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Refraction by the prism in a Pulfrich
refractometer. //// // / // // // K
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two must be interchanged in Eq. (2a). The beam is so oriented that some of its rays
Just graze the surface (Fig. 2D) so that one observes in the transmitted light a sharp
boundary between light and dark. Measurement of the angle at which this boundary
occurs allows one to compute the value of ¢, and hence of n. There are important
precautions that must be observed if the results are to be at all accurate.*

FIGURE 2E

Refraction by a plane-parallel plate.
2.3 PLANE-PARALLEL PLATE

When a single ray traverses a glass plate with plane surfaces that are parallel to each

other, it emerges parallel to its original direction but with a lateral displacement d which upon substitution in Eq. (2d), gives
which increases with the angle of incidence ¢. Using the notation shown in Fig. 2E, ;
we may apply the law of refraction and some simple trigonometry to find the dis- d=1 (sin é — cos ¢ 2 n @
placement 4. Starting with the right triangle 4BE, we can write 3 cos ¢' n'
d=lsin@~¢)  (@b) d = tsin ¢ (1 - 1@) 20
i n’ cos ¢’

which, by the trigonometric relation for the sine of the difference between two angles,

can be written From 0° up to appreciably large angles, d is nearly proportional to ¢, for as the

. ] ) o ratio of the cosines becomes appreciably less than 1, causing the right-hand factor to
. d = I(sin ¢ cos ¢’ — sin ¢’ cos ¢) (20 increase, the sine factor drops below the angle itself in almost the same proportion.*

From the right triangle ABC we can write

e A ¥ e

/= t
cos ¢’ ) 24 REFRACTION BY A PRISM
which, substituted in Eq. (2c), gives ¢ .
. . 3 In a prism the two surfaces are inclined at some angle a so that the deviation produced
d=1t (sm ¢ cos’ ¢ sing cols ¢) @d) ;, by the i.irst' surfape is not annulled by the second but is further increased. The
| cos ¢ cos ¢ 3 chroma‘tlc dlspf:rsmn (Sec. l.l(?) is also increased, and this is usually the main function
From SnelPs law [Eq. (Im)] we obtain ; Qf a prism. First let us consider, however,. th.e geometrical optics of the prism for
; light of a single color, i.e., for monochromatic light such as is obtained from a sodium
sin ¢’ = ﬁl sin ¢ are.
n * This principle is made use of in most of the home moving-picture film-editor devices
. in common use today. Instead of starting and stopping intermittently, as it does in
. F(l)‘r at.valuabl; deécrgli%n of ';h;: z;l;dpoth.er T;lﬁoslsl of ;lt:;en'nin,i‘ng u;c?;:e; &f ‘ :il:;::(:ll;?;ilg‘:’tr:. PI;O;:;T: ;:::12132:1 :;:;Sszz::;)i,afgs ;:ll:itri:cllu:’::lgl throug(lll b
e s oo o il o Ois” 3. 35364,
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FIGURE 2F
The geometry associated with refraction
by a prism.

The solid ray in Fig. 2F shows the path of a ray incident on the first surface at
the angle ¢,.

Its refraction at the second surface, as well as at the first surface, obeys Snell’s
law, so that in terms of the angles shown

sing, _n _sing, @h)

sing, n sing;

The angle of deviation produced by the first surface is B = ¢, — ¢}, and that
produced by the second surface is y = ¢, — ¢5. The total angle of deviation &
between the incident and emergent rays is given by

d=f+7 (28

Since NN’ and MN' are perpendicular to the two prism faces, « is also the
angle at N'. From triangle ABN' and the exterior angle «, we obtain

o= ¢y + ¢ (2h)
Combining the above equations, we obtain

S=B+y=0 — ¢+ ¢ — ¢2 =1 + b1 — ($1 + ¢2)
or d=¢, + ¢, ~u (2i)

2.5 MINIMUM DEVIATION

When the total angle of deviation 8 for any given prism is calculated by the use of the
above equations, it is found to vary considerably with the angle of incidence. The
angles thus calculated are in exact agreement with the experimental measurements.
If during the time a ray of light is refracted by a prism the prism is rotated con-
tinuously in one direction about an axis (4 in Fig. 2F) parallel to the refracting edge,
the angle of deviation & will be observed to decrease, reach a minimum, and then
increase again, as shown in Fig. 2G.

The smallest deviation angle, called the angle of minimum deviation J,,, occurs
at that particular angle of incidence where the refracted ray inside the prism makes
equal angles with the two prism faces (see Fig. 2H). In this special case

¢r=¢, Pr=02 =1 ey
To prove these angles equal, assume ¢, does not equal ¢, when minimum
deviation occurs. By the principle of the reversibility of light rays (see Sec. 1.8),

plioverso)
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FIGURE 2G

A gre'lp.h of the deviation produced by a 60° glass prism of index n’ = 1.50.
At minimum deviation é,, = 37.2°, ¢, = 48.6°, and ¢, = 30.0°.

there would be two different angles of incidence capable of giving minimum deviation.

Since experimentally we find only one, there must be symmetry and the above equalities
must hold.

I'n t.he tyiangle ABC in Fig. 2H the exterior angle §,, equals the sum of the
opposite interior angles  + y. Similarly, for the triangle 4BN’, the exterior angle «
equals the sum ¢; + ¢5. Consequently

«=2p, 8, =28

Solving these three equations for ¢} and ¢, gives
¢\ = 1«

Since by Snell’s law n'/n = (sin ¢,)/(sin ¢"),

b=¢1+8

$1 = a + 5,)

sin 3(a + 6,,)
sin 3o

n
n

(k)

FIGURE 2H
The geometry of a light ray traversing a
prism at minimum deviation.
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The most accurate measurements of refractive index are made by placing the
sample in the form of a prism on the table of a spectrometer and measuring the angles
8, and a, the former for each color desired. When prisms are used in spectroscopes
and spectrographs, they are always set as nearly as possible at minimura deviation
because otherwise any slight divergence or convergence of the incident light would
cause astigmatism in the image. *

2,6 THIN PRISMS

The equations for the prism become much simpler when the refracting angle «
becomes small enough to ensure that its sine and the sine of the angle of deviation &
may be set equal to the angles themselves. Even at an angle of Q.1 gad, or 5.7°, the
difference between the angle and its sine is less than 0.2 percent.” For prisms having a
refracting angle of only a few degrees, we can therefore simplify Eq. (2k) by writing

sin 3(6,, + @) - om + @
sin 3o o

n o
n

® and 6=@0 — Da )
Thin prism in air

The subscript on J has been dropped because such prisms are always used at or near
minimum deviation, and n has been dropped because it will be assumed that the
surrounding medium is air, n = 1.

