
".

122aug95

M i SSACHUSETTS INSTITUTE OF TECHNOLOGY
PHYSICS DEPARTMENT

8.13 1995/1996
Junior Laboratory: Short Experiment #2

I THE CAVENDISH EXPERIMENT
~EASUREMENT OF THE GRAVITATIONAL CONSTANT

PURPOSt .

The pose of this experiment is to measure G, the gravitational constant, by the method of

Cavendish.

PREPAR TORY PROBLEMS

1. Derive fr m first priciples the differential equation for damped, simple, harmonic motion. Derive the

solution.

2. Compute e exact moment of inertia of two identical solid spheres of mass m and diameter d connected

by a rod of ~ss,u and length I about an axis perpendicular to the rod.

3. Suppose ~e pendulum is at rest with the lead balls in rotated clockwise. Predict the curve of angular

displaceme~ versus time from the moment when the balls are rotated counterclockwise.

INTRO TION
Accor ng to Newton, two spherically symmetric bodies, A and B, with inertial masses,MA and MB'

attract one other with a force of magnitude GM AMwr 2 where r is the separation between the centers and

G is the uni ersal constant of gravity. The determination of G is obviously of fundamental importance in

physics and stronomy. But gravity is the weakest of the forces, and the measurement of the gravity force

between tw bodies of measurable mass requires a delicate approach, with meticulous care to reduce

perturbing i*fluences such as air currents and electromagnetic forces. Henry Cavendish did it in 1798, a

century afte Newton's discovery of the law of universal gravitation. He used a torsion balance invented

by one Rev. John Michell and, independently, by Charles Coulomb. Michell died shortly after completing

his device, ever having had the opportunity to apply it to the measurement of small forces for which he

had devised it. It was passed on to Professor John Wollaston of Cambridge University and eventually to

Cavendish ho improved it and used it in a painstaking series of experiments to measure the mean density

of the earth om which the value of G is readily derived. For the earth's mean density he found the value

5.48 g cm3 ith a stated uncertainty of 1 part in 14, which implies a value forG of (6.70:t0.48)xl0-8

dynes cm2 2. The current best value is (6.67259:tO.00085)xl0-8 dynes cm2 g-2. The large uncertainty,

128 ppm, c pared to that of any of the other fundamental constants such as the elementary charge (0.30



/'
222aug95

ppm) and P~ck's constant (0.60 ppm) reflects the fact that even today it is difficult to achieve an accurate

measureme*t ofG.

Our co on experience with gravity is the weight of things. If A is an apple and E is the earth, then

the weight f A is W AE=GM AMEiRE2=M Ag, where RE is the radius of the earth and g is the acceleration of

gravity. Th latter two quantities can be measured easily to high accuracy (how?). Thus if you could

measure ME then you could determine G, or vica versa. It is clearly impossible to measure ME as you do

ordinary thi,gs, i.e. by direct comparison with a standard weight on a balance.

The O~ ecourse is to replace the earth with a body B that can be measured directly, and to measure

the force W it exerts on the test body A. Suppose the radius of B isRB and its density is PH so that

MB=(47t/3) B3PH. Then if r =RB' we find W AB=GMA(47t/3)RBPH. To get an idea of the practical

difficulties 4at must be overcome in the measurement we can estimate the ratio of the force between a lead

ball and a s all test body at its surface to the force of earths gravity on the test body. The radius of the

earth is 6.3 lxl08 cm. We can use Cavendish's value for the earth's mean density. If the radius of the

lead ball is cm and its density is 11.3 g cnr3, then the ratio of forces is W AB/W AE=WPB) (RB/RE)= 10-

8. Thus he ad to measure a force on a test body that was about one hundred-millionth of its weight!

The tor ion balance in the Junior Lab is shown schematically in Figure 1. It consists of a horizontal

brass beam n the ends of which are two brass balls each of of mass m separated by a distance I between

their cente as shown in detail in Figure 2. The beam is suspended from its balance point by a fine

tungsten w' which allows the beam to rotate about a vertical axis, subject to a restoring torque that is

proportion to the angular displacement, e, of the beam from its equilibrium orientation. The idea of the

experiment s to measure the angular twist de of the beam when two lead balls, each ofmassM, are

shifted fro the positions labeled 1 to the positions labeled 2. If the distance between the center of each

brass ball to the center of the nearest lead ball in both configuration 1 and 2 is calledb, then the angular

twist is

2GMm/

b2K
118= (1)

1 ~ = -(TdI)8 -fi-{it, (2)

dt2

where K is 4te torsion constant. To measure this latter quantity we turn to the equation of motion of the

torsion pen~lum which is

1.,./211 dO
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Figur~ 1. Schematic diagram of the torsion pendulum used in the Cavendish

meas~ement ofG.
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Figur~ 2. Details of the torsion balance beam, showing the two small brass balls mounted on the

ends of a br*ss rod and suspended at the middle by a tungsten wire inside 1/2" pipe.

