
chamber size�

��� Arrow of Time

In GSM program ��
 the oscillator driven by Brownian motion is treated in the following way� As was
noted �Present�s theoretical statement�
 the �uctuation should vary inversely with the square root of the
size� This is approximately true for the �uctuations encountered in the �Arrow of Time�
 GSM program
���� This program is a fascinating one which was �rst published by Eisberg �Applied Mathematical
Physics with Programmable Pocket Calculators
 McGraw Hill ������
 p� ����� Eisberg was concerned
with the �nd law of thermodynamics �entropy�� The system is a box with two chambers
 divided by
a partition through which only one molecule at a time can pass� The behaviour of the system can be
simulated as follows
 quoting Eisberg� ���� generate a random number from 	 to �� ��� test it against the
current value of the fraction of molecules on the left� and ��� �move� a molecule from left to right if the
number is smaller than the fraction
 or in the opposite direction if it is larger
 by subtracting or adding
� to the appropriate storage registers� The results of this simulation will lead you to an understanding
of why there is an irrevocable tendency for the disorder
 or entropy
 of the system to increase as time
evolves
 providing it contains a reasonably large number of molecules�� The code which does this is as
follows�

KEY ��� CHR���� � CHR��	H
D�

ON KEY���� GOSUB terminate

KEY���� ON

RepeatArrow��

REM simulates the �arrow of time�� Fluctuations large for small n

REM Shift F� to execute� Ctrl Break to stop� �r� to rerun with new n

COLOR �� �

CLS

LOCATE ��� ��

PRINT �input no� of particles ���� to ���� is a good range��

INPUT n

CLS

nl � n� nr � �� i � �

SCREEN 

COLOR ��� �

LOCATE 
� ��� PRINT �TIME�S ARROW�

LOCATE �� ��� PRINT �Number of particles ��� n

LOCATE 
� �� PRINT �All particles right�

LOCATE 
�� �� PRINT �All particles left�

RepeatArrow
�

i � i � �

u � RND���

IF u � nl � n THEN nl � nl � �

IF u � nl � n THEN nl � nl � �

nr � n � nl

PSET ��� � i� nl � ��� � n�� �

PSET ��� � i� 
�� PSET ��� � i� ����

IF i � ���� THEN GOTO donearrow

GOTO RepeatArrow


donearrow�



Figure �� Illustration of the �Arrow of Time� �particle number is �		��

END

terminate�

END

Notice that the function RND is used� It provides variates in the range from 	 to � that are governed
by a uniform �constant� distribution� For invertible functions
 it is easy to use RND to obtain variates
that are governed by a di�erent distribution� For example
 Log�RND� yields an exponential distribution�
There are a variety of clever tricks to get things like the Gaussian �or when normalized
 �normal��
distribution� The best references to these important computational tools are the books written by D�
Knuth�
For two reasons
 the Arrow of Time program has been included within this monograph� One
 it

illustrates the �nd law of thermodynamics� which says that the entropy of a real system �irreversible�
can only increase� Interestingly
 the equations of mechanics
 based on calculus do not account for this�
Time can run either direction and the equations don�t care� Eventually
 physics involving complexity
will have to do a better job of dealing with this aspect of the real world� Along with a mathematician
group
 Tom Erber has thought about some of these things in relationship to the PLC e�ect� They have
applied the concept of the �sneaky function�
 since the PLC e�ect violates the fundamental theorem of
calculus �the functions and their derivatives are not continuous��
The second reason for considering the program has to do with its structure�it is a Monte Carlo

based algorithm� Most real world systems of applied physics interest are too complex for �rst principles
analytic treatment� For them
 Monte Carlo methods are the only hope for meaningful simulation at this
time� On a related note
 we�ll see that the generation of the Henon map requires �rst the �lling of an
x
y space by using random numbers� Thus the essence of the Monte Carlo method is used in a classical
map of chaos �Henon was one of the �rst to produce a chaotic map
 one showing fractal self similarity��
As shown in statistical mechanics �c�f� Reif 
 Statistical and Thermal Physics
 McGraw Hill
 �����

the size of the �uctuations is proportional to �p
n
� All of these features can be easily demonstrated

with the program using di�erent values of n� Fig� � is an example with n � �		�
The code just indicated was used to provide the drive of a simple harmonic oscillator in GSM program

��� An example output is given in Fig� �	� What is immediately evident in this �gure �time plot�

is that there are sustained periods of correlated motion� This also shows up as a well de�ned line in
the power spectrum �Fig� ��a�
 and it is unmistakeable in the autocorrelation �Fig� ��b�� There can
be signi�cant di�erences �particularly in the power spectrum� according to the size ��mass�� of the
oscillator�



Figure �	� Motion of a Brownian driven simple harmonic oscillator�

Figure ��� Power spectrum �left� and autocorrelation �right� corresponding to Fig� �	�



Figure ��� Probability distribution for low level periodic pendulum motion�

� Probability Distribution

A tool that can be useful for assessing whether a data set is periodic
 chaotic
 or noisy is the probability
distribution of the set� This technique is illustrated here in the beginning by considering the distribution
of x � cos � 
 where � is distributed uniformly over the interval
 � � � � � � � The probability
that � is located between � and �  d� is given by

P ��� d� �
d�

��
���

The probability Q�x� dx that x � cos � is located between x and x  dx is given by

Q�x� dx � � P ��� d� ���

� � P ��� dx�jdx
d�
j ���

� dx
�jsin�j ���

�The reason for the factor of � is that there are two � values corresponding to each value of x �� Thus
the probability density is given by

Q�x� �
�

�
p
� � x�

� �� � x � � � 	 otherwise ���

The �ears� on the distribution at the end points of a plot of Eq� ��� is characteristic of periodic
motion� To show this
 go to the pendulum simulations menu bellringer algorithm and execute with a
drive frequency of ���� After the transients settle
 the steady state �low level periodic� motion is written
to memory ��	��� values� Now return to the general simulations menu and run program ���� You�ll
obtain Fig� ��
 showing these �ears��
To illustrate the di�erence between this periodic and other interesting cases
 one may repeat the

procedure using di�erent algorithms� For example
 Fig� �� on the left corresponds to the chaotic TGP
�GSM ����� and the right part of the same �gure corresponds to white noise
 generated with GSM
���� Similarly in Fig� ��
 left and right respectively correspond to GSM ��� �periodic Du�ng� and
GSM �� �Brownian oscillator��



Figure ��� Probability Distributions�

�a�� Chaotic case �b�� White Noise

Figure ��� Probability Distributions�

�a�� Periodic Du�ng oscillator �b�� Brownian oscillator



� Traditional Chaos

There is no universally accepted criterion for saying that a system is chaotic or not� Usually the
simultaneous satisfying of several criteria is considered necessary before the claim can be made with
con�dence� Among these criteria are� �i� nature of Poincare sections
 �ii� nature of the power spectrum

