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The Forced Damped Pendulum:
Chaos, Complication and Control.

John H. Hubbard

We show that a “simple” differential equation modeling a garden-variety damped forced
pendulum can exhibit extraordinarily complicated and unstable behavior. While instabil-
ity and control might at first glance appear contradictory, we can use the pendulum’s
instability to control it. Such results are vital in robotics: the forced pendulum is a basic
subsystem of any robot.

Most of the mathematical methods used in this paper were initially developed in celestial
mechanics, largely by Poincaré. The literature of the field tends to be quite advanced
indeed (see [1, 11]); one object of this paper is to show that computer programs, properly
used, can make these advanced topics transparent. All the computer-generated pictures in
this paper were produced by the programs Planar Systems and Planar Iterations [6], both
written by Ben Hinkle (now at Maple).

1. Some parallels in celestial mechanics
When I was a graduate student, I was amazed by the results of Alekseev concerning
a system formed by three bodies obeying Newton’s law of gravitation; see [1] and [11].
As shown in Figure 1, two massive bodies of equal mass move in a plane P on ellipses
symmetric around a common focus F , and the third body, the satellite, of mass zero,
moves on the line L perpendicular to P through F . Once this satellite is launched, its
motions are determined uniquely by the gravitational pull of the two massive bodies.

The system has a natural unit of time, the “year”—the time it takes the massive bodies
to complete a revolution. Choose a time zero, so that it makes sense to speak of the 0th,
1st, . . . , nth year. Also let x denote the position on the line L, with x = 0 corresponding
to F .

P

the satellite (mass 0)

the massive bodies

Figure 1. Alekseev’s three-body system.
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Alekseev proved that there then exists a number N , which depends on the eccentricity
of the orbits of the large bodies, such that given any sequence n1, n2, . . . of integers at
least N , there exists a set of initial conditions that results in the satellite returning to cross
the plane P exactly in the n1th year, the (n1 + n2)th year, etc. In other words, given a
specified sequence of years with gaps at least N , it is possible to choose an instant t0 and
a speed v = x′(t0) so that if the satellite is kicked off at that moment with that speed, it
crosses the plane during the desired years: first during the n1th year, then n2 years later,
and so on. You can set up the satellite to return in any sequence of years you like, so long
as the returns are spaced at least N apart.

In particular, there exist unbounded orbits in which the satellite travels arbitrarily far
away but always returns, for example the orbit corresponding to the sequence of gaps
between crossings N,N + 1, N + 2, N + 3, . . . ) as well as infinitely many different periodic
orbits (for instance N,N + 12, N + 17, N,N + 12, N + 17, . . . ).

Actually, Alekseev claimed the result only when the eccentricity is “sufficiently small.”
He needed to know that his system satisfied some requirements (basically, that a “horse-
shoe” should be present), and he could verify this only by a perturbation calculation near
an explicitly integrable system. Horseshoes are discussed in Section 8.

The pendulum model we explore here exhibits a similar sort of behavior: we can make
our pendulum go through any specified sequence of gyrations by correctly choosing the
initial conditions. More precisely, by appropriately choosing the position and the velocity
of the pendulum at time 0, we can specify whether during each time period (the time period
of the forcing term, in our case, 2π) the pendulum goes through the bottom position once
clockwise, once counterclockwise, or not at all. For example, we could specify that in each
of the first six periods it could go through the bottom position once clockwise, in each
of the next three periods it could go through the bottom position once counterclockwise,
and in the tenth period oscillate around an upright position . . . . All imaginable sequences
are possible: once the correct set of initial conditions is chosen, the differential equation
governing the system automatically enforces the desired behavior.

2. Differential equations and pendulums

There is only one law in mechanics: F = ma (force equals mass times acceleration). Thus
the motion of a pendulum of length l, with a bob of mass m in a constant gravitational
field of force g, with friction proportional to the velocity, and forcing f(t) (Figure 2) is
modeled by the differential equation

f(t)− γlx′ −mg sin(x)︸ ︷︷ ︸
force

= m︸︷︷︸
mass ×

lx′′︸︷︷︸
acceleration

.