where I is ~ moment of inertia of the pendulum, and /3 is the coefficient of damping. With the initial

condition B(t =0)=0 the solution to equation (2) is

(3)

where
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f1) = J-~-=P;~ . (4)

Equation (31 describes a damped harmonic motion about an equilibrium orientation with a periodT=27t/0J

and a chara~eristic damping time of 2/fJ. In a typical setup this damping time is more than twice the period

so that to a $ood approximation 1('=/ (27t/1)2. If the beam is light compared to the brass balls, the moment

of inertia is ~iven to fair accuracy by the formula/=m/2/2. Finally, one can determine the angular

displaceme* caused by shifting the lead balls by measuring the angular deflection

Lll/> =2LlB of laser beam reflected from a mirror mounted on the beam of the torsion pendulum.

Substituting these quantities into equation (1) and rearranging we obtain an expression forG in terms of

measurable uantities which is

2 2
G= ~(~ ) Lll/>8M T (5)

Note that th result is independent of the value of m.

The J 'or Lab pendulum is suspended by a fragile 1 mil tungsten wire. The wire and beam are

contained w thin copper plumbing to shield them from air currents and electric forces from stray static

charges. E n the window for the laser beam is covered with fine wire mesh and glass. To avoid having

to take the vice apart at the risk of breaking the tungsten wire we provide you with the value of the

distance bet een the brass balls, namely 1= (11.75:tO.l0) cm. The other quantities are left for you to

measure.

EXPERIl\'1ENT
Set up e laser so that its beam reflects from the mirror on the pendulum beam onto a meter stick

mounted far enough away to facilitate an accurate measure of the angular displacement caused by shifting

the lead ball. Ascertain whether the torsion pendulum is swinging freely about an equilibrium orientation

near the cen r of its free range. If it isn't, make very gentle and cautious adjustment by twisting the fitting

on the top 0 the pipe. (Take care not to snap the tungsten wire which is attached to a capstan in the top

fitting. Th~ apstan can be turned to raise or lower the pendulum. If it is raised too much, the wire will

snap, which requires a long and tedious repair.) The pendulum can be gently maneuvered from the

outsid~ by e magnetic force exerted on the (paramagnetic)~ balls by a magnet. Center the rotating

platform so that both lead balls touch, or come as close as possible to the brass pipes so they are at a well-

determined ~osition relative to the brass balls inside.

When~ ou get the pendulum swinging freely with a very small amplitude about a central equilibrium

position, s recording and nlotting as ~ou go the position of the reflected beam on the scale at regular

intervals so at you have a record of the damped harmonic motion from which you can determine the
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period and amping time of the pendulum. Mter the amplitude has died to a small value or zero, shift the

lead balls to the other position and begin regular periodic reading and plotting of the laser spot position on

the scale. back and forth several times in this way to improve the statistical accuracy of your

measurem

Before hutting down check that you have measured all the relevant quantities.

ANAL YS,S
Determfne the period T and characteristic damping time T(the time for the amplitude to decrease by

lie). Comp+te the angular deflection from the displacement between the two equilibrium positions* of the

laser spot o~ the scale. Compute the value ofG from equation (5) with these and the other measured and

given quan~es. Estimate the random and systematic errors.

Using ~ur value of G and the well known value of the acceleration of gravity at the earth's surface

(which you ~an readily measure to high accuracy in a simple experiment), compute the mass of the earth.

Using the Pt1riod of the earth's orbit and the value of the astronomical unit compute the mass of the sun.

And finally, I given the period of the sun's orbit around the center of the galaxy (-2xI0! yr) and its distance

from the ga9tic center (-3xl04lt yr), estimate the mass of the galaxy.

Refinement~
Considir the following corrections to the simple analysis above:

(1) the effect of damping on the pendulum period.

(2) the effect of the attractive forces between the lead balls and

a) the o~posite brass balls (weight=?60 g),

b) the ltass beam (weight=1.625 g).

(3) error in ~e approximate calculation of the moment of inertia of the brass beam and ball.

(4) other thi*gs that come to mind.

*The equili~um position of a lightly damped hamlonic oscillator with three successive extreme

displaceme4ts xl' x2, and x3 is, to a very good approximation, XO=[(XI+X3)/2+X2]/2.

SUGGES11ED THEORETICAL TOPICS FOR PRESENTATION AT THE ORAL REVIE

1. Correctio~s to the simple formula (equation 5).

2. Damped ~armonic motion. !
!

3. Limitatio~s on the accurac~ of Newton's Law of Gravity.