It is customary to measure the power of a prism by the deflection of the ray in
centimeters at a distance of 1 m, in which case the unit of power is called the prism
diopter (D). A prism having a power of 1 prism diopter therefore displaces the ray
on a screen 1 m away by 1 cm. In Fig. 2I(a) the deflection on the screen is x cm and
is numerically equal to the power of the prism. For small values of é it will be seen
that the power in prism diopters is essentially the angle of deviation 4 measured in
units of 0.01 rad, or 0.573°.

For the dense flint glass of Table 1A, np = 1.67050, and Eq. (2I) shows that
the refracting angle of a 1-D prism should be

057300

o= = 0.85459°
0.67050

2.7 COMBINATIONS OF THIN PRISMS

In measuring binocular accommodation, ophthalmologists make use of a com-
bination of two thin prisms of equal power which can be rotated in opposite directions
in their own plane [Fig. 2I(h)]. Such a device, known as the Risley or Herschel
prism, is equivalent to a single prism of variable power. When the prisms are parallel,
the power is twice that of either one; when they are opposed, the power is zero. To
find how the power and direction of deviation depend on the angle between the
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FIGURE 21

Thin prisms: (a) the displacement x in centimeters at a distance of 1 m gives the
power of the prism in diopters; (b) Risley prism of variable power; (c) vector
addition of prism deviations.

components, we use the fact that the deviations add vectorially. In Fig. 2I(c) it will
be seen that the resultant deviation 6 will in general be, from the law of cosines,

8 =8, + 8,7 + 26,8, cos B (2m)

where f is the angle between the two prisms. To find the angle y between the resultant
deviation and that due to prism 1 alone (or, we may say, between the “‘equivalent”
prism and prism 1) we have the relation

d,s8in B

tany = ————————
6y + 0, cos 8

@2n)
Since almost always 6, = d,, we may call the deviation by either component §,,
and the equations simplify to

3 =231 + cos ) = \/45,2 coszg = 25, cos 8 (20)
and tany = —ﬂq—‘[—f-—— = tan

so that v = (2p)

2.8 GRAPHICAL METHOD OF RAY TRACING

It is often desirable in the process of designing optical instruments to be able to trace
rays of light through the system quickly. For prism instruments the principles pre-
sented below are extremely useful. Consider first a 60° prism of index n’ = 1.50
surrounded by air of index n = 1.00. After the prism has been drawn to scale, as in
Fig. 2J, and the angle of incidence ¢, has been selected, the construction begins as in
Fig. 1G.

Line OR is drawn parallel to J4, and, with an origin at O, the two circular arcs
are drawn with radii proportional to » and »’. Line RP is drawn parallel to NN’,



3

DISPERSION

BN'S  F WTE
Frtrt a3 ENTH S /7 e =

K76, MelGhiens - Hret

The subject of dispersion concerns the speed of light in material substances and its
variation with wavelength. Since the speed is c/n, any change in refractive index n
entails a corresponding change of speed. We have seen in Sec. 1.4 that the disper-
sion of color which occurs upon refraction at a boundary between two different
substances is direct evidence of the dependence of the n’s on wavelength. In fact,
measurements of the deviations of several spectral lines by a prism furnish the most

accurate means of determining the refractive index, and hence the speed, as a function
of wavelength,

23.1 DISPERSION OF A PRISM

When a ray traverses a prism, as shown in Fig. 23A, we can measure with a spectrom-
eter the angles of emergence 6 of the various wavelengths. The rate of change,
d0/dJ, is called the angular dispersion of the prism. It can be conveniently represented
as the product of two factors, by writing

46 do dn
_= e 2
A dndi (232)
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FIGURE 23A
Refraction by a prism at minimum
deviation,

The first factor can be evaluated by geometrical considerations alone, while the second
is a characteristic property of the prism material, usually referred to simply as its
| dispersion. Before considering the latter quantity, let us evaluate the geometrical
factor d6/dn for a prism, in the special case of minimum deviation.

For a given angle of incidence on the second face of the prism, we differentiate
1Snell’s law of refraction n = sin 8/sin ¢, regarding sin ¢ as a constant, and obtain
d0  sin ¢

dn cos@

|| This is not, however, the value to be used in Eq. (23a), which requires the rate of
change of 0 for a fixed direction of the rays incident on the first face. Because of the
symmetry in the case of minimum deviation, it is obvious that equal deviations occur .
at the two faces, so that the total rate of change will be just twice the above value.
We then have

a9 _2sing _ 2sin (2/2)
dn cos 8 cos 6

where « is the refracting angle of the prism. The result becomes still simpler when
expressed in terms of lengths rather than angles. Designating by s, B, and b the
lengths shown in Fig. 23A, we write

— =T WE 2 (23b)
dn scos 6 b
Hence the required geometrical factor is just the ratio of the base of the prism to the
linear aperture of the emergent beam, a quantity not far different from unity. The
angular dispersion becomes
o B _Bdn sy
di b di
Speme—
In connection with this equation, it is to be noted that the equation for the chromatic

resolving power [Eq. (15])] follows very simply from it upon the substitution of
Afb for db.

23.2 NORMAL DISPERSION

In considering the second factor in Eq. (23a), let us start by reviewing some of the
known facts about the variation of n with 4. Measurements for some typical kinds
of glass give the results shown in Tables 23A and 23B. If any set of values of n is
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plotted against wavelength, a curve like one of those in Fig. 23B is obtained. The
curves found for prisms of different optical materials will differ in detail but will all
have the same general shape. These curves are representative of normal dispersion,
for which the following important facts are to be noted:

1 The index of refraction increases as the wavelength decreases.

2 The rate of increase becomes greater at shorter wavelengths.

3 For different substances the curve at a given wavelength is usually steeper the
larger the index of refraction.

4 The curve for one substance cannot in general be obtained from that for another
substance by a mere change in the scale of the ordinates.