The friction term γlx′ is a fairly good approximation to reality when the friction is due to
air, and the speed of the bob is much less than the speed of sound. The term mg sin(x)
is the force exerted by gravity; the weight of the body is mg, but only the component in
the direction of motion contributes to the equation. The forcing f(t) can be created by a
current proportional to f(t) through the axis of the pendulum, if the bob is a bar magnet
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perpendicular to the axis. In realistic situations (e.g., robot arms), this is the way forcing
is really produced.

x

-

+

Figure 2. A pendulum being driven by alternating current

We explore the behavior of a pendulum whose motions are described by the particular
differential equation

cos(t)− 0.1x′ − sin(x) = x′′,

in which both mass m and length l equal 1.
My starting point was the observation by Borelli and Coleman [3] that numerical solu-

tions of this equation are very sensitive to the integration method, step-length, etc., near
the initial condition (x(0), x′(0)) = (0, 2). That is, we start with a pendulum hanging
down, and hit it with a mallet to give it velocity near 2. This paper is my attempt to
understand this instability. The behavior I describe holds not just for the parameters
m, γ, l, g, f(t) given; they could be varied in a certain range, which I don’t know in any
detail, but which is large enough so that it would not be difficult to build a real system
that behaves like the one described here.

3. A first attempt to understand the motions of the pendulum

The most obvious thing to ask a computer is: what do the motions of the pendulum look
like? The following picture shows the motion resulting from 15 different sets of initial
conditions. Each graph starts with the position x(0) = 0; the initial velocities are evenly
spaced between 1.85 and 2.1. The graphs are plotted for −1 < t < 200 and −25 < x < 25.
A word of caution: the overall features of Figure 3 are correct, but the details—exactly
which equilibrium each initial condition leads to—might well be wrong. The exponential
growth of errors is discussed in Section 11.
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Figure 3. Fifteen solutions to the differential equation cos(t)− 0.1x′ − sin(x) = x′′.

A careful look at the picture suggests that there exists a stable periodic motion S(t) of
the pendulum, which you see in the picture many times; of course, S(t) + 2kπ is another
description of the same motion for any integer k; the letter S stands for “stable.” You
will see five different levels of this stable periodic motion: one on the horizontal axis,
three above, and one below. The first stable motion above the horizontal axis represents
motions that go “over the top” once counterclockwise before settling down, like a child’s
swing going over the bar. The next layer up represents motions that go over the top twice
counterclockwise before settling down, while the layer below the horizontal axis represents
motions that go over the top once clockwise before settling down.

Some motions rapidly settle down to this oscillation, others go through a complicated
path before doing so, and yet others do not approach the periodic motion in this amount
of time. These appear to be rare, and one might guess that given more time, almost all
solutions do settle down. (One that does not is shown in [13, p. 228]; the existence of
uncountably many others is proved in Theorem 3.)

An obvious question is: what stable oscillation—what attracting periodic solution—can
a motion approach? This seems impossible to understand without another program.

4. The scanning picture

We now look at the whole family of initial conditions: position represented by the horizontal
axis, velocity by the vertical axis. We ask the computer to color initial conditions according
to the stable oscillation the corresponding solution approaches (if any). This set of initial
conditions is called the basin of the corresponding sink ; it is an open subset of R2.
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This is best done as follows. First, find the initial values S0(0), S′0(0) for one of the
attracting periodic solutions, say the one with −2π < S0(0) < 0. We call the motion
immediately above it S1, and the one above that S2; we have Sk(t) = S0(t) + 2kπ. Next,
find a number r > 0 such that if

|x(0)− S0(0)|2 + |x′(0)− S′0(0)|2 < r2,

then the motion x(t) is definitely attracted to S0. That is, any set of initial values inside
the circle of radius r and centered at (S0(0), S′0(0)), gets arbitrarily close to the solution
S0 (in fact, does so exponentially fast). We rely on computer calculations to determine
this, but it would not be hard to provide a rigorous mathematical justification. We are
not particularly interested in the points inside that circle; we are just establishing how we
know that a motion is attracted to a particular attracting solution: it is attracted to it if
it ever enters the circle of radius r around the solution. In our case, we have

(S0(0), S′0(0)) ≈ (−2.0463, .3927) and we can take r = 0.1.

Now we solve the differential equation starting at every point of some grid (in our case,
a 600× 400 grid—240,000 points!), and sample the solution at times 2π, 4π, . . . : this is a
substantial computation, taking about two hours even on a fairly fast Mac (200 MHz).

If for some such motion w(t) and some integer n > 0 we have

|w(2nπ)− Sk(0)|2 + |w′(2nπ)− S′k(0)|2| < r2,

we know that this motion is attracted to Sk. Color the point (w(0), w′(0)) in the kth color
and solve the differential equation for the next point. If after some number of samplings
(in our case 30: we integrated solutions for time 60π ≈ 185) the solution never falls within
r of an attracting solution, leave the initial point white. We obtain Figures 4 and 5.
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Figure 4. The different colors (hard to appreciate in black and white) represent different basins:

which initial conditions are attracted to which sinks. Points colored white may be initial conditions

that are never attracted to a sink, but more likely they are attracted to sinks that are off the

picture. They could also be attracted to sinks in the picture, but not during the time allowed.
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Figure 5. In black and white, the four basins of Figure 4 are hard to distinguish. This figure

represents just one basin.