�iii� algebraic sign of Lyapunov exponents
 �iv� dimensionality
 and �v� entropy� The existence of a
positive Lyapunov exponent is probably the singlemost important test� however
 it�s calculation is not
simple except with trivial systems� When an exponent is positive it means that two closely spaced
trajectories in phase space diverge exponentially with time� Since the space is closed there must be
�folding and stretching� like the making of ta�y candy� This in turn gives rise to fractional dimensions
�fractals in the terminology originated by Mandelbrot�� If the phase space trajectories are followed
inde�nitely �time exposure�
 there is a dramatic di�erence between chaos and periodic behavior� When
periodic
 the trajectories become eventually stable
 so that the point in phase space moves over previous
tracks� When chaotic
 the space usually becomes hopelessly �cluttered�� This cluttering makes it
di�cult to ascertain much concerning the fractal�
The Poincare section is obtaining by �strobing� the phase space trajectories
 so that the dimen

sionality is reduced by �� This is usually done once per cycle of the periodic drive� Drive is normally
necessary to overcome the loss of energy due to friction� In the book by Baker and Gollub it is stated
that � coupled equations are necessary for chaos� This statement denies the original form of chaos
 stud
ied by the Russians �such as Chirikov�
 which in Moon�s book is referred to as Hamiltonian systems� In
quantum mechanics the Hamiltonian never contains a dissipation term� however
 in chaos studies it has
been common to modify the canonical equations of Hamiltonian by adding a term due to friction� This
was done
 for example
 in simulating the support constrained pendulum�
The Poincare section causes an nth order continuous time system to be replaced by an �n��th order

discrete time system� Thus a phase space trajectory ellipse �limit cycle� of dimension � becomes a point
of dimension 	� If there is chaos
 it manifests itself by �splattering� of points in the Poincare map�
This splattering is not random� rather the points fall on a �strange attractor�� Such an attractor is
always part of a system that is fractal� The Poincare section has come to be the preferred and perhaps
singlemost e�ective �in terms of cost� indicator of chaos�
It should be noted that the geometry of real �nonlinear� systems is not that with which we are

accustomed by training in the past� Manmade geometry with which we�re accustomed is Euclidean�
It involves circles
 triangles
 and the like� The geometry of nature
 however
 is fractal� To better
understand complex systems
 the base of our math training in physics will have to be revised�
The pendulum has been an excellent pedagogical tool for several reasons
 not the least of which is

its traditional role in physics since the Copernican revolution� For one thing
 it�s equations of motion
apply directly to some modern systems
 such as the Josephson junction� Additionally
 it has some
similarities �in di�erential equation form� to the most common of all maps which show chaos!the logistic
map �in iterative form�� This importance has been recognized by many� For example
 all throughout
Baker and Gollub�s book
 the pendulum is used as the �benchmark� to describe various properties
of chaos� Obviously
 the pendulum is the benchmark also for the present document� however
 as has
been noted
 there are a variety of chaotic pendulum possibilities� In addition to the conventional
rigid planar pendulum
 some of the others that are treated herein
 to varying degrees
 are the following�
double pendulum
 support constrained pendulum
 torsion gravity pendulum
 and the Kapitza �inverted�
pendulum� Additionally
 the leaky pendulum
 may show chaos at low levels because of the dripping
�uid� �Droplets of water from a faucet can demonstrate chaos in terms of the time between drops��
Because of the considerable importance of the pendulum�s equations and the logistic map and several
other ones
 such as the Lorenz map� and because too few people have a working relationship with them

the following information is provided� Attention is given to computer exercises for which a �picture is
worth a thousand words��

��� Bouncing Bead

One of the simplest chaotic systems to model with the computer is that of a bead which bounces on a
horizontal table that executes vertical harmonic motion� The amount of momentum change experienced



�

u

�

Bead

�

Oscillating Table

Figure ��� Simple system which can be chaotic�the driven Bouncing Bead�

by the bead is determined by the coe�cient of restitution
 a � In the present treatment
 the motion
of the table is considered negligible compared to the average maximum height of the bead�s trajectory�
Between collisions
 the bead is in free fall
 in�uenced only be the �xed acceleration of gravity� The
system is illustrated in Fig� ���
The �strength� of the drive is determined by the table �motion�
 b � which is a parameter that can be
changed in a particularly meaningful way� Using GSM program ��
 one may look at the motion �y� vs
time
 the phase space trajectory �velocity vs y�
 or the Poincare� section �velocity vs y strobed once per
cycle of the drive�� For a low drive
 typically the bead will settle �after transients have decayed� into a
period� limit cycle
 such as shown in Fig� �� on the left�
As the drive is increased
 a bifurcation occurs� so that the motion becomes period� as shown on the

right in Fig� ��� Further increase of the drive results in additional bifurcations
 as illustrated in Fig�
���
Notice in the �gure that the period� case on the right di�ers from the period� on the left in a subtle
way� By laying a straightedge across the highest points
 it can be seen that the alternate peaks di�er in
magnitude by a small amount�
Still further increase in the drive results eventually in chaos
 as shown in Fig� ��� On the left is a time

record of chaotic motion
 and on the right is the corresponding Poincare� section� The selfsimilarity is
striking in these cases
 and a �fullblown� �gure is provided in Fig� �� to show the details better� This
�gure was made with a higher resolution graphics than is available in GSM program ���
It is very educational to look at the modeling in this case� Additionally
 if one wants to construct

personalized high resolution Poincare� sections
 then the following �barebones� code is provided�



Figure ��� Limit cycles for the driven bouncing bead�

�a�� period� �b�� period��

Figure ��� Limit cycles for the driven bouncing bead�

�a�� period� �b�� period��



Figure ��� Chaotic bouncing bead�

�a�� Motion in time� �b�� Poincare� section�

SCREEN �


VIEW ���� �������� ����� WINDOW ����� �������� ��

dt � ���� g � �

w � 
� a � ��� b � 


vk � �

start�

t � t � dt

v � vk � g � �t � tk�

y � vk � �t � tk� � �� � g � �t � tk� � 


IF y � � THEN GOTO ���

tk � t

vk � �a � v � b � �� � COS�w � tk��

���

dr � COS�w � t�

IF ABS�dr � �� � ����� THEN PSET ����� � v � �
�� ���� � y�

GOTO start

END

It can be seen from this code that the BASIC language is well suited to modelling of chaos� One
should only consider compiled versions
 however� because the interpretive basic is far too slow to be
useful� The one used in all of this work is QuickBASIC� To execute the program above
 one hits �shift
F��� To exit requires a �Ctrl break��
The best way to see the perioddoubling route to chaos is by looking at the Poincare� sections ��s�

in GSM program ���� The following values of b will show the doubling� �
 ���
 �
 ��	�
 and ����
These correspond
 respectively to period�
 period�
 period�
 period� and chaos� Between ��	� and
��� there is probably a period�� to be seen �and even higher modes�
 but it is generally di�cult to
easily represent the larger modes without a change of scale�
For one who is interested in more details concerning this system
 particularly some experiments

that have been performed� a good reference is that of N� B� Tu�llaro
 T� Abbott
 and J� Reilly
 An
Experimental Approach to Nonlinear Dynamics and Chaos
 Addison Wesley
 Redwood City
 California
�������



Figure ��� Fractal Geometry of the Chaotic Bouncing Bead�



Figure �	� Plot of output from the Logistic equation�

��� Logistic Map

A notable characteristic
 just demonstrated
 was the period doubling route to chaos in the bouncing
bead� This is a common route to chaos for a variety of systems which di�er considerably in their physical
properties� The �rst occasion to see period doubling was in the logistic �quadratic� map
 which is as
follows�

x�n �� � c x�n� ��� x�n�� ���

Observe that it is a nonlinear expression because of the quadratic term� The equation is iterative� i�e�

the updated value of x �left hand side
 LHS� is obtained by working with the present value of x in the
indicated operations of the RHS� This seemingly trivial expression possesses a wealth of properties that
were not recognized until after the invention of the computer� Feigenbaum even found a fundamental
constant associated with the period doubling features of the map� The reason for the name is that
population dynamics �such as of insect numbers� can be explained in part with it� When x�n� is small

the c x�n� �positive� term is dominant �corresponding to population growth�� With continued increase

however
 the � c x�n�� term will eventually become dominant� The period doubling route to chaos of
the logistic map becomes recognizable as one plots x�n �� as a function of c� Subsequent to a change
in c
 plotting should be delayed for settling of transients� Fig� �	 shows the usual graph of x vs c�
Notice that x values lie in the range 	 to ��
As c increases above �
 the �rst period doubling occurs at about ��	�� so that x shows two values for
a given c� Iteratively
 there is cycling between the two values� Thus the equation repeats every �nd
iterate
 which explains the term
 period doubling� Later
 at about ����
 each of the branches bifurcates
to give � values for a given c� The cycling among them repeats every �th iterate� so the �dynamics� is
referred to as a period� limit cycle� The period doubling continues on to chaos just below ���� Note
also the prominent window �period �� near ����
 in the middle of the chaotic region� To investigate
these features on your own
 select and study the Logistic Map �GSM program �����
A number of physical systems
 such as the pendulum
 also exhibit periodn limit cycles� These rep

resent subharmonic motions
 which are not possible with a linear system� For example
 a period� limit
cycle of the pendulum is one in which the time required for the bob to repeat its motion is twice as long
as that of the drive torque� This type of response is easily recognized in the phase space representation�
For period� the motion is an ellipse at small amplitues
 which through Poincare sectioning �strobing�
reduces to a point� When the system bifurcates �the term meaning two mathematical solutions� to



Figure ��� Sample Return map for the Logistic equation�

period�
 then the ellipse becomes a �loopintheloop�� and the single point becomes two points� In the
period doubling route to chaos
 the Poincare sequence is one of �������� unto chaos� in which there
is
 in e�ect
 an in�nity of points but not randomly distributed� Instead
 the points on the phase space
torus comprise a fractal� i�e�
 the dimensionality of the space is fractional� The resulting selfsimilarity
means that a view of the space produces essentially the same picture no matter what the magni�cation�
This has been likened unto the view of a very irregular coastline either from a great distance or a near
distance
 and how essentially the same picture results�

��� Return Map

Ed Lorenz �discoverer of chaos with his model of atmospheric convection� was one of the �rst to use
another powerful computational technique for recognizing limit cycles and chaos�the return map� To
obtain this map for the logistic equation
 one simply plots the previous value of x against its present
value� An example is illustrated in Fig� �� �case shown being chaotic��
�For multivariable systems the same can be done with one of the variables�� As in other cases
 one

needs to wait for transients to decay after initializing the algorithm� For the logistic return map the
following values of c are noteworthy� ���
 ���
 ���
 ����
 ����
 ���
 ����
 and ���� They give respectively�
period�
 period�
 period�
 period�
 chaos �� segment�
 chaos
 period� �window�
 and chaos� When
executing the program �GSM program ����
 hitting �r� on the keyboard allows one to quickly run
through the periodn and chaotic cases just cited�

��� Logistic Map� Graphical Representation

For one who is greatly bene�ted by visual �graphical� representations
 the logistic map can be better
understood by means of GSM program ���� This program uses a type of graphical generating function�
The inverted parabola is shown in the graph
 and the iteration involves straight line segments between
the parabola and the �� degree line
 corresponding to x�n �� � x�n� � One can readily see the di�erence
between periodn limit cycles and chaos with this program� For a limit cycle
 a stable �gure will develop

once transients have settled� if chaotic
 this never happens� To see the pattern after transients
 hold �c�
on the keyboard to clear the screen�s previous traces� An example output is shown in Fig� ���



Figure ��� Graphical representation of the Logistic map�

��� Entropy of the Logistic Map

One of the most powerful concepts in all of physics is that of entropy
 given to us by Boltzmann
 and
which is the basis for statistical physics� In statistical mechanics
 entropy is de�ned as S � k log W
where W is the number of states available to the system
 and k is Boltzmann�s constant� This quanti�er
of �disorder� is the basis for obtaining the equation of state of a thermodynamic system using quantum
mechanics� In descriptions of chaos
 such as the logistic equation� k is typically set to � because the
number of states is so small� By contrast
 in macroscopic physical systems Avogadro�s number may be
representative� In the logistic equation
 when there is only � solution
 the entropy is 	 since Log �� 	�
After bifurcating �meaning more than one mathematical solution� to � solutions
 the entropy becomes
	���� � Log �� The period doubling route to chaos continues with S � �����
 ��	��
 �����
 ���� 
 where
the upper limit is determined �computationally� by the number of values that one is willing to wait for
during accumulation into bins�
In program ��
 only �	 values maximum per bin is used� Thus the maximum value of the entropy

is �
 during chaos� Especially interesting is the entropy �ordinate labeled S�k in the graph which is
generated� corresponding to the window at c � ����� As noted before
 this window is period�� therefore
the entropy should be ��	��
 which is seen in Fig� �� to be essentially the value as determined by the
algorithm�

��� Synchronized Logistic Maps

In a study by John Masten and R� Peters �publication in review�
 two coupled logistic maps were
studied from the view of synchronism� Although work has been done on coupled logistic maps in the
past
 the e�orts have centered around the chaotic characteristics of the coupled systems and not on
synchronization� The present work considered the following equations�

xn�� � c���� a�xn  ayn���� ���� a�xn  ayn�� ���

yn�� � cyn��� yn� ���

A value of zero for �a� decouples the two equations and results in two independent logistic maps

whereas a value of one results in total coupling� The system was studied using bifurcation diagrams

entropy plots
 synchronization plots
 and Lyapunov exponents� It was found that synchronization was



Figure ��� Entropy of the Logistic map�

possible over large regions of operation
 even though individual dynamic variables within a region might
be chaotic�

��	 Lyapunov Exponents for the Logistic Map

These exponents are named after the Russian mathematician who lived from ���� to ����� We compute
them for the Logistic map by considering the generating function
 f � cx��� x�� The �nd iterate can
be written as

xn�� � f �xn��� � f��x�n�� ��	�

and this generalizes to

fN �x�n ��� � fN �x�n�� � � e� n ����

More commonly the exponent is referenced to base � rather than base e �inverse of the natural
logarithm�� Taking the logarithm of both sides of the equation gives

ln��fN �xn  ��� fN �xn����� � �n ����

which is recognized
 on the left hand side as lndfN
dx

in the limit as �� 	� Now consider the derivatives�
Letting u � f �x�	��


df�x�	�

dx
�

du

dx

df�u�

du
� f ��u�f ��x�	�� � f ��x����f ��x�	�� ����

and in general

dfN �x�	��

dx
� f ��x�n��f ��x�n� ��f ��x�n� �������f ��x�	�� ����

This result
 with the properties of the logarithm
 allows us to solve for the Lyapunov exponent

� � lim
n��

�

n

n��X

i��

lnjf ��xi�j ����



Figure ��� Lyapunov exponent for the Logistic map�

In evaluating the Lyapunov exponents computationally
 it is usually su�cient to approximate the
in�nite sum by �		 terms
 which was done in the code of GSM program ���� Fig� �� was produced
with this program�
Note the positive value of lambda above ���� corresponding to chaos
 except that it drops below 	 at a

few places such as c � ���� �the period� limit cycle�� Also the deep negative value at ���� is noteworthy�
Whereas the condition for chaos is exponential divergence of closely spaced phase trajectories � positive
lambda� we see that c � ���� is a case of strong convergence�

��
 Circle Map

The circle map is useful for understanding �winding�
 Arnold tongues
 and the �devil�s staircase�� Also
sometimes called the sinecircle map or the standard map
 it has been shown that there are a range
of parameters over which it can be correlated with pendulum motion �M� H� Jensen
 P� Bak
 and T�
Bohr
 Phys� Rev� A ��
 ���	 �������� Much of the theoretical understanding of this map is due to the
Russian mathematician
 V� I� Arnold
 �c� f� Geometric Methods in the Theory of Ordinary Dierential
Equations
 Springer
 New York �������� A good
 detailed introductory description of the map is that by
Robert C� Hilborn
 �Chaos and Nonlinear Dynamics� An Introduction for Scientists and Engineers p�
��� �������� The circle map can be expressed in terms of angle �mod �� �
 but it is usually normalized
as follows�

�n�� � �n  " � K

��
sin ����n� �mod �� ����

The parameter
 K 	 	 
 determines the amount of nonlinearity� and " is the frequencyratio
parameter�
To study this map
 use TELAWARE�S GSM program ��� Fig� �� shows an example in which phase

locking has occurred�
To better understand phase
 or frequency locking
 which is the hallmark of this map with non zero

K � we de�ne the winding number
 as

w � lim
n��

�n � ��
n

without taking mod � ����

In GSM program ��
 only �	 iterations are used in estimating the winding number by this means�
If the graph
 for a given given input of K and " is stationary after pressing F�
 then locking has
occurred� The printed winding number
 w may be used to determine the periodicity of the motion
in terms of a ratio of integers p�q as follows� The number of horizontal segments �iteration number�
is equal to q � Multiplying q by the printed fraction for the winding number gives the number of



Figure ��� Example of phase locking in the circle map�

	�� ��� ���

	 	�� ��	"
	

�

K

Figure ��� Three Frequency Locked regions known as Arnold Tongues�

rotations
 p before � repeats� Because the calculation of w involves only �	 iterations
 the p
estimated this way may di�er from an integer slightly�thus round it accordingly�
Thus for the example of Fig� ��
 there are �� iterations and w � 	���� � Thus the motion is one

associated with a � � �� Arnold tongue�
The value of K at 	���� has been selected
 as in all cases here considered
 less than �� Beyond �

�a critical value�
 several di�erent periodic oscillations can occur for given �K�"� depending on initial
conditions� The map is thus noninvertible
 which is a condition that is necessary for chaos�
The regions of locking are especially interesting when one plots K vs " as illustrated in Fig� ���

The central region
 identi�ed by �

�
does not really have straight line borders as shown
 but rather

they are curved inward slightly� There are a whole lot of tongues other than the ones shown
 and they
can be identi�ed using GSM program ��� The indicated example of phase locking
 for instance
 is just
one� Some other interesting cases are as follows� Using K � 	���� 
 input the following values of
" � 	��� 	���� 	���� 	���� 	��� 	���� 	���� 	���� and 	�� � In so doing
 you will �nd the following
periodicities� 	��� ���� ���� ���� ���� ���� ���� ���� and ��� respectively� Although the w values
printed by the program will be fractions
 you can show that they correspond to the indicated ratio of
integers
 by the method mentioned above�
When K � 	 
 the only way periodicity is possible is for the value of " to correspond to a

ratio of integers� In the left side of Fig� ��
 " � �

��
�exactly�
 and the winding number
 as readily



Figure ��� Example results for the linear circle map �K � 	��

�a�� With a rational winding number �b�� With a slightly irrational one�

demonstrated for the linear case
 is just this ratio of integers� If " di�ers only slightly from the ratio

as shown on the right side of Fig� ��
 then quasiperiodicmotion results�
If one holds the nonlinearity parameter constant at K � ��	 and lets " vary smoothly from 	 to

�� and then plots w vs " 
 then the �devil�s staircase� results
 as shown in Fig� ��� This graph was
generated with GSM program ���� �For these calculations
 �		 iterations were used per evaluation of
w��

����� Mode Locking in Lasers

Undoubtedly the circle map is similar to some physical systems
 when it comes to frequency locking�
One of the best known examples is with certain lasers� The following comments are taken from A�
Yariv
 Optical Electronics� �rd ed�
 Holt
 Rhinehart and Winston
 New York ������� �Mode locking
occurs spontaneously in some lasers if the optical path contains a saturable absorber �an absorber
whose opacity decreases with increasing optical intensity�� This method is used to induce mode locking
in the highpower pulsed solid state lasers
 and in continuous dye lasers� This is due to the fact that such
a dye will absorb less power from a mode locked train of pulses than from a random phase oscillation of
many modes� since the �rst form of oscillation leads to the highest possible peak intensities
 for a given
average power from the laser
 and is consequently attenuated less severely�� Expressed more simply
 ����
the presence of a saturable absorber in the laser cavity will �force� the laser
 by a �survival of the �ttest�
mechanism
 to lock its modes� phases��

��� Peters Map and Chirikov Map

The Peters Map was discovered following studies
 both theoretical and experimental
 of the torsion
gravity pendulum� Modi�cation of the di�erential equations was accomplished by comparing with the
Chirikov map� The Chirikov map is related to the conventional pendulum
 which can be seen by starting
with the equations of motion in Hamilton�s form
 as follows


H


p
� #q �


 H


q
� � #p ����

p

I
� #q � mgL sin q � � #p ����

If one sets the time di�erential
 dt 
 to � after putting the equations in dimensionless form� then
the equations which generate the Chirikov map results�

p � p� c sin q � q � q  p ��	�



Figure ��� The Devil�s Staircase�

In like manner
 the equations of motion for the torsiongravity pendulum are given by


H


p
� p�I � #� �


H


�
� k� � mgL sin� � � #p ����

Setting dt � � after normalizing gives the equations which generate the Peters map� p � p �
q  c sin q � q � q  p� These expressions are similar to the Chirikov map except for the
addition of �q and the change of algebraic sign on the sine term� There is considerable versatility in
this set of equations� When c is small
 they reduce to the simple harmonic oscillator� When c is in
the neighborhood of and less than ��� they give the Du�ng system� When c is large they correspond
to the pendulum� Using the software program ���
 one can readily study the cases for c small up
to about �� When c � ��� and larger the map shows fractal features with inversion symmetry
 as
illustrated in Fig� �� �left side�� Observe that periodic boundary conditions are used
 so that both q
and p are mapped into  � � The Chirikov map is quite sensitive to the initial �starting� values of
q and p 
 which in the software program �� increase monotonically in a loop� Each looping operation
plots �			 �q� p� points between reinitializations�

���� Henon Map

The map given to us by French astronomer Henon is the following�

x�n �� � � � a x�n��  y�n� � y�n  �� � b x�n� ����

The famous set of points shown in Fig� �	 is not obtained by the usual process of simply initializing x
and y and then iterating to produce the fractal� Rather
 GSM program ��� �rst �lls an array of x
y
points using the random number generator of QBasic� Only after the array has been �lled is the fractal
generated using the array values in the above pair of equations�

