Krycho

PHYS4300: Senior Research Project; PHYS3980: Honors Research

Developing a computational model of a neural network
Christopher Krycho; Advisor: Dr. Eric Abraham

We provide background on neuronal and neural network function, develop the basis of computational neural network design, and explore the manner in which it is implemented in the model of Dr. Michal Zochowski at the University of Michigan. We then discuss our results and analyze the ways in which our data matches the Zochowski group’s. Finally, we address future direction and ways in which the model may be applied to a variety of other topics in neurophysics.

I. Introduction

Computational neuroscience is a relatively young field – only decades old – and there remains much work to be done. Individual neurons are increasingly well understood, but the phenomena of large-scale neural interactions are difficult to directly observe or to model. The complexity of the system, even with present computational abilities, continues to provide a challenge when modeling the brain. As such, it remains an area ripe for exploration.

I examine in detail a the neural network model created by Dr. Michal Zochowski’s team at the University of Michigan, describing the principles on which their model is built and the mathematical implementation of those principles. I then discuss how I have worked to duplicate their work by designing a program to generate a neural network matching their model, and then running the tests they describe. I then describe the extent to which I have replicated their results. Finally, I set out the necessary steps remaining to finish the model, and some possible direction in which to move once the model has been realized.

II. Background

A. Neurons:

Neurons are the primary cellular members of the nervous system of all known animals. They make up the nerves responsible for detecting stimulation, the complex tangle of connections that link those nerves to the brain, and the brain itself. They are complex biochemical objects, varying in structure and in function, though with common features. Neural function is governed by electrochemical input from other neurons, electrochemical feedback from self-connections, chemical triggers in the environment, and chemical changes in the neuron. There are estimated to be 1011 neurons in the human brain, each with thousands of connections to other neurons.

Thus, modeling behavior of the nervous system, especially human brains, is a difficult task. Most researchers have taken one of two approaches. Some model a single neuron as accurately as possible, while neglecting the interconnectivity of the brain. These researchers focus on how different aspects of the neuron relate to each other and attempt to accurately model the biochemical reactions that drive synaptic activity. Others model a large number of neurons, using a simple model for individual, most frequently the “integrate-and-fire” model. A single, relatively simple, differential equation represents the behavior of each neuron in time, thereby reducing the neuron to a point-like node in a network with predictable responses to various kinds of input.

Following the method used by Dr. Zochowski’s team at The University of Michigan, we use an integrate-and-fire model. The team applied the behavior of small-world networks to the question of epileptic seizures, looking for high rates of simultaneous firing of neurons, called bursting. They concluded that with small-world networks of neurons, it can be shown that bursting results from altering the value a single parameter in the differential equation.

B. Small-World Networks

The Zochowski’s team’s model relies on a type of small-world network first described mathematically in 1998 by Duncan J. Watts and Steven H. Strogatz[2]. Small-world networks are a special class of low-connectivity networks that appear in a wide variety of systems such as social networks, power grids, and neural networks in the human brain.

In mathematical terms, networks are characterized by the number of nodes (n), connectivity (k), clusteredness and path length (L). Connectivity is the number of connections each neuron has and the way those connections are arranged. Clusteredness is the degree to which nodes connected to a mutual node are also connected to each other. Average path length is the average number of connections required to move from any node to any other. Small-world networks are those with large n, low k (so that n >> k), high clusteredness and small L compared to n. The mathematical boundaries are n >> k >> ln(n) >> 1.

The neural networks of the brain exhibit small-world behaviors due to the immensely high numbers of neurons and the relatively low connection numbers exhibited. As noted above, the human brain contains approximately 1011 neurons, each of which on average has on the order of 105 connections. This meets the criteria outlined above: 1011 >> 105 >> ln(1011) (25 >> 1. In addition, the connections in the brain appear to be very highly clustered. Neural networks are thus good candidates for modeling with small-world networks in a computational setting.