5. Lakes of Wada

The colored sets Bk (called, for obvious reasons, the basins of the corresponding attracting
motions Sk) are immensely complicated.

We show that they form infinitely many Lakes of Wada. Wada was a Japanese mathe-
matician who at the beginning of the 20th century constructed an example of three disjoint,
connected open subsets of the unit disc D ⊂ R2 such that every point in the boundary of
one is in the boundary of the other two [15]. This amazed the mathematical community at
the time: if you try to draw three (connected, open) lakes in an island, you would probably
soon convince yourself that all three can touch at only two points. Actually, it appears
that Brouwer discovered this phenomenon earlier [4].

Let me sketch the construction as outlined in [15], illustrating the dangers of philan-
thropy; this is illustrated by Figure 6.

Suppose D is an island cursed with three philanthropists, one of whom wants to bring
water to every inhabitant, one tea, and one coffee. At the beginning each has a pond of
his own beverage.

First, the purveyor of water digs a system of canals emanating from his pond, and bring-
ing water within 100 meters of every inhabitant, never actually touching the surrounding
sea or the other ponds, and forming no loops.

Next, the purveyor of coffee builds a system of canals emanating from his pond, bringing
coffee to within 10 meters of every inhabitant, again forming no loops. Since the water
canals make no loops, they don’t cut off any inhabitants from the coffee pond, so this is
possible.
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Figure 6. Digging the lakes of Wada

Now the purveyor of tea builds his system of canals, bringing tea to within 1 meter
of every inhabitant. Next the water purveyor goes back to work, extending his canals
(necessarily building narrower ones) to bring water within 10 cm of each inhabitant. And
so forth. At the end of this process, the poor inhabitants no longer have any dry land to
stand on, but they have water, tea, and coffee as close as they want. What remains of the
dry land is in the boundary of all three basins.

Real philanthropists don’t seem to behave this way, fortunately. Highway designers, on
the other hand . . .

Theorem 1 shows that our pendulum is creating lakes of Wada.

inTheorem 1. The basins Bk have the Wada property: every point in the boundary of
one basin is also in the boundary of all the others.

This is not quite as strong as the preceding statement about philanthropists, where
every bit of dry land was in the boundary of all the basins. For the pendulum, all we can
prove is that if a point is in the boundary of one basin, it’s in the boundary of the others.
Presumably there is no other dry land, but we don’t know how to prove it. True lakes of
Wada have been proven to exist in another setting of dynamical systems [7].
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The first step in understanding why Theorem 1 is true is to get a grasp on the boundaries
of the basins. Most of the material in the next section was developed by Kennedy, Nusse
and Yorke; see [9] and [12]. They saw that the basin of a sink often has saddle points on
its boundary, and that the stable separatrices of these saddle points make up the accessible
boundary of the basin. We will first define these words.

6. Iteration, sinks, saddles, separatrices

Rather than thinking of the differential equation in R3, I find it much easier to think of
the period mapping (or Poincaré mapping) in the plane

P : R2 → R2 given by P :
[
x(0)
x′(0)

]
7→
[
x(2π)
x′(2π)

]
.

This enables me to ignore what motions do between the samples.
There is no real loss if we are interested in long-term behavior: iterating m times the

mapping P is equivalent to solving the differential equation for time 2mπ, sampling the
solutions every 2π. But the dynamical objects are now subsets of the plane rather than of
space: most people visualize objects in the plane much better than in space. In our case,
the planar objects are quite complicated enough.

Seen this way, each point sk = (Sk(0), S′k(0)) is an attracting fixed point of P , also
called a sink : P (sk) = sk and if a point p is close to sk (within r of it, for instance), its
orbit under P approaches sk. The basin Bk is exactly the set of points p such that the
sequence p, P (p), P 2(p), . . . approaches sk.

Sinks can also be periodic of period m > 1. Such sinks are points p such that Pm(p) = p,
and such that if a point p1 is sufficiently close to p, the sequence, p1, P

m(p1), P 2m(p1), . . .
tends to p. That is, the solution of the differential equation with (x(0), x′(0)) = p is an
attracting periodic solution of period 2mπ. Our mapping P appears not to have any such
points (for these values of the parameters), although proving that it has none may well
be an unsolvable problem. But there are infinitely many periodic saddles, as is proved by
Theorem 3. And there are infinitely many more whose existence is not guaranteed by that
theorem.