The first of these facts agrees with the common observation that in refraction
by a transparent substance the violet is more deviated than the red. The second fact
can also be expressed by saying that the dispersion increases with decreasing wave-
length. This follows because the dispersion dn/dA is the slope of the curve (its negative

Table 23A REFRACTIVE INDEX FOR SEVERAL TRANSPARENT SOLIDS

Color wavelength 2, A

Violet Blue Green Yellow Orange Red
Substance 4100 4700 5500 5800 6100 6600
Crown glass 1.5380 1.5310 1.5260 1.5225 1.5216 1.5200
Light flint 1.6040 1.5960 1.5910 1.5875 1.5867 1.5850
Dense flint 1.6980 1.6836 1.6738 1.6670 1.6650 1.6620
Quartz 1.5570 1.5510 1.5468 1.5438 1.5432 1.5420
Diamond 2.4580 2.4439 2.4260 24172 2.4150 2.4100
Ice . L3170 1.3136 1.3110 1.3087 1.3080 1.3060
Strontium titanate (SrTiO;) 2.6310 2.5106 2.4360 24170 2.3977 2.3740
Rutile (TiO,), E ray 3.3408 3.1031 2.9529 29180 2.8894 2.8535

Table 23B  REFRACTIVE INDICES AND DISPERSIONS FOR SEVERAL COMMON
TYPES OF OPTICAL GLASS
Unit of dispersion 1/A x 10-%

Telescope crown Borosilicate crown  Barium flint Vitreous quartz
‘Wavelength n _édn n dn _ dn dn
i, A a o " o " a

C 6563 1.52441 0.35 1.50883 0.31 1.58848 038 °  1.45640 0.27
6439 1.52490 0.36 1.50917 0.32 1.58896 0.39 1.45674 0.28
D 58% 1.52704 0.43 1.51124 0.41 1.59144 0.50 1.45845 0.35
5338 1.52989 0.58 1.51386 0.55 1.59463 0.68 1.46067 045
5086 1.53146 0.66 1.51534 0.63 1.59644 0.78 1.46191 0.52
F 4861 1.53303 0.78 1.51690 0.72 1.59825 0.89 1.46318 0.60
G’ 4340 1.53790 112 1.52136 1.00 1.60367 1.23 1.46690 0.84
H 3988 1.54245 1.39 1.52546 1.26 1.60870 1.72 1.47030 112
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FIGURE 23B
Dispersion curves for several different materials commonly used for lenses and
prisms,

sign is usually disregarded), which increases regularly toward smaller . An important
consequence of this behavior of the dispersion is that in the spectrum formed by a
prism the violet end of the spectrum is spread out on a much larger scale than the red
end. The spectrum is therefore far from being a normal spectrum (Sec. 17.6). This
will be clear from Fig. 23C, in which the spectrum of helium is shown diagrammatically
as given by flint- and crown-glass prisms and by a grating used under the proper
conditions to give a normal spectrum. In the prism spectra the wavelength scale is
compressed toward the red end, as can be seen by comparison with the uniform scale
of the normal spectrum.

The third fact stated above requires that for a substance of higher index of
refraction, the dispersion dn/dA shall also be greater. Thus, comparing (4) and (b)
in Fig. 23C, the flint glass has the higher index of refraction and gives a longer spec-
trum because of its greater dispersion. To compare the relative spacing of the lines
in (b) with those in (a), the spectrum from crown glass has been enlarged, in (c),
to have the same overall length between the two lines 13888 and 16678. When this is
done, it is seen that there is not complete agreement with the lines of (@). In fact,
the spectra from prisms of different substances will never agree exactly in the relative
spacing of their spectrum lines. This is a consequence of the fourth of the above facts,
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FIGURE 23C

Comparison of the helium spectrum produced by flint-glass and crown-glass
prism spectrographs with a normal spectrum.

according to which the shape of the dispersion curve is different for every substance.
The curve for flint glass in Fig. 23B has a greater slope at the violet end, relative to
that in the red, than does the curve for crown glass. Consequently, the dispersion of
different substances is said to be irrational, since there is no simple relation between
the different curves.

All transparent substances which are not colored show normal dispersion in the
visible region. The magnitude of the index of refraction may be quite different in
various substances, but its change with wavelength always shows the characteristics
described above. In general, the greater the density of the substance the higher its
index of refraction and its dispersion. For example, flint glass has a density around
2.8, considerably higher than 2.4 for ordinary crown glass. Water has a smaller »
and dn/dA, while in a very light substance like air 7 is practically unity and dn/dA
very nearly zero. For air n = 1.000276 for red light (Fraunhofer’s C line), rising
to only 1.000279 for blue light (F line). This rule relating density to index of refrac-
tion is only a qualitative one, and many exceptions are known. For instance, ether
has a higher index than water (1.36 as compared with 1.33), yet it is less dense, as is
shown by the fact that ether floats on the surface of water. Similarly, the correlation
of high dispersion with high index is only rough, and there are exceptions to the third
rule listed above. Diamond has a density of 3.52 and one of the highest known indices
of refraction, varying from 2.4100 for the C line to 2.4354 for the F line. The difference
in these values, which is a measure of the dispersion, is only 0.0254, whereas a dense
flint glass may give as much as 0.05 for the same quantity.
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i{23.3 CAUCHY’S EQUATION

The first successful attempt to represent the curve of normal dispersion by an equation
was made by Cauchy in 1836. His equation may be written
n=4d4+ % + A—f

where 4, B, and C are constants which are characteristic of any one substance. This
equation represents the curves in the visible region, such as those shown in Fig. 23B,
with considerable accuracy. To find the values of the three constants, it is necessary
to know values of n for three different A’s. Then three equations may be set up which,
when solved as simultaneous equations, give 4, B, and C. For some purposes it is
sufficiently accurate to include only the first two terms and the two constants can
be found from values of n at only two A’s. The two-constant Cauchy equation is,
then,

B
° n=4+ = (23d)
from which the dispersion becomes, by differentiation
dn 2B
— = - 23e
* da A3 (23¢)

This shows that the dispersion varies approximately as the inverse cube of the wave-
length. At4000A it will be about 8 times as large as at 8000 A. The minus sign corres-
ponds to the usual negative slope of the dispersion curve.

The theoretical reasoning on which Cauchy based his equation was later shown
to be false, so that it is to be considered essentially as an empirical equation. Never-
theless it holds very satisfactorily for cases of normal dispersion and is a useful
equation from a practical standpoint. We shall show later that it is a special case
of a more complete equation which does have a sound theoretical foundation.