[image: image1.wmf]C. Zochowski Team Model

(i) Overview: The Zochowski team’s model consists of two interacting networks of 225 neurons each arranged on 15x15 grids. Each neuron receives input from a relatively low number of other neurons in the network. For each network, n = 225, ln(n) = 5.4, and 5 ≤ k ≤ 12 (where 94% of the neurons have k ≥ 8). Most of the connections in each network are short-range connections to near-neighbors, but some of them are long-range (up to the scale of the network itself). Connections between the networks account for a further increase in input to the networks.

Such a model can be generated as follows: (1) connect all immediate neighbors; (2) connect all nodes reachable through two existing connections; (3) randomly rewire this network; (4) add connections from one network to the other. During (3), each connection has a probability of 0.3 of being rewired. This results in an average connectivity in the network of 0.05—that is, each neuron on average is connected to 5% of the rest of the network. In (4) each network 30% of the neurons receive 10 distinct connections from the other network. (Alternate formulations do exist, as described in a more recent paper by the Zochowski team[3] and elsewhere[4]).

Each neuron receives input from other connected neurons and is subject to leakage and white noise. The model does not consider inhibitory inputs or feedback. Instead it focuses on the propagation of currents throughout a network.

(ii) The differential equation governing the behavior of neurons in the Zochowski team’s model is

[image: image2.wmf]

min

=

grid

-

1

(

)

*

n

(

)

+

1

max

=

n

*

grid

Vi (t) is the potential (V) on a given neuron i at time t. αi is a membrane leakage constant (and is therefore negative); it represents the way potential generated in the previous step leaks off between steps. α is different for every neuron, on the range (1.0, 1.5), but is held constant throughout time. A, set to a value of 4, sets the scale for intranetwork signal, while B, set to a value of 0.4, sets the scale for internetwork signal. The first summation is the sum of all incoming current J to neuron i from neurons j (C where C is the set of all connected neurons in the same network. The second summation is identical except k (I is the set of all connected neurons in different networks. net(t) is the value at time t of a white noise parameter, which varies uniformly on (1.0, 1.5). The parameter is different for each network but is the same for all neurons in a given network.

The currents J are given by the exponential relationship

[image: image3.wmf]

y

n

+

1

=

y

n

+

hf

'

(

t

n

,

y

n

)

where t here is the time since neuron j last fired. The form is identical for intra- and internetwork current. The only difference is increased lag between networks compared to within networks. Lag for intranetwork current is 6 milliseconds; for internetwork current it is 8 ms. s = 0.3 milliseconds and f = 0.03 milliseconds are slow and fast time constants respectively. These constants ensure the current curve generated has the correct shape.

The leakage increases linearly as the membrane voltage increases. The white noise varies throughout time and across networks but is the same within the bounds of a network.

Two more parameters, cut and spike, function as the controls for current and spiking. At each iteration, if the amount of current incoming to a neuron from all connected neurons does not exceed the value of cut, then the sum of incoming current on that neuron is set to 0 for that integration. This represents the tendency of neurons to remain in a quiescent state unless they have sufficiently high input. cut may vary as the model runs. It is held constant at 0.34 for one network. The other starts at 0.34, is set to 0 while the time since the simulation started is between 1 and 6 seconds, then is reset to 0.34.

spike controls firing/spiking behavior. When Vi(t) < spike after integration, the neuron holds its value of V for the next integration. When Vi(t) ≥ spike, the neuron fires. In the Zochowski model, spike is 1. At the time when a neuron fires, it sends out current in the form shown in Fig. 1.

III. Implementation:
A. Numerical Integration

Euler’s method extrapolates future values of an integral based on previous values; given a single known value of a curve, it generates the next value as follows: for a differential equation

[image: image4.wmf]

y

'

(

t

)

=

f

(

t

,

y

(

t

))

where f is given explicitly and some initial value y(0) is known, the solution is given by

[image: image5.wmf]
where yn+1 is the value resulting from the integration, yn is the previous value of y, and h is the step size. For the Zochowski team’s equation, the derivative f’ is

[image: image6.wmf]

f

'

(

t

n

,

y

n

)

=

-

a

i

V

i

'

(

t

)

+

A

J

i

,

j

'

(

t

)

j

Î

C

å

+

B

J

i

,

k

'

(

t

)

k

Î

I

å

+

x

net

'

(

t

)

By substituting V’(t) and collecting terms, the solution is

[image: image7.wmf]

dV

i

dt

=

-

a

i

V

i

(

t

)

+

A

J

i

,

j

(

t

)

+

B

J

i

,

k

(

t

)

+

x

net

(

t

)

k

Î

I

å

j

Î

C

å

where primed terms are derivatives. For the integration to be reasonably accurate, h must be on the order of 10-3 or smaller.