Like a sink, a saddle point for P corresponds to a periodic solution of the original
differential equation, but while sinks are associated with stable equilibria, saddles are
associated with unstable equilibria. A periodic solution (x(t), x′(t)) of the differential
equation gives a saddle (x(0), x′(0)) of the period mapping P if there is a surface made
up of solutions of the differential equation that tend to the attracting periodic solution as
time tends to +∞, and another surface of solutions that tend to the attracting periodic
solution as t→ −∞, i.e., as one travels backwards in time.

An example of a saddle point is the upwards (unstable) equilibrium for an unforced
damped pendulum. Almost all solutions are captured by a stable equilibrium. But excep-
tional solutions exist that take an infinite amount of time to approach the vertical, and
other solutions take an infinite amount to fall away from the vertical: these solutions make
up two surfaces that intersect along the constant solution corresponding to the unstable
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equilibrium. The surface of solutions that tend to the vertical in forward time is the sta-
ble separatrix, while the surface of solutions tending to the vertical in backwards time is
the unstable separatrix. The intersection of these surfaces with a Poincaré plane (i.e., the
plane t = 0) forms two curves, also referred to as separatrices. Think of the separatrices as
watersheds: for our unforced pendulum, they separate the initial conditions that go over
the top one more time from those that don’t make it.

Mappings R2 → R2 (which might be the period mapping of a time-periodic differential
equation in R2, as in our case) usually also have sources: fixed or periodic points that
repel all nearby orbits. The period mapping P for our pendulum has no sources because
P contracts areas by e−2π/10 ≈ 0.53, due to the damping [8, vol. 2, chap. 8]. No mapping
can simultaneously contract areas and map some region to a strictly larger region, as would
have to happen near a source. Of course, P−1 has sources wherever P has sinks.

7. Saddles in the boundary of Bk
The computer finds four saddles pk,1, . . . , pk,4 in the boundary of each basin. These saddles
form two cycles of period 2 (i.e., the solutions of the differential equation with initial values
at these saddles have period 4π). The boundary of the basin appears to be made of their
stable separatrices, as drawn in Figure 7. We will call these separatrices σ+(pk,i): these
are the watersheds that separate the solutions falling into the basin from those that don’t.
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Figure 7. The stable separatrices of the saddles of period 2 in the boundary of a basin provide

an outline drawing of the basin. Thus this picture is more or less the same as Figure 5, but the

stable manifolds would need to be continued for a very long time to get as much resolution as

figure 5 provides.

In fact, the preceding statement is not true: the boundaries of the basins are not just
the separatrices; they are much more complicated than that. The complication stems from
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the fact that all points of the boundary are limits of sequences, but not all such points are
limits of paths. Consider Wada’s construction: some points of the boundary of the water
are on the edge of some water stream, but most are not. For one thing, points on the
edge of a coffee stream are not on the edge of a water stream, even though they are in
the boundary of the water: there are water streams arbitrarily close, but tea streams even
closer, etc. Such points are inaccessible by water: you can reach out to them over other
streams, with an arbitrarily small motion, but you cannot reach them in a boat. Most
points of the common boundary (the separator) are not accessible from the water, coffee,
or tea.

Our basins are similar to those of the Wada example. Each includes a central “pond”
with four canals leading off from it, which dwindle to become infinitely narrow streams,
intermingled with streams belonging to other basins.

In our case, the inward pointing unstable separatrix at each of the four saddles is
attracted to the sink, as shown in Figure 8, and provides a path from the sink to the stable
separatrix of the saddle. Thus the stable separatrix is part of the accessible boundary.

inTheorem 2. The accessible boundary of Bk is exactly the union of the stable separa-
trices σ+(pk,i) , i = 1, . . . , 4.

The proof consists of looking at Figure 8.

-6.4

-3

2

3

x

y

s

p1

p4

p2

p3

3

-6.4 2

-3

c0

P-1(c1)

q

P-2(c2)
P-3(c3)

P(q)

c1

Figure 8. A basin cell; the points P−i(ci) illustrates the proof of Theorem 2.