23.4 ANOMALOUS DISPERSION

If measurements of the index of refraction of a transparent substance like quartz
are extended into the infrared region of the spectrum, the dispersion curve begins
to show marked deviations from the Cauchy equation. The deviation is always of the
type illustrated in Fig. 23D, where, starting at the point R, the index of refraction is
seen to fall off more rapidly than required by a Cauchy equation that represents
the values of n for visible light (between P and Q) quite accurately. This equation
predicts a very gradual decrease of n for large values of 1 (broken curve), the index
approaching the limiting value 4 as A approaches infinity [Eq. (23d)]. In contrast
to this, the measured value of » first decreases more and more rapidly as it approaches
a region in the infrared where light ceases to be transmitted at all. This is an absorp-
tion band (Séc. 22.3), i.e., a region of selective absorption, the position of which is
characteristic of the material. Within the absorption band, » cannot usually be meas-
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FIGURE 15H

Diffraction images of two slit sources formed by a rectangular aperture.

possible. However, in the final analysis, it is the diffraction pattern that sets a theoreti-
cal upper limit to the resolving power. We have seen that whenever parallel light
passes through any aperture, it cannot be focused to a point image but instead gives a
diffraction pattern in which the central maximum has a certain finite width, inversely
proportional to the width of the aperture, The images of two objects will evidently
not be resolved if their separation is much less than the width of the central diffraction
maximum. The aperture here involved is usually that of the objective lens of the tele-
scope or microscope and is therefore circular. Diffraction by a circular aperture
will be considered below in Sec. 15.8, and here we shall treat the somewhat simpler
case of a rectangular aperture.

Figure 15H shows two plano-convex lenses (equivalent to a single double-
convex lens) limited by a rectangular aperture of vertical dimension 5. Two narrow
slit sources S; and S, perpendicular to the plane of the figure form real images S
and §; on a screen. Each image consists of a single-slit diffraction pattern for which
the intensity distribution is plotted in a vertical direction. The angular separation «
of the central maxima is equal to the angular separation of the sources, and with the
value shown in the figure is adequate to give separate images. The condition illus-
trated is that in which each principal maximum falls exactly on the second minimum
of the adjacent pattern. This is the smallest possible value of o which will give zero
intensity between the two strong maxima in the resultant pattern. The angular
separation from the center to the second minimum in either pattern then corresponds
to f = 2z (see Fig. 15D), orsin 8 ~ @ =2/b = 20,. Asais made smaller than this,
and the two images move closer together, the intensity between the maxima will
rise, until finally no minimum remains at the center. Figure 151 illustrates this by
showing the resultant curve (heavy line) for four different values of «. In each case
the resultant pattern has been obtained by merely adding the intensities due to the
separate patterns (dotted and light curves), as was done in the case of the F abry-Perot
fringes (Sec. 14.12).

Inspection of this figure shows that it would be impossible to resolve the two
images if the maxima were much closer than o = 6,, corresponding to f = n. At
this separation the maximum of one pattern falls exactly on the first minimum of the
other, so that the intensities of the maxima in the resultant pattern are equal to those
of the separate maxima. The calculations are therefore simpler than for Fabry-Perot
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FIGURE 151 )
Diffraction images of two slit sources: (@) and (b) well resolved; (c) just resolved;
(d) not resolved.

fringes, where at no point does the intensity actually become zero. To find the in-
tensity at the center of the resuitant minimum for diffraction fringes separated by
0,, we note that the curves cross at 8 = =/2 for either pattern and
sin? B 4
[
the intensity of either relative to the maximum. The sum of the contributions at this
point is therefore 0.8106, which shows that the intensity of the resultant pattern drops
almost to four-fifths of its maximum value. This change of intensity is easily visible
to the eye, and in fact a considerably smaller change could be seen, or at least detected
with a sensitive intensity-measuring instrument such as a microphotometer. However,
the depth of the minimum changes very rapidly with separation in this region, and in
view of the simplicity of the relations in this particular case, it was decided by Rayleigh
to arbitrarily fix the separation « = 8, = /b as the criterion for resolution of two
diffraction patterns. This quite arbitrary choice is known as Rayleigh’s criterion.
The angle 0, is sometimes called the resolving power of the aperture b, although the
ability to resolve increases as 6, becomes smaller. A more appropriate designation
for 8, is the minimum angle of resolution.

= 0.4053

-15.7 CHROMATIC RESOLVING POWER OF A PRISM

An example of the use of this criterion for the resolving power of a rectangular
aperture is found in the prism spectroscope, if we assume that the face of the prism
limits the refracted beam to a rectangular section. Thus, in Fig. 15J, the minimum
angle Ad between two parallel beams which give rise to images on the limit of resolu-
tion is such that Aé = 8, = /b, where b is the width of the emerging beam. The
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FIGURE 15J
Resolving power of a prism.

two beams giving these images differ in wavelength by a small increment A4, which is
negative because the smaller wavelengths are deviated through gregter angles. The
wavelength increment is more useful than the increment of angle, and is the quantity
that enters in the chromatic resolving power A/A1 (Sec. 14.12). To evaluate this for
the prism, we first note that since any optical path between two successive positions
b’ and b of the wave front must be the same, we can write

¢c+c =nB (15i)

Here n is the refractive index of the prism for the wavelength 4, and B the length of
the base of the prism. Now, if the wavelength is decreased by A4, the optical path
through the base of the prism becomes (n + An)B and the emergent wave front must
turn through an angle Ad = /b for the image it forms to be just resolved. Since,
from the figure, Ad = (Ac)/b, this amount of turning increases the length of the upper
ray by Ac = A. It is immaterial whether we measure Ac along the rays A or 1 + Ad,
because only a difference of the second order is involved. Then we have

c+c +A=@n+ An)B
and, subtracting Eq. (15i),

A= BAn

The desired result is now obtained by dividing by A2 and substituting the derivative
dnfd) for the ratio of small increments,

® i = d.f i

Y
It is not difficult to show that this expression also equals the product of the angular
dispersion and the width b of the emergent beam. Furthermore, we find that Eq. (15))
can still be applied when the beam does not fill the prism, in which case B must be
the difference in the extreme paths through the prism, and when there are two or
il more prisms in tandem, when B is the sum of the bases.
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15.8 ‘CIRCULAR APERTURE

The diffraction pattern formed by plane waves from a point source passing through a
circular aperture is of considerable importance as applied to the resolving power of
telescopes and other optical instruments. Unfortunately it is also a problem of con-
siderable difficulty, since it requires a double integration over the surface of the aper-
ture similar to that mentioned in Sec. 15.5 for a rectangular aperture. The problem
was first solved by Airy* in 1835, and the solution is obtained in terms of Bessel
functions of order unity. These must be calculated from series expansions, and the
most convenient way to express the results for our purpose will be to quote the actual
figures obtained in this way (Table 15B).