���� HenonHeile Problem

Not only was Henon responsible for the discrete map of eqns� ��
 he also worked on a problem with Heile
which has applications in cosmology �galaxy dynamics�� The following set of equations is considered in
Koonin�s book on computational physics�

d Px
dt

� � x � � x y �
dx

dt
� Px ����



Figure ��� Example cases of Peters map �left� and Chirikov map �right��

Figure �	� Henon map�



Figure ��� Output from HenonHeile� on the left is a phase plot
 on the right a Poincare� section�

d Py
dt

� � y � x�  y� �
dy

dt
� Py ����

There are � �rst order di�erential equations
 and the coupling is strictly in the momentum terms�
The nonlinearity is from the quadratic terms in x and y and also the product
 xy in the Px
derivative� Koonin integrates the equations
 �rst the d Px�dt and d Py�dt pair
 followed by the
dx�dt and dy�dt pair
 using Runge Kutta� In the present program
 HenonHeile
 the integration is
done using the CromerEuler algorithm
 as in all other cases involving integration in the routines that
are part of this monograph� The trajectory generated with the program has a �fold rotational symmetry
as shown in Fig� �� �left�� This is a consequence of the HenonHeile potential �an equilateral triangle in
the limit�� The program produces a graph that is either a phase space trajectory or a Poincare� section�
Unlike the pendulum Poincare section
 which is produced by strobing at the frequency of the drive

this Hamiltonian system does not have a drive� since there is no friction� Thus to provide the section

one plots Px vs x as y passes through 	� This technique was used in generating Poincare sections for
the support constrained pendulum
 which is chaotic in the limit of zero damping �drive removed�� A
Poincare� section generated by GSM program ��	 is shown in Fig� �� on the right�

���� Solar System related

It was mentioned that the HenonHeile problem came about from the study of cosmology� There are
other examples of chaos from astronomy
 not only in galactic systems
 but also in our own solar system�
One of the best known cases
 discovered by Voyager �
 is the chaotic rotation of Hyperion� One of the
satellites of Saturn
 Hyperion is a biscuitshaped chunk roughly ��	 km across and �		 km thick �W�
K� Hartmann
 Astronomy� The Cosmic Journey
 Wadsworth
 Belmont
 CA
 p� ��� �������� Due to
complex forces acting on its irregular shape
 its rotation is chaotic�

������ Poincare	s astronomy

Not only does astronomy continue to in�uence the world of chaos
 but the science actually had its
beginning with the threebody gravitational problem� It was Poincare� who realized that the �body
case could not be solved analytically� In fact
 the only reason we can solve the �body problem is because
we convert it to an equivalent �body case� This is
 in fact
 the basis for the concept of the �reduced
mass�� Poincare� realized that nonlinearity is the paradigm for most of nature�s behavior� He couldn�t
do much to advance the cause of chaos
 however
 because he didn�t have a computer� More particularly

he didn�t have computer graphics to generate the pictures that have become so important to its study�
Because of its historical importance
 a gravitational program is included in the Telaware package�

As treated
 the three body problem �program ���
 is extremely arti�cial� First of all
 two of the three
objects are �xed
 which is clearly impossible in nature� Second
 there is a modi�cation to the force
between these two objects and the moving third one when it gets very close� The inverse square law of



Figure ��� Example of �body motion�a Keplerian elliptical orbit�

the gravitational attraction becomes unmanageable when the distance
 r
 gets very small� To compensate
for �blowup� in the code
 the following is done� When r � rc 
 the momentum of the moving object is
maintained �xed at the value it had just before penetrating the critical area �tantamount to turning o�
the force�� In constructing the code
 rc was adjusted by trial and error until �reasonable� performance
was realized�

������ Kepler problem

For a better appreciation of the �body problem
 it is recommended that one �rst look at the �body
case� This can be done by setting the mass of either of the �xed bodies at 	� What results is an ellipse

the orientation of which can be varied somewhat according to the input value of transverse velocity of
the moving object
 as illustrated in Fig� ���
The following code illustrates how the �body problem would be treated in a standalone program�

x � �
� vy � ���� v
� � vx � 
 � vy � 
� y � �

PRINT �input t � � value of transverse velocity to�

PRINT �change orientation of ellipse ���
 to �
��

INPUT vx� dt � ���� x� � �� y� � �

SCREEN �
� CIRCLE �
��� 
���� �

start� t � t � dt� r
 � x � 
 � y � 
� r � SQR�r
�� f � � � r � 
�

fx � �f � x � r� fy � �f � y � r

vx � vx � fx � dt� vy � vy � fy � dt

v
 � vx � 
 � vy � 
� x � x � vx � dt� y � y � vy � dt

PSET �
� � x � 
��� 
� � y � 
���� GOTO start

END

One of the reasons for showing this is to permit an interesting additional study� If one changes the
� in f���r$ � to something di�erent
 then precession of the ellipse occurs� Slightly less than � yields
oppositely directed precession as compared to slightly greater than �� This illustrates nicely the fact
that the square law of gravity is exactly that�to within our abilities to distinguish such a precession
from perturbations of other objects within the solar system� A word of caution is in order� One of the
artifacts of the integration technique is that highly elliptical orbits precess at a small rate even when the
exponent is exactly ��
The �body case
 because of its arti�ciality
 yields eventually absurd results� i�e�
 the moving object

either escapes or is trapped by one of the two �xed objects� Until this happens
 one still can appreciate
the sensitive dependence on initial conditions of this system� Once it gets useless
 simply press �x� and
rerun� Typically
 many cycles are visible before that happens
 as illustrated in Fig� ���



Figure ��� Three body gravitational problem �highly arti�cial��

���� Zany root �nder

This program involves a strange attractor in a root �nding algorithm� My �rst occasion to encounter
strange attractors was while working at LTV on the U� S� antisatellite program� The algorithm which
produced them was a modi�ed NewtonRaphson root �nding scheme
 applied to Kepler�s equation�

������ Newton	s method

Most physics students are familiar with the basic Newton method� i�e�
 look for a root
 xr 
 of the
transcendental function
 f�x� 
 using

xn�� � xn � f�xn��f
��xn� ����

where f � is the derivative of f with respect to x � If the function is well behaved
 xr will be the
limiting xn as n � � � Depending on how well behaved the function is
 and the accuracy required�
one may approach acceptably close to xr after only half a dozen or so iterations� Sometimes
 though

convergence is much slower� so an �improved� procedure may be sought�

������ 
Improved� Newton method

The improved Newton method is one that is usually called Chebychev�s formula ����

xn�� � xn � f

f �
� �  

�

�
�
f

f �
��
f ��

f �
�� ����

which results from a secondorder Taylor series expansion� Whereas the standard Newton method has
quadratic convergence
 the improved method has cubic convergence �if it indeed converges��
As compared to the standard Newton method
 greater care in initialization is required when using

the Chebychev formula� This can be easily illustrated with Kepler�s equation
 which must be solved to
�nd the position of a planet relative to the sun at a given time�

������ Kepler	s equation

Kepler�s equation is

f�E� � E � e sin E � M � 	 ����

where M is the mean anomaly
 e is the eccentricity of the orbit
 and E is the eccentric anomaly�
The givens are M and e 
 and E is to be determined� �The steps for determining the position of
a planet are as follows� �i� Determine M 
 which increases at a constant rate �simply related to mean



solar time
 in the case of the earth�
 �ii� determine E by solving Kepler�s equation
 and �iii� compute
the true anomaly from E � which with the distance from the sun
 determines the position��
There is no closed form solution to Kepler�s equation� however
 for small orbital eccentricities
 many

approximation methods have been published
 including one of my own ����
When the Chebychev method is used with Kepler�s equation
 one must be extremely cautious in

initialization
 when e is large� It is possible to get into iterative loops that never converge to a solution
of Kepler�s equation
 as was discovered by Broucke ���� He noted some cases which were
 in e�ect
 a
period� limit cycle
 and others that were chaotic� The chaotic cases are ones which he referred to as
strange attractors
 following the work of Henon ����
The following code has been used to show that chaos can occur when the Chebychev algorithm is

applied to Kepler�s equation� Moreover
 it has been used to demonstrate the best known route to chaos
as a parameter is changed�the period doubling one�

CLS

KEY ��� CHR���� � CHR��	H
D�

ON KEY���� GOSUB terminate

KEY���� ON

COLOR �� �

SCREEN 

COLOR ��� �

restart� CLS

PRINT �Input mean anomaly �
��� to 
���� ��r� to redo� �x� to exit��

INPUT m

eps � �����

e � ���

i � �

start�

i � i � �

f � e � m � eps � SIN�e�

fp � � � eps � COS�e�

fpp � eps � SIN�e�

e � e � �f � fp� � �� � �� � �f � fp� � �fpp � fp��

IF i � ��� THEN PSET ����� � �ep � ����� ���� � �e � �����

ep � e

IF INKEY� � �r� THEN GOTO restart

GOTO start

terminate�

END

Observe that plotting is delayed by �		 iterations
 so that transients can settle�
This program has been included in the General simulations menu ������ To exhibit the period dou

bling route to chaos
 input sequentially the following values of mean anomaly� M � ���	� ����� ������ ������
�������� ����� and ���� � �In GSM ���
 the eccentric anomaly starting value and eccentricity are �xed
at E � 	���� and e �	����� repectively�� What is being plotted �a return map
 after transients have
settled� is Eprevious vs Epresent � The seven values of M give
 respectively
 period�
 period�

period�
 period�
 period��
 segmented chaos
 and full chaos� The full chaos case
 using M � ����
is shown in Fig� ���
What this illustrates is the following� Imagine one were looking for solutions to Kepler�s equation

for a limited orbital region of an object �maybe a comet� with eccentricity e � 	����� � The
mean anomaly is smoothly varying during this time
 through the values indicated above �not a big
range�� If the Chebychev algorithm were used to try and determine E 
 and the same starting value
� Eguess � 	���� � were used everytime to initialize the algorithm
 then � out of � of the attempts at
a meaningful solution would fail�
What this should point out to students is� BEWARE
 when working with numerical algorithms�

Powerful techniqes can sometimes be a%icted with absurd results
 if limitations are not understood� It�s



Figure ��� Chaotic spurious solution to Kepler�s equation�

always good to check for selfconsistency
 rather than blindly believing output�
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���� Kapitza Pendulum

In the United States we typically refer to this pendulum as the inverted pendulum� Its stability derives
from the rapid oscillation of the support� GSM PROGRAM ��� was used to generate the plots of Fig�
���

������ Some Kapitza history

There�s an interesting story behind the Kapitza pendulum
 heard during a visit to Novosobirsk State
University in ����� High energy theorist
 Valery Serbo �who supplied the adjective
 �crucial� for one
version of SDC sensors�
 is the one who told the story� Because Kapitza was a dissident during the
Stalinist regime
 he was �sentenced� to his dacha� �None of the politicians was willing to contemplate
imprisonment of this man�he won the Nobel Prize in ���� for his studies of liquid helium�� This did
not stop Kapitza from doing physics
 as shown by the statements from his article
 �Dynamical stability
of a pendulum when its point of suspension vibrates� �P� L� Kapitza
 Zhur� Eksp� i Teoret� Fiz�
 ��

��� �������� Collected Papers
 ch� ��
 p� �����
�It is well known that for a body at rest the most stable state is the one in which the centre of

gravity of the body is in the lowest position �corresponding to the minimum potential energy�
 whereas
in a dynamical equilibrium the most stable is a state in which the centre of gravity is in the highest
position �corresponding to the maximum potential energy���



�An ordinary top is the most striking example of this principle� As is known
 the force caused by
the friction of the top�s foot against a surface makes the top axis rise and assume the most vertical
position
 the precession is damped and the top is as if being led to a standstill� But besides classical
cases of dynamical stability arising from gyroscopic forces a number of other cases are analysed in the
literature� For instance
 it has been pointed out that in a rapid motion of a man on stilts
 on a bicycle

in a bus
 train and so on
 the most stable state is reached when the centre of gravity assumes as high
as possible a position��
�One of the best examples of dynamical stability is the pendulum with the oscillating suspension

point� In a demonstration
 this phenomenon is not less striking than the top
 and a study of it is as
instructive as that of the top� Nevertheless
 this case is not only little investigated but usually it is
mentioned neither in textbooks nor in treatises on mechanics� In the present work we shall give a
simple obvious method of analysing this phenomenon
 and describe a device for demonstrating it��
I�ve observed a remarkable instrument built according to Kapitza�s speci�cations
 and also been

privileged to meet one who is a beautiful example of generational continuity� A visit to Los Alamos Na
tional Laboratory in August ���� was the occasion of the �	th anniversary of the J� Robert Oppenheimer
Memorial Lectures� The speaker was Pyotr Kapitza�s son�distinguished Russian physicist
 Serguei P�
Kapitza� His lecture topic� �Our Nonlinear World�� Since ����
 he has been �i� senior scientist and head
of the Physics Laboratory of the Institute for Physical Problems of the Russian Academy of Sciences�
�ii� since ����
 he has held the chair of physics at the Moscow Institute for Physics and Technology� �iii�
since ����
 he has been a moderator for the major Russian television program on science and society�
�iv� he has been president of the Physical Society of the USSR� and �v� in ���	
 he was awarded the
Soviet Union�s State Prize� Internationally
 he is on the editorial board of Nature� His lecture dealt with
chaos
 concentrating on the topic of population numbers throughout the history of mankind �compare
with the logistic equation and other concepts presented in this monograph�� Truly
 this is an expression
of Philip Anderson�s statement �in part I
 Introduction
 of this monograph�� �Almost without exception

the more eminent
 the more deeply committed
 the more successful within a given �eld a scientist is

the more eager that scientist is to relate to scholars outside his or her �eld��
The studies by P� L� Kapitza of the inverted pendulum are an interesting example of how theory

and experiment might better work together� One can use GSM program ��� to illustrate a number of
features of the system� To truly understand the physics requires more than trial and error executions
of the software� Rarely
 for example
 would one �nd out the following properties
 discovered by Kapitza
in his theoretical treatment�
Kapitza used the following assumptions� �i� the amplitude of the oscillations of the suspension

point is small in comparison with the length of the pendulum
 and �ii� the angular frequency of the
oscillations of the suspension point is large in comparison with the angular velocity of the oscillations of
the pendulum� �These are also reasonably valid in the present software�� From these came the following
conclusions� The suspensionpoint oscillations give rise to a torque whose magnitude does not depend
explicitly on the time and pendulum length and is determined by the pendulum mass and the square
of the velocity of the suspensionpoint oscillations� The torque tends to set the rod of the pendulum in
the direction of the axis of the suspension point oscillations�
He even went on to speculate
 as the results of these studies
 on the �possibility for observing the

aligning e�ect of the vibrational moment on colloidal particles and molecules��

���� Conventional Pendulum

Software dealing with the conventional pendulum has been treated at length in part I of this monograph

with the exception of the pendulum emulator
 GSM program ���� Shown in Fig� �� is an output of this
program
 the �heart� of which was written by David Mehrl of the Electrical Engineering Department
at Texas Tech University�

���� Lorenz Model of Convection

Ed Lorenz started all this business by noting the �butter�y e�ect� in the equations he was using to
model atmospheric convection� Based on the NavierStokes equations of �uid dynamics
 his equations



Figure ��� Kapitza pendulum simulation results� left is phase space
 right is time plot�

Figure ��� Example output from the pendulum emulator�



Figure ��� The Lorenz model of convection�

�a�� Time dependence of z� �b�� phase trajectory
 z vs y�

Figure ��� Phase space trajectories
 the Lorenz model of convection�

�a�� y vs x� �b�� z vs x�

are highly nonlinear� Before looking at the math speci�cally
 let�s note the famous trajectories shown
in Figures �� and ��� These were generated with GSM programs ��� through ��

using the CromerEuler algorithm on the following equations�

#x � �	 y � �	 x ����

#y � �x z � y  �� x ����

#z � x y � �

�
z ��	�

������ Thermal Soaring in Gliders

It is worthwhile considering a little of the physics involved in the Lorenz equations
 from the perspective
of a glider pilot� When the earth is heated
 beginning in the morning
 the atmosphere does not absorb
much solar radiation� It is warmed primarily by contact with the earth�s surface� Having lower density

the warmed air rises� as every good physics student understands by Archimedes principle� However
 we



Figure ��� Return Map for the zvariable of the Lorenz equations�

also recognize a conservation feature
 embodied within the continuity equation� Speci�cally
 if there is
rising air in some regions
 then there must also be falling air in other regions� Sailplane pilots try to
avoid the latter
 because they don�t like to walk� As one who has occasionally ventured across sandy soils
between Lubbock and Amarillo
 Texas� I can attest to the fact that there can be strong sink �hundreds
of feet per minute��
Sailplane pilots are also quite familiar with the chaotic features of circulation involving thermal
 as

opposed to ridge
 lift� It�s a good thing
 because there are no ridges here� When Coronado visited in the
��		�s he noted that the terrain was as ��at as the ocean!and occupied by �cows��bison�
 which were
 in
turn
 followed by the �natives� �Comanches��
The southern high plains
 where Lubbock is located
 is ideal for thermal soaring� and no two �ights

are ever quite the same� This is clearly the result of sensitive dependence on initial conditions in
the Lorenz equations
 and they can be even more nonlinear than usual during spring of each year� I
personally discovered that fact several years ago when caught in a system that would have come close to
maintaining a Steinway grand aloft� �Although good for soaring
 Lubbock can quickly produce strong
turbulence
 sometimes in the form of tornados��
Those who are members of the Caprock Soaring Club have two trusty cues
 which they rely on

heavily when searching for thermals� One is dust devils
 which always signify the presence of thermals�
they�ve been known to take the roof o� of barns �we usually avoid the ones that big�� The other cue
is the quintessential soarer�birds of prey like the hawks in this area �preyees
 such as sand hill crane

also sometimes soar� they will not let you join them�� You must obey the rules of etiquette
 such as
establishing the same direction of rotation in the thermal� �I once had a hawk nearly come through the
canopy after me for violating this rule� It wasn�t malicious�I just didn�t see him until accosted��
I once naively asked a pilot from Reese Air Force base
 who was a member of our club
 the following

question� Do you suppose hawks have something like our variometer
 to tell them when they�re in lift&
I will never forget his answer� Can you tell the di�erence
 when barefoot
 whether you�re walking on
concrete or sand&

������ Lorenz Return Map

In the discussion of the logistic equation �return map section�
 it was noted that multivariable systems
can also be treated by this means� The best known case is the return map treated by Lorenz himself�
In Fig� �� is the map in terms of z � Unlike the simplicity of the logistic return map � xprevious vs x �

this map requires that the adjacent maximum values of the variable be plotted one against the other�
For one who would like to experiment with possibilities beyond the limits of GSM Program ���
 the
following �barebones� code is provided�



Figure �	� A near linear limit cycle of the van der Pol oscillator �no drive�

CLS � r � 
�� x � ��� y � �� z � 
�

SCREEN �
� VIEW ��� �������� ����� WINDOW ���
� �������� ��

dt � ����� i � �

start�

t � t � dt� dxdt � �� � y � �� � x

x � x � dxdt � dt� dydt � �x � z � r � x � y

y � y � dydt � dt� dzdtp � dzdt� dzdt � x � y � � � z � �

ip � i� IF dzdt � � AND dzdtp � � THEN i � �i

z � z � dzdt � dt

IF i � � AND ip � �� THEN zmx� � z

IF i � �� AND ip � � THEN zmx
 � z

PSET ���� � zmx
 � ���� ��� � zmx� � ����

GOTO start

terminate�

END

���	 van der Pol Oscillator

In Figures �	 and �� are three phase space trajectories
 the �rst a case not too far from a linear limit

the second a highly nonlinear limit cycle
 and the last a chaotic case !all for the van der Pol oscillator�
Physically
 his oscillator was an electrical circuit �involving adjustable positive feedback�� The equation
of motion is as follows
 where it can be seen that the damping �term multiplying p� can be positive or
negative depending on the magnitude of x relative to the parameter � �

#p � � x  �� � x�� p  A cos �t � #x � p ����

In Fig� �	
 the parameter � was set at 	��
 small enough for the phase space trajectory to be a
distorted ellipse� Even though the drive is zero
 the curve �expands� to steady state from the initial
values� In Fig� ��a
 the extreme nonlinearity results from the large value of � � � � Still the drive
is at 	
 so the �nal motion is a limit cycle� In Fig� ��b
 a drive� A � � � has been added
 so that the
motion becomes chaotic�

���
 Du�ng Oscillator

The Du�ng oscillator �one form� is the classic two well potential� It�s Poincare� section
 shown in Fig�
�� is well known�



Figure ��� Phase space trajectories of the van der Pol oscillator�

�a�� Highly nonlinear
 nonchaotic� �b�� Chaotic�

Figure ��� Poincare� section for the Du�ng oscillator�



Figure ��� Phase space trajectories for the Double Pendulum�

�a�� Top arm motion� �b�� Bottom arm motion�

This graph was generated with the simulation for the torsiongravity pendulum �GSM program ����

which reduces to the Du�ng case when the parameter
 b
 is small �here b � ��	���� In the small b limit

the oscillator presently used is described by the following equation

#p � a�� � b

�a
��� � c p  A cos �t � a � b � � ����

#� � p ����

���� Double Pendulum

If one takes two physical pendula �solid rods�
 the top of one connected at a hinge to the bottom of the
other
 then the system can be chaotic in the limit of zero dissipation� The software that was used to
produce Fig� �� �GSM program ��� was mainly written by Douglass Stevens
 using the CromerEuler
algorithm�

���� Classical Harmonic Wave

Before considering any nonlinear wave equations
 it�s important that the classical case be understood�
A lot of students don�t appreciate the fact that a classical wave is periodic in both space and time� A
hardware demonstration of this dual periodicity is described in the paper by Peters
 �Traveling wave
pedagogy using an oscilloscope�� In lieu of the hardware setup
 one may do essentially the same exercises
with GSM program ��	
 whose output is illustrated in Fig� ���
During execution
 observe the simple harmonic motion �y motion in time� of the asterisk
 ' 
 which

is �xed in the x position� This is like a cork on water
 as a wave passes� To understand the kinematic
relationship between phase velocity
 frequency
 and wavelength� one may use a stopwatch with the
program� For example
 with a ��� Intel ��� MHz�
 the �velocity� was measured at ��� cm�s� The
�period� of SHO of ' was measured with the stopwatch to be ��� s� The �wavelength� was measured
�by hitting �pause� on the keyboard� to be ��� cm� From these numbers it can be seen that the velocity
is the product of frequency �reciprocal period� and wavelength�
The classical wave equation is a linear
 �nd order
 partial di�erential equation �refer to almost any

physics textbook�� As such
 one can construct solutions by using superposition� Finite amplitude waves
in real systems are governed
 however
 by nonlinear partial di�erential equations� It has been noted
that the dislocation kink in a crystal lattice obeys the sineGordon equation� This means that the
propagation of a pulselike disturbance from one side
 through and to the other side of a crystal �by