B. Program Overview

The code is broken into one main program and five modules. The main program is responsible primarily for calling all the subroutines contained in the other modules, as well as for input and other miscellaneous. The other modules are (i) conn.f90, which is responsible for all connectivity, from initialization through two rewirings; (ii) gtk.f90, which is responsible for dealing with stepping the time t and for altering the values of cut and (t) over time; (iii) values.f90, which is responsible for generating the values of current and for summing those values; (iv) integrateandfire.f90, which handles the integration and firing of the neurons; and (v) writer.f90, which is responsible for all output from the program.

C. Code Specifics

Before any other operations are undertaken, the model queries the user for the size and interconnectivity desired, allowing the user to examine the behavior of the model under different scales and connectivity ratios. The user also has the opportunity to specify the step size of the Euler integration and the total length of time over which the model runs. After that, the program makes use of subroutines organized along the lines outlined above and described in detail below:

(i) Connectivity (conn.f90), consisting of three steps: (1) initialization, (2) intranetwork rewiring, and (3) adding internetwork connectivity. The connection information is stored in NxN arrays of integers where N is the total number of neurons in the simulation. Rows and columns correspond to neurons sending and receiving connections respectively. A value of 0 indicates no connection, while 1 indicates a connection sent. (The arrays are of integers rather than Booleans to allow for scalability later to correspond to learning.) If, for example, conn(1 , 15) = 1, then neuron 1 is sending current to neuron 15. Since N is the total number of neurons, this includes potential connections within networks as well as between networks.

(1) Initialization: all values are initially set to 0. Then all immediate neighbors, neighbors once removed, and all diagonals are connected. Mathematically, this means that for each neuron j, connections are send to neuron i when j = i ± 1, i ± 2, i ± l, i ± l ± 1, i ± 2l where l is the length of one row in the grid. Following that procedure, the boundary conditions are accounted for (since the above didn’t take them into account). With n ranging from 0 to the number of neurons per grid divided by the number of rows in the grid and l as above, the connections eliminated are

from nl – 1:
nl + 1; (n – 1)l + 1

from nl:
l + 1; nl + 2; (n + 1)l + 1

from nl + 1:
nl – 1, nl; (n – 1)l + 1; (n + 1)l – 1

This eliminates problems with neurons at and near corners and edges. Initially, these connections are all symmetric: any neuron sending a connection to another neuron also receives a connection back.

(2) Intranetwork rewiring: the model cycles through all available connections. For each connection there is a 30% chance it will be rewired. (The code just uses a random number generator.) If a connection is rewired the neuron sending the connection connects to a new neuron and removes the old connection. No neuron may send to or receive from another neuron twice. Since 30% of the connections are reassigned throughout the network, some of them reinforce clustering and some of them are long-range connections that decrease the average path length.

(3) Internetwork connections: the user specified the proportion of neurons to receive connections from another network in the initialization of the program. In the Zochowski model, that proportion is 0.3, or 68 out of 225 neurons. Each of those neurons receives input from a user-specified number of neurons in the other network – in this case, 10. Both the receiving and sending neurons are chosen by random number generation. The total number of connections generated between two networks with these parameters is 1,360—a high enough degree of connectivity between the two networks that large spiking phenomena can propagate.

(ii) Three foundations for the remainder of the model (gtk.f90), (1) altering the values of cut(t), (2) altering the values of (t), and (3) timestepping.