The diffraction pattern as illustrated in Fig. 15K(a) consists of a bright central
disk, known as Airy’s disk, surrounded by a number of fainter rings. Neither the disk
nor the rings are sharply limited but shade gradually off at the edges, being separated
by circles of zero intensity. The intensity distribution is very much the same as that
which would be obtained with the single-slit pattern illustrated in Fig. 15E by rotating
it about an axis in the direction of the light and passing through the principal maximum.
The dimensions of the pattern are, however, appreciably different from those in a
single-slit pattern for a slit of width equal to the diameter of the circular aperture.
For the single-slit pattern, the angular separation 6 of the minima from the center was
found in Sec. 15.3 to be given by sin 8 = 8 = ml/b, where m is any whole number;
starting with unity. The dark circles separating the bright ones in the pattern from
a circular aperture can be expressed by a similar formula if @ is now the angular
semidiameter of the circle, but in this case the numbers m are not integers. Their
numerical values as calculated by Lommelf{ are given in Table 15B, which also
includes the values of m for the maxima of the bright rings and data on their intensities.

* Sir George Airy (1801-1892). Astronomer Royal of England from 1835 to 1881.
Also known for his work on the aberration of light (Sec. 19.11). For details of the
solution here referred to, see T. Preston, “Theory of Light,” 5th ed., pp. 324-327,
Macmillan & Co., Ltd., London, 1928.

1 E. V. Lommel, 4bh. Bayer. Akad. Wiss., 15:531 (1886).

Table 15B

Circular aperture Single slit
Ring m Imax Ttotal m Imax
Central maximum 0 1 1 0 1
First dark 1.220 1.000
Second bright 1.635 0.01750 0.084 1.430 0.0472
Second dark 2233 2.000
Third bright 2.679 0.00416 0.033 2.459 0.0165
Third dark 3.238 3.000
Fourth bright 3.699 0.00160 0.018 3471 0.0083
Fourth dark 4.241 4.000
Fifth bright 4.710 0.00078 0.011 4.477 0.0050

Fifth dark 5.243 5.000
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16.3

16.4

165

16.6

16.7

16.8

16.9

16.10

(a) Draw an appropriate vibration curve for the point in a Fraunhofer diffraction
pattern of a double slit where the phase difference 6 = n/3. The opaque space
between the two slits is twice the width of the slits themselves. (b) What is the value
of B for this point? (c¢) Obtain a value for the intensity at the point in question
relative to that at the central maximum.
A double slit has two slits of width 0.650 mm separated by a distance between centers
of 2.340 cm. With a mercury arc as a source of light, the green line at A = 5460.74 A
is used to observe the Fraunhofer diffraction pattern 100 cm behind the slits. (a)
Assuming the eye can resolve fringes that subtend 1 minute of arc, what magnification
would be required to just resolve the fringes? (b) How many fringes could be seen
under the central maximum? (¢) How many under the first side maximum?
Ans. (a) 3.1x, (b) 71 fringes, (c) 35 fringes
Two double slits are placed on an optical bench. One slit has a spacing of d; =
0.250 mm, is illuminated by green light of a mercury arc, 4 = 5460.74 A, and is used
as‘a double source. The eye located close behind the second double slit, for which
d, = 0.750 mm, sees clear double-slit fringes when observing from the far end of the
bench. When the second double slit is moved toward the double-slit source, the
fringes completely disappear at a certain point, then appear, then disappear, etc.
(@) Find the largest distance at which the fringes disappear. (b) Find the next largest
distance at which they reappear and (c) then disappear.
A double slit with & = 0.150 mm, and d = 0.950 mm is located between two lenses
as shown in Fig. 16G(a). The lenses have a focal length of 70 cm. A single adjustable
slit is used as a light source at PP’, and the green mercury line 4 = 5461 A illuminates
it. According to the usual criterion for clear fringes, how wide should the source slit
be made to obtain the best intensity without appreciable sacrifice of clearness?
Since two equal slits withd = bform a single slit twice the width of either of the slits,
prove that Eq. (16c) can be reduced to the equation for the intensity distribution for
a single slit of width 25.
Ans.  Starting with Eq. (16c), we make use of the trigonometric equality that
2sin f cos B = sin 28. Upon substitution, we obtain, I = 44,2 (sin? 2B)/452
If d = 5b for a double slit, determine for Fraunhofer diffraction exactly how much
the third-order maximum is shifted from the position given by Eq. (16g) due to
modulation by the diffraction envelope. The problem is best solved by plotting exact
intensities in the neighborhood of the expected maximum. Express the result as a
fraction of the separation of orders.
With a tungsten lamp with a straight wire filament as a source and a collimating lens
of 6.20 cm focal length in front of a double slit, various separations of the double slit
are tried, increasing the distance J until the fringes disappear. If this occurs for
d = 0.350 mm, calculate the filament diameter. Assume 1 = 5800 A.
Derive a formula giving the number of interference maxima occurring under the
central diffraction maximum of the double-slit pattern in terms of the separation d
and the slit width b. ’ Ans. N =2djb - 1

17

‘ THE DIFFRACTION GRATING

Any arrangement which is equivalent in its action to a number of 'pargllel equidistant
slits of the same width is called a diffraction grating. Since the gratingis a very power-
ful instrument for the study of spectra, we shall treat in considera.ble d_etall the mtep—
sity pattern which it produces. We shall find that the pa'ttem is quite complex in
general but that it has a number of features in common with that of the double slit
treated in the last chapter. In fact, the latter may be considered as an element_ary
grating of only two slits. It is, however, of no useas a spectrt?scope, sinceina practlc&‘ll
grating many thousands of very fine slits are usually required. The reason for this
becomes apparent when we examine the difference between the pattern due to two

slits and that due to many slits.