The colored neighborhood Ck of the sink sk (called a basin cell in [12]) is bounded by
arcs of four stable separatrices σ+(pk,i) and arcs of the four unstable separatrices σ−(pk,i),
which except for endpoints are contained in the interior of the basin. Thus any accessible
boundary point q of Bk not in

⋃
i σ

+(pk,i) is necessarily outside Ck, and a path

γ : [0, 1] 7→ Bk, γ([0, 1]) ⊂ Bk
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joining q to sk intersects one of these four arcs, in points c0. Similarly, the path Pm(γ)
intersects one of these arcs in a point cm. The points zm = P−m(cm) must be on γ, and
must converge to q since for any ε > 0, the set γ([0, 1− ε]) is a compact subset of Bk. Thus
Pm(γ([0, 1− ε])) is inside Ck (or any neighborhood of sk for m sufficiently large).

But the cm lie in four compact arcs of
⋃
i σ
−(pk,i), hence P−m(cm) is very close to

one of the saddles for m large. So q is one of the saddles pk,i, and hence is on its stable
separatrix.

This ends the proof of Theorem 2 (or at least a fairly convincing argument; it is not a
rigorous proof, as we will discuss in Sections 11 and 13); now to justify Theorem 1.

First, it is enough to show that each accessible point of ∂B0 (the boundary of B0) can
be approached by every other basin. Indeed, every point of ∂B0 can be approached by
accessible points, so if we can show that each accessible point of ∂B0 is in the boundary
of every other basin, then every point of ∂B0 is in the boundary of every other basin.

Second, it is enough to know that the four outward pointing branches of the unstable
separatrices for the four accessible saddles in ∂B0 enter every basin. Indeed, if the four
unstable separatrices σ−(p0,i), for i = 1, 2, 3, 4, enter Bn, then the inverse images of Bn
accumulate to p0,i, hence to the entire stable separatrix σ+(p0,i). This shows a little more:
if all four σ−(p0,i) enter Bn, then no curve can enter B0 without crossing a stream of Bn,
i.e., entering Bn.

Third, rather than show that the outward-pointing part of each σ−(p0,i) enters all the
basins Bn, for n any integer, it is enough to show that it enters the two neighboring basins
B1 and B−1. We can prove this by induction. Figure 9 shows that the four separatrices
σ−(p0,i), i = 1, 2, 3, 4 enter the basins B−1 and B1.

Now suppose they enter Bk for some k > 1. But they cannot enter Bk without entering
Bk+1, because the σ−k,i enter Bk+1, so that their inverse images give streams of Bk+1, which
they must ford to enter Bk.
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Figure 9. All four of the unstable separatrices from the points p0,i enter both B1 and B−1.
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8. Solutions not attracted to the sinks

In this section we use techniques mainly due to Smale [14] to show that the differential

equation for our pendulum has trajectories that carry out any specified sequence of gyra-

tions. During one time interval Ik = [2kπ, 2(k + 1)π) a solution (x(t), x′(t)) may satisfy

x(t) = 0(mod 2π) exactly

[-1] once with x′ < 0,
[0] never,
[1] once with x′ > 0,

[NA] none of the above.

These events correspond to the pendulum crossing the downward position exactly once

clockwise, not crossing it, crossing it once counterclockwise, or doing something else. In

particular, the attracting solutions belong to the “none of the above” category, because

they cross the downward position twice during each period. So, eventually, do all solutions

that are attracted to them. Thus Theorem 3 describes solutions entirely contained in the

separator, which are never attracted to one of the sinks.

inTheorem 3. Given any bi-infinite sequence of events . . . E−1, E0, E1, . . . with Ek ∈
{[−1], [0], [1]} (but not [NA]), there exists a solution of our differential equation that
during each time interval [2kπ, 2(k + 1)π) will “do” Ek.

Thus given any sequence of gyrations one might choose, there is a solution that does

exactly that. In particular, any sequence of Ei of period m and that sum to 0 over one

such period corresponds to a periodic cycle of period m for P . Theorem 3 is very similar

to Alekseev’s theorem, and is proved the same way: by exhibiting a Smale horseshoe. In

Alekseev’s case this requires a delicate perturbation argument; we show how the computer

can make such a result transparent.

We have found a sequence of fixed sinks sk that correspond to the downward equilibrium

of the unforced pendulum. There is also a sequence of fixed saddles corresponding to a

periodic solution of the original differential equation of period 2π near the unstable upward

equilibrium. If you draw a sequence of quadrilaterals Qk roughly aligned with the stable

and unstable separatrices of these fixed saddles, as in Figure 10, you expect the image of

such a quadrilateral to be compressed in the stable direction and stretched in the unstable

direction, becoming long and filiform.
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Figure 10. The quadrilaterals Q−1, Q0, Q1, together with the forward and backwards images

of Q0.