Figure ��� Snapshot of a classical �linear� wave�

Figure ��� Motion vs time for � of the � particles of a Toda lattice�

means of the dislocation defects� is an example of a soliton� Once the soliton has traveled all the way
through the crystal
 there is a permanent change to the structure�

���� Toda Lattice Dynamics

Enrico Fermi �with Pasta ( Ulam� was the �rst person to be seriously concerned with nonlinear coupling
in the springs between masses of an array� In Fig� �� are the time traces of the inner � particles of a
Toda lattice comprising � particles �nonlinear �D array�� Instead of the normal mode case which the
world of physics is familiar with
 this system has the capability of soliton like behavior� This system can
be made to execute normal mode behavior by operating with a much smaller value of the nonlinearity
parameter than the value of � used in Fig� ��� For example
 try running �GSM program ���� with a
value of 	�	�� �For information on the Toda lattice
 one may refer to Moon�s book��

���� Solitons

One topic of considerable importance to the new science of chaos is that of solitary waves
 or solitons�
The literature concerning this subject tends to be very esoteric� and the language employed is of the
type mathematicians
 rather than physicists
 are familiar with� Almost nothing is mentioned concerning
them in introductory textbooks on chaos� A collection of scienti�c articles
 and history
 is provided in
the book by K� Lonngren and A� Scott
 Solitons in Action
 Academic Press
 New York ������� They
describe the �st observations of solitons by John Scott Russell in the ���	�s �water waves on canals



Figure ��� Snapshot of a sine Gordon soliton�

in Britain�� Additionally
 they note that Fermi
 Pasta
 and Ulam were the �rst to use the computer
�MANIAC at Los Alamos� to seriously investigate nonlinear di�erential equations�

���� SineGordon equation

The nonlinear partial di�erential equation which the dislocation kink obeys is given by


�u�
x� � 
�u�
t� � sin u ����

Detailed information concerning this equation and its various solutions �only one case given here�
can be found in E� Enfeld ( G� Rowlands
 Nonlinear Waves� Solitons and Chaos
 Cambridge University
Press
 ���	� In general
 the solution can be found in terms of elliptic functions� It can be shown that a
special case
 single soliton solution is the following

� �
p
m� � ��m ����

� � � x� �t��
p
�� �� ����

� � e�� u � � tan��� ����

The � � sign is the soliton case
 and the �� sign gives the antisoliton� These are pulse like solutions
which are readily studied with GSM program ���� An example execution of this program is provided
in Fig� ��
 where the soliton is propagating to the right�

���� Korteweg deVries equation

Another soliton case is that which is known as KdV� The partial di�erential equation for this case is
�refer to Enfeld and Rowlands
 p� ���


u�
t  u
u�
x  
�u�
x� � 	 ����

A solution to this equation is the following�



Figure ��� Snapshot of two kdV solitons�

� �
�

�
a�x� a�t� ����

u � ��a���e�  e���� ��	�

As seen in Fig� ��
 from an execution of GSM program ���
 this soliton is more nearly the shape
of a canal water wave of the type seen by Scott� It also is probably more nearly the type that would be
encountered in optical �bers� In Fig� �� are shown two solitons propagating to the right� The larger of
the two moves more rapidly and is leaving the smaller one behind�

� Krazon

There�s a very simple model that holds some promise for treating mesoanelastic complexity� In some
respects
 it is similar to the Fermi
 Pasta
 Ulam �FPU� problem� Imagine two particles in a �D chain
comprising � springs
 the system held together by two walls� Initially the particles have no displacement

and they are at rest� At t � 	
 the walls begin to separate slowly at a constant velocity �adiabatic
separation�
 as illustrated in Fig� ���

� � ��

Figure ��� Model of a simple system to generate krazons�

If the springs are Hooke�s law springs �harmonic potential�
 then nothing of interest happens� The
particles remain at rest� On the other hand
 if the potential between the springs is a cosine modulated
parabola �that of the torsiongravity pendulum shown in Fig� ���
 then all kinds of interesting behavior
is possible�
The time plot of Fig� �	 was generated with GSM program ���� The particular mode shown is an

asymmetric �breathing� mode of the system� Just as with the Toda lattice �nonlinear array based on
an exponential function�
 there are solitonlike and other cooperative phenomena that can exist�



Figure ��� Cosine modulated parabolic potential�

Figure �	� �Krazon� asymmetric mode of a two particle
 nonlinear spring system�



Figure ��� Example trajectory of the support constrained pendulum�

� Support Constrained Pendulum

The support constrained rigid spherical pendulum is described brie�y in part I of this monograph
 being
illustrated in Fig� � �PAPA section ����� In dimensionless form
 the equations of motion are given by

#p� � � cos q� sin q� � c p� ����

#p� � � cos q� sin q� � p�� sin q��cos
�q� � c p� ����

#q� � p��cos
�q� ����

#q� � p� ����

The damping terms are the ones multiplied by the dissipation constant
 c� In the modeling that was
reported in the journal article �Phys� Rev� A �� ��	�
 ���� ������
 the damping was di�erent in both
axes �and also of a di�erent form than eqns� ���� and �����
In GSM program ��	
 the trajectory of the pendulum bob �motion in the xy plane� is plotted as a

function of time� The position at a given time is determined from

x � sin q� cos q� ����

y � sin q� ����

Shown in Fig� �� is an example output from this routine�

� Torsion Gravity Pendulum

The torsion gravity pendulum is described in part I of this monograph �section ���� of PAPA�� Ap
pendix II treats the pendulum in considerable detail� Program numbers �� through �� of the General
Simulations Menu are all concerned with this pendulum� The reason is that it is easily simulated and
also is very versatile�
Only GSM program ��� permits adjustable �large� values of the parameter
 b� The others all

operate with b � ��	��
 corresponding to the system that was experimentally studied and described
in the Amer� J� of Physics paper� Sample output from ��� is shown in Fig� ��� The phase space
trajectory on the left is a chaotic one
 and that on the right is a limit cycle
 after transient settling�
It is easy to investigate the power spectra for this pendulum using GSM programs ���  ���� Chaotic
and limit cycle cases for motions similar to those which produced Fig� �� are illustrated in Fig� ��� The
chaotic �left side� case was generated with ��� and ���� The limit cycle �right side� case was generated
with ��� and ���� Note the prominent �rd and �th harmonics� Program ��� produces a subharmonic
response which is rich in spectral content as shown in Fig� ���



Figure ��� Example Phase Space trajectories of the Torsion Gravity pendulum�

�a�� Chaotic case� �b�� Period� case�

Figure ��� Example Power Spectra associated with Torsion Gravity pendulum motions�

�a�� Chaotic case� �b�� Period� case�



Figure ��� Power spectrum of subharmonic motion
 torsion gravity pendulum�

	�� TGP with large b value

This pendulum is especially interesting when b is large� since among other things
 it has strong trapping
tendencies� Also
 it may be a good candidate for studying boundary chaos� Fig� �� shows a b��	 case
which appears to be initially chaotic� however
 after a long time it settles into a period� limit cycle�
It�s not easy to identify the order of the mode in the left side phase space plot� however
 the Poincare�
section on the right side identi�es it immediately� The potential corresponding to this case and also the
one of Fig� �� is pictured in Fig� ���
With di�erent initial conditions �changing the drive frequency from 	�� to 	����
 an unusual �chaotic�
Poincare� section is realized
 as shown in Fig� ���



Figure ��� Output from GSM program ����Torsion gravity pendulum�

�a�� Phase Space Trajectory� �b�� Poincare� section�period� limit cycle of �a� is clearly seen�

Figure ��� Chaotic Poincare� section
 TorsionGravity Pendulum with large b�
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