17.1 EFFECT OF INCREASING THE NUMBER OF SLITS

When the intensity pattern due to one, two, three, and more slits of the same vyidth
is photographed, a series of pictures like those shown in Fig. 17A(a) to ( f)is c.:btamed.
The arrangement of light source, slit, lenses, and recording plate use:d in taking these
pictures was similar to that described in previous chapters, and the light used was the
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17.3  PRINCIPAL MAXIMA

‘The new factor (sin? Ny)/(sin® y) may be said to represent the interference term for
N slits. It possesses maximum values equal to N2 for 9y =0,m 2n,.... Although
the quotient becomes indeterminate at these values, this result can be obtained by
noting that

lim S Ny = lim N cos Ny —

: +N
y=mn SI0 Y y~mn Cos y

These maxima correspond in position to those of the double slit, since for the above
values of y

dsin@ =0,2,24,34,... = mi Principal maxima (174d)

They are more intense, however, in the ratio of the square of ‘the number of slits,
The relative intensities of the different orders m are in all cases governed by the single-
slit diffraction envelope (sin? §)/#%. Hence the relation between B and y in terms of

slit width and slit separation [Eq. (16d)] remains unchanged, as does the condition
for missing orders [Eq. (16h)].

174 MINIMA AND SECONDARY MAXIMA

To find the minima of the function (sin? Ny)/(sin? y), we note that the numerator be-
comes zero more often than the denominator, and this occurs at the values Ny =0,
m, 2m, ... or, in general, pr. In the special cases when p=0,N,2N,...,y wil be
0, m, 27, ... ; so for these values the denominator will also vanish, and we have the
principal maxima described above. The other values of P give zero intensity, since for
these the denominator does not vanish at the same time. Hence the condition for a
minimum is y = pn/N, excluding those values of p for which p = mN, m being the
order. These values of y correspond to path differences
oA 2234 (N-D1 N+ D .
dsin 0 NN N N Minima (17e)
omitting the values 0, NA/N, 2NA/N, .. ., for which dsin § = mJ and which according
to Eq. (17d) represent principal maxima. Between two adjacent principal maxima
there will hence be N — 1 points of zero intensity. The two minima on either side of
a principal maximum are separated by twice the distance of the others.

Between the other minima the intensity rises again, but the secondary maxima
thus produced are of much smaller intensity than the principal maxima. Figure 17C
shows a plot for six slits of the quantities sin? Ny and sin?y, and also of their quotient,
which gives the intensity distribution in the interference pattern. The intensity of the
principal maxima is N2 or 36, so that the lower figure is drawn to a smaller scale.
The intensities of the secondary maxima are also shown. These secondary maxima
are not of equal intensity but fall off as we go out on either side of each principal
maximum. Nor are they in general equally spaced, the lack of equality being due
to the fact that the maxima are not quite symmetrical. This lack of symmetry is
greatest for the secondary maxima immediately adjacent to the principal maxima,
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FIGURE 17C ) ) .
Fraunhofer diffraction by a grating of six very narrow slits and details of the

intensity pattern.

and is such that the secondary maxima are slightly shifted toward the adjacent
.. —_—

prmmgal‘lle:;aé:ltl;es of the secondary maxima show a strox'lg resemblance tolthoi: gg
the secondary maxima in the single-slit pat'tern. Comparlso'n of tlll.e ce.rllltrampsaSize
the intensity pattern in Fig. 17C(d) with'Fxg‘. 1.5D for the single slit wi ' e ;()mdar
this resemblance. As the number of slits is increased, the number of sec blancﬁ
maxima is also increased, since it is equal to N — 2. Atthe same time the }:‘ese.m jance
of any principal maximum and its adjacent' secondary maxima to t_e 2s(x)ngc el
pattern increases. In Fig, 17D is shown tl}e mterferenc'e curve for N Tg R core
sponding to the last photograph shown in Flg.. 17A. In this case there are lsecoto th);
maxima between each pair of principal maxima, but only those fairly ¢ osgci ot
principal maxima appear with appreciable intensity, ar'ld even t.hese are not su f:sxeher)e/
strong to show in the photograph. The agreement.wnh the smgle-.sht pa(tit_ern i here
practically complete. The physical reason ff)r th1§ agreement will be 1scussed n
Sec. 17.10, where it will be shown that the dimensions of. the pa.ttern corresp}?n o
those from a single “slit” of width equal to that of the entire gr.atmg. Even when the
number of slits is small, the intensities of the secondary maxima can be compute
by summing a number of such single-slit patterns, one for each order.

i117.5 FORMATION OF SPECTRA BY A GRATING

The secondary maxima discussed in Sec. 17.4 are of little importance iq the production
of spectra by a many-lined grating. The principal maxima trea.ted in Sec. 1’{.3 are
called spectrum lines because when the primary source of light is a narrow slit they
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i

(c) 3 slits

FIGURE 17A
Fraunhofer diffraction patterns for gratings containing different numbers of slits.

f) 20 lits

blue line from a mercury arc. These patterns therefore are produced by Fraunhofer
diffraction. In fact, it was because of Fraunhofer’s original investigations of the diffrac-
tion of parallel light by gratings in 1819 that his name became associated with this
type of diffraction. Fraunhofer’s first gratings were made by winding fine wires around
two parallel screws. Those used in preparing Fig. 17A were made by cutting narrow
transparent lines in the gelatin emulsion on a photographic plate, as described in
Sec. 13.2.

The most striking modification in the pattern as the number of slits is increased
consists of a narrowing of the interference maxima. For two slits these are diffuse,
having an intensity which was shown in the last chapter to vary essentially as the
square of the cosine. With more slits the sharpness of these principal maxima increases
rapidly, and in pattern (f) of the figure, with 20 slits, they have become narrow lines.
Another change, of less importance, which can be seen in patterns (c), (d), and (e)
is the appearance of weak secondary maxima between the principal maxima, their
number increasing with the number of slits. For three slits only one secondary maxi-
mum is present, its intensity being 11.1 percent of the principal maximum. Figure 17B
shows an intensity curve for this case, plotted according to the theoretical equation
(17b) given in the next section. Here the individual slits were assumed very narrow.
Actually the intensities of all maxima are governed by the pattern of a single slit of
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Intensity —

FIGURE 17B |
Principal and secondary maxima from a
grating of three slits.

Sin § —

width equal to that of any one of the slits used. The width of the intensity envelopes
would be identical in the various patterns of Fig. 17A if the slit.s hz?d been of the same
width in all cases. In fact there were slight differences in the slit widths used for some
of the patterns.