Below we will describe the set of points

Qk(E0, E1, . . . , EN ) = {p|Pn(p) ∈ Qk+E0+···+En−1 for 0 ≤ n ≤ N}.
Let A0, B0, C0, D0 denote the corners of Q0, as shown in Figure 10. The set P (Q0) is

the curvilinear quadrilateral Q′0, shaded in Figure 10, with vertices A′0, B
′
0, C

′
0, D

′
0. The

key property of the image is that it crosses the quadrilaterals Q1 and Q−1, as well as itself,
in each case going from top to bottom (or bottom to top), with the top A0B0 and bottom
C0D0 mapping outside these quadrilaterals.

This implies that each of Q0([−1]), Q0([0]), Q0([1]) forms a full-width subrectangle of
Q0. Figure 11 shows the forward and backwards images of Q0, Q−1 and Q1, and a blow-
up of showing how these intersect Q0. Indeed the backwards images (light shading) form
full-width subrectangles. Of course, Q1 and Q−1 also contain such subrectangles Q1(E0),
etc. The inverse image P−1(QE0(E1)) is then again a (thinner) full-width subrectangle
Q0(E0, E1).

Continuing this way, we see that for any finite sequence (E0, E1, . . . , EN ), the corre-
sponding set Q0(E0, E1, . . . , EN ) is a full-width subrectangle of Q0. Finally, the assign-
ment of an infinite forward trajectory restricts the initial position to an infinite intersection
of nested full-width subrectangles of Q0; such an intersection is a connected subset of Q0

connecting one side of Q0 to the other. In fact, it is a smooth curve, but this requires
writing some inequalities.

A similar argument shows that any finite backwards trajectory restricts the final po-
sition to a full-height subrectangle of Q0, and an infinite backwards trajectory leads to
a connected subset joining A0B0 to C0D0 (again in fact a smooth curve). If X,Y ⊂ Q0

are connected subsets, with X joining D0A0 to B0C0 and Y joining A0B0 to C0D0, then
X ∩ Y 6= 0. Thus there is a point realizing any prescribed symbolic trajectory.
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Figure 11. The forward images of Q−1, Q0, Q1, and their intersections with Q0. At right a

blow-up of Q0.

Finally, I claim that the points of Q0([−1]), Q0([0]), Q0([1]) realize the events [−1], [0],
and [1] respectively. Figure 12 shows the images of Q0(+1) and Q0(−1) at times
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Figure 12. How the quadrilaterals move during one period.

The first set certainly seems to cut the line x = 2π exactly once with y > 0; the second
set seems to cut the line x = 0 once with y < 0.



August 3,1999 15

9. Controlling the pendulum

Imagine that the pendulum is massive, and is being used as a flywheel to control some very
delicate operation, like polishing the mirror of a telescope. An array of lasers is constantly
monitoring the operation, deciding on the fly whether the pendulum should turn clockwise,
counterclockwise, or wait until the mirror has been repositioned.

The previous section showed that there are motions of the pendulum performing any
specified sequence of gyrations, in particular the one required a posteriori by the polisher.
But on second thought this seems useless: these motions are extremely unstable, and the
slightest error in the initial condition destroys them, as well as any perturbation of the
differential equation itself. But if the machine is to perform any work, this inevitably
perturbs the differential equation, in a way that is essentially unpredictable (you cannot
predict how much work one swipe of the polisher will accomplish), and in any case we
don’t know ahead of time the sequence of swipes and stops the task will require.

On third thought, we see that the instability of the specified motions is exactly what
should make them useful! Suppose that our array of sensors controls the current f(t) that
is forcing the pendulum, changing it from cos(t) to something like

(1 + a(t)) cos(t) (amplitude modulation) or

cos((1 + a(t))t) (frequency modulation),

where a(t) represents the fine-tuning necessary to achieve the desired sequence of gyrations.
The point is that we do not have to figure out what sequence we want ahead of time: the
sensors can react to the polishing of the telescope on the fly, computing the adjustment
a(t) that is necessary. It is because of the instability that you can keep a(t) small and still
realize any sequence of gyrations: you don’t need to grind to a halt, compute, and start
up again; the corrections can be done smoothly. A useful analogy is skiing: a beginning
skier plants his skis well apart, seeking stability, which is fine until he tries to turn and
discovers he can’t. An expert skier, with skis parallel and touching, is highly unstable, and
a slight wiggle of the hips allows him to negotiate a mogul. Of course he doesn’t plot his
entire path at the top of the mountain; he calculates the slight adjustments a(t) as they
are needed.

inTheorem 4. For any sequence of events E0, E1, . . . and any sufficiently small dis-
turbance b(t) of the forcing term cos t, there exists a function a(t) of the same order
of magnitude as b(t) and an initial condition x(0), x′(0) such that the solution of the
differential equation

x′′ + 0.1x′(t) + sin(x) + b(t) =
(
1 + a(t)

)
cos t

with those initial conditions realizes the specified sequence of events.