(1) The model behaves differently when cut(t) is changed from a nonzero value to zero for a sustained period of time, and again when cut(t) is reset to the original value. In the code, an array named gamma(gridcount) holds the values of gamma for each network. Two other arrays, gamma_lo(gridcount) and gamma_hi(gridcount), hold the low and high values of cut(t) for each network. A simple conditional evaluates whether the network is in the time bounds set for the networks to be in gamma_lo rather than gamma_hi and assigns the proper values to gamma.

(2) At any time t, the variable net(t) changes randomly on the interval (1.0, 1.5). This is accomplished in two steps. First, call a random number less than 0.1 (so that changes in the parameter are small for each step). Then call a second random number on (0.0, 1.0) to decide whether the first random number is added to or subtracted from the present value of net (taking boundary conditions into account).

(3) As the program executes, the time is increased by h each iteration. This includes three parameters, tstore, t and timeReal. t is the program’s real-valued parameter indicating total time since the start of the program. It is initialized at 1.0 to prevent problems from having 0’s in equations, and timeReal is the actual elapsed time since the program began (t – 1.0). tstore(ttl, total) is an array used to account for lagged current (see below in iii.3). ttl = 8 / h is the number of iterations in 8 ms (the internetwork lag time). A corresponding parameter, tts = 6 / h, accounts for intranetwork lag time.

tstore(ttl, total) behaves as follows: the column indicates which neuron is being examined, while the row holds the amount of time since that neuron fired. For example, with ttl = 8, tstore(5, 43) holds the length of time that it had been since neuron 43 fired 5 ms previous to the current simulation time. Whenever firing occurs, a value of 0 is set at tstore(1, n).

Whenever the time-increment subroutine is called, the values in tstore are passed from more recent to less recent, starting at least recent and moving forward so that data is not lost. Then a new value for the most recent position is set, depending on whether or not the neuron fired. If it fired, a value of 0 will be set. Otherwise, whatever value exists in that position will be increased by h.

(iii) Values generation and summation (values.f90), consisting of three separate operations with related but distinct results: (1) present current generation, which generates the value of the current being generated by each neuron at time t; (2) lagged current generation, which calculates the amount of current being delivered from any neuron to any other neuron at time t; and (3) summation, where the incoming currents to a neuron are summed in preparation for integration.

(1) The current at time t is exactly as in the form given above in II.C.

(2) The lagged current takes into account the distance between neurons in the network, adding a 6 millisecond lag time for intranetwork transmission and an 8 millisecond lag time for internetwork transmission, referencing the tstore array as defined above in (ii).

(3) The values generated in (2) are then summed. For each neuron the lagged current from all connected neurons is summed. The program steps through networks and then steps through all intranetwork connections, within a defined minimum to maximum that define the network being examined. The boundaries are set as

[image: image8..pict]
where n is the total number of neurons and grid is the current network. For two networks of 225 neurons each, then, in network 1 min = 0 and max = 225; for network 2, min = 226 and max = 450. It then steps through internetwork connections, using the same boundary conditions, but exclusively rather than inclusively: input is sent when the sending neuron is less than min or greater than max.

The results are intranetwork current total Jjtotal and internetwork total Jktotal, which are then added together to find the total resulting current incoming to a neuron, J; and the intranetwork and internetwork derivative totals, jjdtotal and jkdtotal respectively. The value of J is compared with the cut parameter, detailed above in (ii): if total incoming current J on neuron i is less than cut in the network of i, then the values of Jjtotal and Jktotal for neuron i are set to 0 for that integration. If the sum is greater than cut then their values are retained for the integration.

(iv) Integration and firing (integrateandfire.f90) are individually very simple events, though dependent on the rest of the model:

(1) Integration implements in code form the numerical integration given explicitly in (A) above.

(2) The firing subroutine moves through each neuron, checking the value for V against spike – if V ≥ 1, the neuron “fires;” otherwise its value is held for the next iteration. If a neuron fires, the subroutine sets a value of 1 at that neuron’s position in fire (which indicates whether each neuron fires or not for each iteration); sets a parameter doesFire to true for the timestep subroutine; and stores a value of 0.0 for the next iteration at the neuron’s location in Vstore. If the neuron does not fire, doesFire is set to false and fire for that neuron is set to 0. If V(i) is pushed below zero, 0.0 is stored at Vstore(i) for the next iteration. Otherwise, V(i) is stored in Vstore(i) for the next iteration. The subroutine then calls the time step subroutine to handle the amount of time since firing for each neuron.