17.2 INTENSITY DISTRIBUTION FROM AN IDEAL
GRATING

The procedure used in Secs. 15.2 and 16.2 for the single and double. slits cm'xld be used

here, performing the integration over the clear aperture of the sllts,'but it becomes

cumbersome. Instead let us apply the more powerful method of addu}g the corqplex

amplitudes (Sec. 14.8). The situation is simpler than in the case Qf ‘multlpl'e reflections,

because for the grating the amplitudes contributed by the individual slits are all of:
equal magnitude. We designate this magnitude by a and the number of slits by N.

The phase will change by equal amounts & from one slit to the next; so the resultant
complex amplitude is the sum of the series

1 — eiNd

A = a(l + & 4 28 4 &3 4 ... 4 QN8 - g
To find the intensity, this expression must be multiplied by its complex conjugate,
as in Eq. (14m), giving
o (1 — ™)1l — e ™) 1 - cos N§

2 _ =
A= A =™ % T—cess

Using the trigonometric relation 1 — cos @ = 2 sin? (¢/2), we may then write

A2 = g sin® (N§/2) e sin? Ny

17b
sin? (5/2) sin? y (170)

where, as in the double slit, y = 8/2 = (nd sin 8)/A. Now the factor a? represents the
intensity diffracted by a single slit, and after inserting its value from Eﬂ' (15d) we
finally obtain for the intensity in the Fraunhofer pattern of an ideal grating

sin? B sin?> Ny

7 sy (170)

° I A2 = Ay

Upon substitution of N = 2 in this formula, it readily reduces to Eq. (16c) for the

double slit.
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FIGURE 17D

Intensity pattern for 20 narrow slits,

become sharp, bright lines on the screen. These lines will be parallel to the rulings
of the grating if the slit also has this direction. For monochromatic light of wave-
length ):, the angles @ at which these lines are formed are given by Eq. (17d), which is
the ordinary grating equation d sin 6 = m commonly given in elementary tt’axtbooks.

A more general equation includes the possibilit ight inci i
: y of light incident on the grat
any angle /. The equation then becomes ' gratie &t

[ d(sin i + sin ) = ml Grating equation 171)

FIGURE I7E

PQS{tions and intensities of the principal maxima from a grating where light con-
taining two wavelengths is incident at an angle / and diffracted at various angles 6,
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FIGURE 17F
Grating spectra of two wavelengths: (a) 1, = 4000 A; (b) 1, = 5000 &; (c) 4,
and 1, together.

since, as will be seen from Fig. 17E, this is the path difference for light passing through
adjacent slits. The figure shows the path of the light forming the maxima of order
m = 0 (called the central image), and also m = 4 in light of a particular wavelength
4. For the central image, Eq. (17f) shows that sin § = —sin i, or § = —i. The
negative sign comes from the fact that we have chosen to call i and § positive when
measured on the same side of the normal; i.e., our convention of signs is such that
whenever the rays used cross over the line normal to the grating, 8 is taken as negative.
Those intensity maxima which are shaded show the various orders of the wavelength
A;. In the case of the fourth order, for example, the path differences indicated are
such that d(sin i + sin §) = 4A,. The intensities of the principal maxima are limited
by the diffraction pattern corresponding to a single slit (broken line) and drop to
zero at the first minimum of that pattern, which here coincides with the fifth order.
The missing orders in this illustration are therefore m = 5, 10, ..., as would be pro-
duced by having d = 5b.

Now if the source gives light of another wavelength 1, somewhat greater than
A, the maxima of the corresponding order m for this wavelength will, according to
Eq. (17)), occur at larger angles 0. Since the spectrum lines are narrow, these maxima
will in general be entirely separate in each order from those of 4, and we have two
lines forming a line spectrum in each order. These spectra are indicated by brackets
in the figure. Both the wavelengths will coincide, however, for the central image,
because for this the path difference is zero for any wavelength. A similar set of spectra
occurs on the other side of the central image, the shorter wavelength line in each
order lying on the side toward the central image. Figure 17F shows actual photo-
graphs of grating spectra corresponding to the diagram of Fig. 17E. If the source
gives white light, the central image will be white, but for the orders each will be spread
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out into continuous spectra composed of an infinite number of adjacent images of
the slit in light of the different wavelengths present. At any given point in such a
continuous spectrum, the light will be very nearly monochromatic because of the
narrowness of the slit images formed by the grating and lens. The result is in this
respect fundamentally different from that with the double slit, where the images were
broad and the spectral colors were not separated.

17.6 DISPERSION

The separation of any two colors, such as 4, and 1, in Figs. 17E and 17F, increases
with the order number. To express this separation the quantity frequently used is
called the angular dispersion, which is defined as the rate of change of angle with
change of wavelength. An expression for this quantity is obtained by differentiating
Eq. (17f) with respect to 4, remembering that i is a constant independent of wave-
length. Substituting the ratio of finite increments for the derivative, one has

o 49 _ A _ m
AN T JA dcosd
|l The equation shows in the first place that for a given small wavelength difference A,
the angular separation A@ is directly proportional to the order m. Hence the second-
order spectrum is twice as wide as the first order, the third three times as wide as the
[ first, etc. In the second place, Af is inversely proportional to the slit separation d,
which is usually referred to as the grating space. The smaller the grating space, the
more widely spread the spectra will be. In the third place, the occurrence of cos 0 in
the denominator means that in a given order m the dispersion will be smallest on the
normal, where 8 = 0, and will increase slowly as we go out on either side of this.
If 6 does not become large, cos 8 will not differ much from unity, and this factor will
be of little importance. If we neglect its influence, the different spectral lines in one
order will differ in angle by amounts which are directly proportional to their difference
in wavelength. Such a spectrum is called a normal spectrum, and one of the chief
advantages of gratings over prism instruments is this simple linear scale for wave-
lengths in their spectra. '
The linear dispersion in the focal plane of the telescope or camera lens is AljAA,
where /is the distance along this plane. Its value is usually obtainable by multiplying
Eq. (17g) by the focal length of the lens. In some arrangements, however, the photo-
graphic plate is turned so the light does not strike it normally, and there is a corre-
sponding increase in linear dispersion. In specifying the dispersion of a spectrograph,
it has become customary to quote the plate factor, which is the reciprocal of the above
quantity and expressed in angstroms per millimeter., ’

Angular dispersion (17g)