This result is fairly obvious: choose a(t) as the pendulum approaches the upwards
position so as to speed it up or slow it down as required. The problem is how to compute
the a(t), in terms of available data. Clearly a(t) should depend only on the values of b up
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to time t− 2π; it should not depend on the specified sequence of events very far ahead, as
this is unknown. How small can a(t) be made? How far ahead in the required sequence of
events does it need to look? How sensitive is it to small errors in the sensors? . . .

10. Control and celestial mechanics

To return to celestial mechanics for a moment, it is interesting to note that when sending
a spaceship to visit the outer solar system, NASA uses the instabilities of the differential
equations describing gravity in much the same way as we have used the instabilities of the
pendulum. It is well beyond present-day engineering to send a spaceship out of the solar
system by simply using its fuel to accelerate it. Instead, it is allowed to “fall” into the sun,
with an orbit that passes close to Venus. It then loops around Venus; we can imagine that
it is the “satellite” in the three body system consisting of itself, Venus, and the sun.

This system is similar to Alekseev’s (somewhat more complicated: a Poincaré section
would need to be 4-dimensional rather than 2), and one can prescribe an orbit so that the
space ship steals a tiny amount of potential energy from Venus, speeding up enormously in
the process, and ends up in a very unstable state where a small push by guidance rockets
can put it on the path to Jupiter.

This scenario is then repeated near Jupiter, Saturn, and Uranus, with the spaceship
each time gaining momentum, and using small pushes to head itself in the direction of the
next destination. Thus the chaos of the solar system is essential to its exploration.

11. What is proved?

To what extent does this paper prove anything? As written, no statement is proved
anywhere: for the punchline we just looked at a computer picture. How do we know that
these pictures are right? I will not address the possibility that the programs have essential
bugs and are computing something other than what I think, or the esoteric possibility that
the computer arithmetic is wrong. But even if the computer is computing exactly what
I think, that is still only an approximation to solutions of the differential equations; we
need to quantify the quality of the approximation. The contribution of round-off error also
should be addressed.

Actually, many of the results are not hard to prove rigorously, namely all those where
we have to show that after time 2π, solutions are within some fairly large ε of the value
suggested by the computer drawings.

Good estimates of long-term errors of numerical approximations to solutions of differen-
tial equations are notoriously hard to come by, but that is not really a problem here. First,
we do not need good estimates (solutions only need to be accurate to about 0.1); second,
the time considered is not long (2π); and most important, the differential equation has
a small Lipschitz constant (

√
2.001 < 1.42). Errors in solutions to differential equations

grow at most exponentially, at a rate ekt, where t is time (in our case, 2π) and k is the
Lipschitz constant; with k < 1.42, errors grow at a fairly small interest rate, and can be
controlled for a short time.
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Using these numbers, a straightforward computation using the fundamental inequality
([8, Chapters 4 and 6]) shows that if the initial velocity satisfies |x′(0)| < 3, then Euler’s
method with step-length h = 0.000002 gives results accurate to 0.1 after time 2π. Moreover,
the same inquality shows that round-off error contributes a much smaller error yet. This is
not a good way to do such numerics; better numerical methods give much better estimates
[5]. For instance, formula (14) of [2] can be used to show that the fourth order Runge-Kutta
method with step 0.005 has more than the needed precision.

A word of caution, though. The elementary bound above says that errors of all types
are multiplied by at most e2π1.42 ≈ 7 500 over one time period. It is not too difficult
to improve this to e2π1.1 ≈ 1 000, and one could improve it further. But one could not
improve it very much further.

Consider for example the completely unavoidable error caused by the computer’s in-
ability to handle numbers with infinite precision. If it handles numbers to 16 significant
digits, you may think you are starting at a saddle point, but your initial error (the distance
between the saddle point and where you really are) may be as great as 10−16. The largest
eigenvalue λ of the linearization of P at the fixed saddles in the Qk is about 321 (according
to the computer). As long as you are in the region where P is approximately its lineariza-
tion at this saddle, errors of all types are expanded by a factor of λ over one time period,
and hence λm over m time periods. So after m iterations the error will have mushroomed
to 10−16(321m): for m = 7 the initial minute error will have grown to 35. But already
for an error of 1, you will have been booted out of the region where the linearization is a
reasonable approximation to reality.