(v) Output is controlled with two subroutines, one that handles clearing out of old data and one that handles writing of new data. All data is stored in a single subfolder of the directory from which the model is run. This directory, “data,” must exist prior to the code being run.

(1) The program deletes all the old versions of the files each time it is run. It then creates a new, blank version of each file. Thus, data contamination is prevented. However, it is possible to accidentally erase old data by executing the program before copying or importing into analysis software the data from a previous run.

(2) To write new data, each relevant file is opened during each step. The output varies with the type of data being written, but each prints the value of timeReal and then the selected data points. If the data being output is an aggregate (e.g. the sum of the current on the network), that sum is computed and then printed. In the case of individual points being examined, a few representatives are chosen (since the scale of the network makes examining all of the individual neurons prohibitive) and then printed to a file. The outputs are formatted as tab-delineated text files which may then be read into analysis software.

(vi) Execution of the main routine: the program steps through the user-specified number of cycles (the total number of cycles divided by the step size yields the length of time in seconds), altering the values of one or both network’s cut parameter at t = 2.0 and at t = 7.0 (corresponding to 1 second and 6 seconds after the model starts running). The program generates currents as the neurons fire and propagating those changes through the network. The exact behavior of the system is different every run, because the initial conditions of every variable are set randomly, as are the connection arrays and changes in (t). Each of these three randomizations are also randomized by setting the seed of the random number generator with the millisecond count on the system clock for each of them.

[image: image9..pict][image: image10.png]

IV. Results
A. Connection in a Small-world Model

As outlined above, we begin by generating small-world networks. The networks generated conform to the necessary patterns. Fig. 2 shows the pattern of connectivity for a representative pair of networks generated by our algorithm, showing the high degree of long-range connection and the degree of interaction established between the networks.

B. Neural Behavior in the Network

In Fig. 3, we can see the behavior of individual neurons in the Zochowski team’s model compared with the results from this implementation. The general form is the same: a rapid increase toward 1 followed by an immediate drop, though notable differences do remain. In particular, the motion toward the maximum is much smoother in the Zochowski model, with fewer and smaller drops along the way. It is possible this is a function of the radically different timescale on which the firing process is operating: their model also takes longer for each neuron to fire.

We believe these differences contribute to the differences in the final model in Fig. 4. Where the Michigan team observed bursting phenomena originating in the network with the lowered cut parameter and spreading to the other network, we did not. We observed the same patterns of behavior before and after changing the values of cut. These behaviors seem to closely parallel the behaviors of the Zochowski team’s model prior to the beginning of and after the conclusion of bursting.

It seems likely that the remaining differences arise from small ways in which our code implementation of the mathematical framework is slightly inaccurate. Many such differences have already been identified and eliminated; those remaining are likely to be small but with significant effect on the integration.

Continuing careful examination and refinement of the model should resolve these differences, as they have all previous issues. Progress has been significant-from current patterns that were unrecognizable as being even superficially similar to those found by the Zochowski team to the present state, where the model closely approximates theirs in significant ways.

V. Direction

A. Finishing the model

The data suggest two places of first concern which must be addressed to resolve the model, which seem likely to be related. First, the behavior of individual neurons is not directly analogous to that of the Zochowski team’s, and this different behavior on the scale of individual neurons certainly contributes to different behaviors on the scale of the networks. Second, the lack of responsiveness to changes in cut suggest that there may be issues in how the sum over incoming currents is dealing with that parameter. It is thought that these two issues account for the primary differences remaining to be resolved in this model. Thus, resolving them will likely cause the model to behave as expected.