177 OVERLAPPING OF ORDERS

If the range of wavelengths is large, e.g., if we observe the whole visible spectrum
between 4000 and 7200 A, considerable overlapping occurs in the higher orders. Sup.-
pose, for example, that one observed in the third order a certain red line of wave-
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length/ 7000 A. The angle of diffraction for this line is given by solving for 0 the

expression d(sin i + sin 6) = 3 x 70000

where d is in angstroms. But at the same angle 6 there may occur a green line in the

th 5250 A, since
fourth order, of waveleng 4 % 5250 = 3 x 7000

Similarly the violet of wavelength 4200 A will occur in the fifth order at thlS' same plellceé
The general condition for the various wavelengths that can occur at a given angle

o then d(sini + sin@) = 4, =21, = 34; = - (17h)
where 1,, 4,, etc., are the wavelengths in the first, second, et.c., ord.ers.l Fgr ’721(8;(;)1;
light there is no overlapping of the first and second. orders, since w1t'hl ' -—d o
and 4, = 4000 A the red end of the first order falls just short of the violet end of the
second. When photographic observations are made, however, these orders ;n;y
extend down to 2000 A in the ultraviolet, and the {irst two orders do overlap. ; is
difficulty can usually be eliminated by the use of suitable color ﬁlter§ to absorb r(()lm
the incident light those wavelengths which .would overlap the region under;.t(l).l0 X
As an example, a piece of red glass transmitting onl}" wavelengths longer than o
could be used in the above case to avoid the interfer{ng sporter wz.w.cl.engths of higher,
order that might disturb observation of A7000 and lines in that vicinity.

17.8 WIDTH OF THE PRINCIPAL MAXIMA

It was shown at the beginning of Sec. 17.4 that thei first minima on either side of 33}’
principal maximum occur where Ny = mNn i mw, or where y = mn + % )-.
When y = mn, we have the principal maxima, owing to the fa:ct that t'he p‘hasc'a i t:)r

ence & or 2y, in the light from corresponding points of adje_lcent slits, is given by
2nm, or a whole number of complete vibrations. 'Howevcr, 1.f we change the angle
enough to cause a change of 2n/N in the phase difference, reinforcement no longer
occurs, but the light from the various slits now interferes to produ?e.zero intensity.
A phase difference of 2n/N between the maximum and the first minimum means a

i f A/N.

peih "ill‘gels-zzc:v}?y t/his path difference causes zero intensity, cc_)ns.ider Fig.‘ 17G(a),
in which the rays leaving the grating at the angle 0 form a prmcgpal maximum of
order m. For these, the path difference of the rays from two adjacent slits is ml,
so that all the waves arrive in phase. The path difference of the extreme rays is then
NmAl, since N is always a very large number in any practical case.* Now let us change
the angle of diffraction by a small amount A8, such that the extreme path dlﬁ'ef'cnce
increases by one wavelength and becomes NmA + A (rays shown by broken lines).

This should correspond to the condition for zero intensity, because, as required,

* With a small number of slits, it is necessary to use the tn{e va}lue (N ~ 1)mai, and
the subsequent argument must be slightly modified, but it yields the same result

[Eq. (17i)).
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FIGURE 17G

Angular separation of two spectrum lines which are just resolved by a diffraction
grating,

the path difference for two adjacent slits has been increased by A/N. It will be seen
that the ray from the top of the grating is now of opposite phase from that at the
center, and the effects of these two will cancel. Similarly, the ray from the next slit
pelow the center will annul that from the next slit below the top, etc. The cancellation
lf c?ntinued will yield zero intensity from the whole grating, in entire analogy to the
similar process considered in Sec. 15.3 for the single-slit pattern,

. Thus the first zero occurs at the small angle A8 on each side of any principal
maximum. From the figure it is seen that

° Af = A A , -
== Nioosd Angular half width of principal maximum (17)
It is instructive to note that this is just 1/Nth of the separation of adjacent orders,

.since the latter is represented by the same expression with the path difference N1
instead of A in the numerator.

17.9 RESOLVING POWER

When N is many thousands, as in any useful diffraction grating,
extremely narrow. The chromatic resolving power A/A1 is corres
To evaluate it, we note first that since the intensity contour is essential
pattern of a rectangular aperture, the Rayleigh criterion (Sec. 15.6)
The images formed in two wavelengths that are barely resolved m
!)y the angle A0 of Eq. (17). Consequently the light of wavelength 1
its principal maximum of order m at the same angle as that for th

the maxima are
pondingly high.
ly the diffraction
can be applied.
ust be separated
+ Al must form
e first minimum
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of we{velength A in that order [Fig. 17G(b)]. Hence we can equate the extreme path
differences in the two cases and obtain

mNA + 4 = mN(@A + A})

from which it immediately follows that

A

L = mN 17
™ a-" (17)

That the resolving power is proportional to the order m is to be understood from the
fact that the width of a principal maximum, by Eq. (17i), depends on the width B
of the emergent beam and does not change much with order, whereas the separation
of two maxima of different wavelengths increases with the dispersion, which, by
Eq. (17g), increases nearly in proportion to the order. Just as for the prism (Sec. 15.7),
we have that

Chromatic resolving power = angular dispersion x width of emergent beam since in
the present case

® i:A_OxB m

= ——— X Ndcos 0 = mN
AL AA dcos 0

In a given order the resolving power, by Eq. (17j), is proportional to the total
number of slits N but is independent of their spacing d. However, at given angles of
incidence and diffraction it is independent of N also, as can be seen by substituting
in Eq. (17j) the value of m from Eq. (17f):

A d(sini + sin 6) N = W(sin i + sin )

il 17k
Al A A {7k

Here W = Nd s the total width of the grating. At a given i and 0, the resolving power

is therefore independent of the number of lines ruled in the distance W. A grating
with fewer lines gives a higher order at these given angles, however, with consequent
overlapping, and would require some auxiliary dispersion to separate these orders,
as does the Fabry-Perot interferometer. The method has nevertheless been recently
applied with success in the echelle grating to be described later. Theoretically the
maximum resolving power obtainable with any grating occurs when i = § = 90°,
and according to Eq. (17k) it equals 2W/A, or the number of wavelengths is twice
the width of the grating. In practice such grazing angles are not usable, however,
because of the negligible amount of light. Experimentally one can hope to reach only
about two-thirds of the ideal maximum.

17.10 VIBRATION CURVE

Let us now apply the method of compounding the amplitudes vectorially which was
used in Sec. 16.6 for two slits and in Sec. 15.4 for one slit. The vibration curve for
the contributions from the various infinitesimal elements of a single slit again forms
an arc of a circle, but there are now several of these arcs in the curve, corresponding
to the several slits of the grating. In Fig. 17H the diagrams corresponding to the