Thus no numerical method can guarantee even one digit of accuracy after six time
periods, if we are computing with 16 significant digits. In fact, the reality is much worse
than that, and I wouldn’t trust anything after four time periods without some good reason.

12. A posteriori bounds
Good reasons to trust solutions are available: I advocate extrapolation, as described in
[8, Chapter 3]. At the moment, this only works for fixed step-length, but for a Poincaré
mapping of a differential equation, fixed step-length is probably best anyway. For other
possible methods, consult [10].

Denote by uh(t) the numerical approximation to the solution of some differential equa-
tion given by the standard fourth order Runge-Kutta method, with uh(0) = a. Then the
theory asserts that for each fixed t the approximation uh(t) converges to the value of the
solution u(t), and that we have an asymptotic development

uh(t) = u(t) + Ch4 + o(h4).

The exponent 4 is a feature of this approximation procedure; other procedures have dif-
ferent exponents.

If for some h we know uh(t), uh/2(t), and uh/4(t), and we assume that we have an asym-
totic development of the form uh(t) = u(t) + Chk + o(hk) for some k, we can extrapolate
the values of k and of C from the values of the approximate solutions:

k =
1

log 2
log
∣∣∣∣ uh(t)− uh/2(t)
uh/2(t)− uh/4(t)

∣∣∣∣ and C =
2k

2k − 1
uh(t)− uh/2(t)

hk
.
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Now suppose we calculate uh/2m(t) for a range of values of m, focusing on the expression
for k above. The theory says that as m increases, the value of k should approach 4, but
that doesn’t take round-off error into account; typically the value of k approaches 4 as m
increases, then veer away from 4 as round-off error takes over. If there is a range of values
of m where k is close to 4, the approximation is happening the way the theory predicts,
and we can probably trust the corresponding estimate of the error. The following data
illustrates this for our differential equation, solved for 0 ≤ t ≤ 16π, i.e., for 8 periods.
We start with the two initial positions (7.15859, 0.14097) and (7.16859, 0.14097). The
extrapolations we find are

first solution second solution
steps order error order error

6
12 22.45 86.22
24 3.07 2.67 1.05 41.48
48 −1.79 9.31 2.61 6.77
96 3.26 0.96 −0.15 6.84

192 −0.44 1.31 −1.09 14.64
384 −2.01 5.27 3.02 1.80
768 −0.06 5.48 4.96 0.057

1536 5.13 0.16 4.19 0.003

Thus, the first approximation never becomes reliable; the order is never close to 4. In
particular, there is no reason to think that the quantity in the “error” column is actually
an estimate of the error. But the second appears to be converging nicely, with the order
approaching 4, and probably the error estimate of 0.003 is reliable. Thus although any
estimate we make a priori for a bound for the error is bound to be wildly pessimistic, after
the computation we can make a good guess as to how reliable it is.

13. Questions and observations

(1) Are there any periodic sinks other than the attracting fixed points we found? I
have no idea how to attack this problem. For one thing, I don’t trust computer
drawings on this point: in many instances I eventually found sinks whose basins were
too small to be visible on computer drawings unless you knew where to look. For
another, the answer might depend in the most delicate way on the parameters: there
definitely are other attracting fixed points when the forcing term is 1.22 cos t instead
of cos t; for example, there is a sink of period 3, where solutions go from the point
with coordinates x = −1.29785, y = 1.0025 to the point x = −1.3349, y = −0.21286,
to the point x = −3.004469, y = 0.17586, and then back to the first point . . . . In
fact, with those parameters there are at least two more sinks of period 3, in addition
to all the translates of the three sinks by 2π.

In fact, this problem may be unsolvable. John Milnor’s candidate for the simplest
unsolvable problem of mathematics is the question: “Does the polynomial x2 − 1.5
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have an attracting cycle?” Of course, if it does, one can find it with a finite amount
of work. But if it doesn’t, there may be no proof of this fact.

(2) Is the complement of all the basins Bk of measure 0? This would mean that with
probability 1 every initial point is attracted to a sink. I think this is the case,
but have no solid grounds for this belief. Even the computer isn’t very definite,
and besides, this is one point where numerical error might really be important:
the perturbations of the period mapping due to errors of integration and round-off
might affect the probability of being attracted to a sink.
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