[image: image11.jpg]10

Network 2
Network 1

o O N o <
< 0O o NN

Jualingy ondeulg

, T T
o N 0 ¥ O
< o N N

10

[image: image12..pict][image: image13..pict]
B. Future work:

Once the model has been successfully implemented, it will be possible to expand the scale of the networks and to increase the number of networks. Both of these options open doors to examine how bursting propagates through larger systems. It seems likely to include increasing the number of networks, increasing the scale of networks, and increasing both together, all the while examining what variations in cut give rise to bursting phenomena.

It is possible and straightforward to increase the physical accuracy of the model. Increasing the complexity and physicality of the way current is generated, or altering the differential equation representing membrane potential to a more physical representation. It would be particularly profitable to more accurately separate the excitability of the neuron over time from its general resistance to incoming current, currently bundled together as cut. A more advanced numerical integration method (e.g. the Runge-Kutta method instead of the Euler method) could also be useful. Such techniques are currently computationally costly and therefore have been set aside, but may be useful for future work.

In addition, the model has been designed so that in addition to its applicability to modeling epileptic responses, it can be expanded and applied to other areas of neuroscience research. The connections between neurons are explicitly generated in such a way as to account for the possibility of synaptic plasticity, where the strength of connections between neurons varies over time as a function of their interactions. Moreover, because the algorithms for connectivity, summation of current, integration, and firing are all independent of each other, any of these parts may be modified without impacting the others. Thus, the complexity of the neuron model may be increased somewhat without reference to connectivity, and vice versa.

	FIG. 1: J as a function of t for one neuron, where at t = 0, V(t) on that neuron reaches spike

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

(iii)

(ii)

FIG. 4: (i) The Zochowski team’s results, showing large-scale bursting resulting from the change in cut (the step function); (ii) the present version of our model, showing similar effects as their model before and after the introduction of bursting (cut changes identically in our model as in theirs). The graphs are otherwise similar, including small bursts of activity in our model. Visual differences are a result of differences in graphing method.

(i)

(i)

(iii)

(ii)

	FIG 3. (i) The behavior of several neurons in the Zochowski team’s model. The voltage rises quickly to a maximum, somewhat inhibited by the leakage current if the increase is slow enough. (ii) The behavior of several neurons over a similar timescale in our implementation of their model. The rise to firing is much more rapid, leading to significantly higher rates of firing in the same timescale. Variation in the time to firing is much less across the sample neurons. (iii) The behavior of a single neuron as it rises to fire. Note that inhibitory feedback is playing a much more significant role throughout the time scale, though it is not slowing the climb to firing..

	FIG 2. Each graph displays connections sent and received, with rows indicating connections sent and columns indicating connections received. White points indicate connections; black space indicates disconnection. The second network begins at position 226. From top to bottom: (i) displays the initial status of a graph. Connections are all symmetric. (ii) shows intranetwork rewiring: the number of connections is held constant in each network, but 0.3 of the connections in each network have been reassigned. Note the presence of long range connections throughout the network. (iii) shows the addition of internetwork connections, while holding connections within each network constant.

[2] Duncan J. Watts and Steven H. Strogatz, Nature Vol. 393 (1998)

[3] S. Feldt, H. Osterhage, F. Mormann, K. Lehnertz, and M. Zochowksi, Phys. Rev. E 76, 021920 (2007).

[4] Mikhail I. Rabinovich, Pablo Varona, Allen I. Selverston, Henry D. I. Abarbanel, Reviews of Modern Physics, Volume 78, No. 4 (2006).

7

[image: image14..pict][image: image15..pict][image: image16.png]Network 1

€

2

3

2

8

g

% | Network 2

k]

k]

I 4
5

0 2 6

[image: image17..pict][image: image18.jpg]abeiop

Time:

[image: image19.jpg]1 HN H 1 M 1

[image: image20.jpg]Voltage

12
1.0
0.8-
06-
0.4-
0.2-

0.0 -

-0.2

3.4080

T
3.4085

Time

1
3.4090

[image: image21.jpg]

[image: image22.jpg]

[image: image23.jpg]

_1176145960.unknown

_1176383125.unknown

_1177624988.unknown

_1176211361.unknown

_1176033421.unknown

_1176034342.unknown

_1175941955.unknown

