# R-PROCESS SIGNATURES IN HALO STARS

#### J. J. COWAN University of Oklahoma

VISTARS Workshop – March 5-12, 2005



#### **Abundance Clues and Constraints**

- New observations of n-capture elements in lowmetallicity Galactic halo stars providing clues and constraints on:
  - Synthesis mechanisms for heavy elements early in the history of the Galaxy
  - 2. Identities of earliest stellar generations, the progenitors of the halo stars
  - Suggestions on sites, particularly site or sites for the r-process
  - 4. Galactic chemical evolution
  - 5. Ages of the stars and the Galaxy

# **Solar System Abundances**



# **Heavy Element Synthesis**

- About <sup>1</sup>/<sub>2</sub> of nuclei above iron formed in the slow (s) neutron capture process
- The other half of the nuclei formed in the rapid (r) neutron capture process
- Timescale (slow or fast) with respect to radioactive decay time of unstable nuclei produced by the neutron capture

## **S-Process Nucleosynthesis**

- For the s-process:

   τ\_nc >> τ\_β decay
   (typically hundreds to thousands of years)
- Site for the s-process well identified as AGB (red giant) stars



# **R-Process Nucleosynthesis**

For the r-process: r\_nc << r\_β decay (typically 0.01 - 0.1 s) Site for the r-process still not identified



# The Nuclear Isotopes in Nature



# **R- and S-Process Paths**



## Solar System S- and R-Process Abundance Peaks



#### Most Likely Site(s) for the r-Process

• Supernovae: The Prime Suspects

 Regions just outside neutronized core: (Woosley et al. 1994; Wanajo et al. 2002)

Prompt explosions of low-mass Type II SNe (Wheeler, JC, Hillebrandt 1998)

Jets and bubbles (Cameron 2001)

 NS & NS-BH mergers (Rosswog et al. 1999; Freiburghaus et al. 1999)



### Total Abundances in CS 22892-052 : A Metal-Poor Halo Star



#### CS 22892-052: Light Element Abundances



Light elements mostly scale with [Fe/H].



# CS 22892-052: N-Capture Elements



Heavy n-capture elements greatly enhanced (≈ 40-50) over iron abundance.

#### N-Capture Abundances in CS 22892-052

Pt

80

90

0.50 Even s-process Βа Nd elements like Dv 0.00 Gd - Er Ba made in r-process -0.50 ω bo early in the Galaxy. -1.00Тb -1.50Tm, Stellar Data -2.00SS r-Process Abundances SS s-Process Abundances

-2.50

50

1.00

Very old star. Robust r-process over the history of the Galaxy.

Stellar elemental abundances consistent with scaled SS r-process only.

70

Atomic Number

60

#### N-Capture Abundances in Globular Stars

Halo and globular stars seem to show the same chemical patterns.



Note Th detections.

## Eu Isotopic Abundances in 3 Metal-Poor Halo Stars



Many more examples of Eu isotopes in other stars. Same ratio found.

Ba now seen as well in one star: isotopes appears to be consistent with SS ratios.

## Eu Isotopic Abundances in BD +17 3248: 3 Lines



#### Focus On Individual Elements: Nd



New experimental atomic physics data. Den Hartog et al. (2003).

#### Focus On Individual Elements: Ho



New experimental atomic physics data. Lawler et al. (2004).

Pt done (Den Hartog et al. (2005). Sm in progress.

Working our way through the Periodic Table!



## Stellar and Solar System Abundance Comparisons



#### Halo Star Abundances



4 r-process rich stars

Same abundance pattern at the upper end and ? at the lower end.

# Light n-Capture Elements: Evidence for a Second r-process ?

- Only recently any detections of elements, Z = 40-50
   Best evidence CS 22892-052
- Heavier element (Z ≥ 56) abundances seem to follow SS r-process curve, not so for the lighter elements
  - Same pattern appears in several other r-process rich stars
- Two separate sites (Wasserburg, Busso & Gallino): strong and weak r-process (2 types of SNe or SNe and NS mergers) or
- One site (different epochs or regions)

#### Two r-Processes: Main and Weak



# Two r-Processes: Main & Weak



# [I/Ba], [Ba/Hf], [I/Hf] vs. N\_n



#### **New HST Abundance Observations**

- Dominant transitions for elements such as Ge, Os and Pt in NUV requires HST
- New abundance determinations of these elements (and Zr) in 11 metal-poor halo stars
- Attempt to identify abundance trends and correlations

# **Raw STIS HST Spectrum**



Continuum level?

# Heavy Element Abundance Determinations



r-process rich

r-process poor

# **NUV HST STIS Spectra**

Heavy n-capture elements do not scale with iron.



Note the resolution.

Ge scales with Fe.

# Ge Abundances in Halo Stars



# Ge vs. Eu in Halo Stars



# Zr as a Function of Metallicity



Zr independent of [Fe/H], as shown already by Travaglio et al. (2004).

## Zr and Eu Abundances in Halo Stars



# **N-Capture Element Correlations**



# **N-Capture Element Correlations**



# **N-Capture Element Correlations**

HD 122563 Os/Eu] 1 BD+173248 0.5 CS 22892 ٥ -0.5 HD 122563 [Ir/Eu] 1 [EI/Eu] 0.5 CS 22892 BD+173248 0 -0.5 ₩[Pt/Eu] 1 BD+173248 HD 122563 0.5 \*\* CS 22892 0 ¥ -0.5 └--3.5 -3 -2.5 -2 -1.5 -1 [Fe/H]

3<sup>rd</sup> r-process peak elements correlate with Eu.

#### Eu Abundance Scatter in the Galaxy



Early Galaxy chemically inhomogeneous and unmixed.

# **N-Capture Element Abundance Trends**

Os-Pt & Eu correlated and show similar scatter with [Fe/H]





Ge & Zr Show little Scatter.

COMMON

#### **R- and S-Process Abundance Trends**



# Some Concluding thoughts on: Element Synthesis

- Ge, thought of as an n-capture element, appears to be correlated with Fe: challenge to theorists
- Zr (like Sr & Y) complicated:
  - not correlated with metallicity or with heavier n-capture element abundances
    - not same origin as Eu, some primary (Travaglio et al. 2004)
- Element abundances from Z = 40-50 may be uniform in r-process rich stars, but below upper end
- Os, Ir, Pt correlated with Eu abundances

# Some Concluding thoughts on: Nucleosynthesis Early in the Galaxy

- R-process elements observed in very metal-poor halo stars
- Implies that r-process sites, earliest stellar generations,
- rapidly evolving : live and die, eject r-process material into ISM prior to formation of halo stars
- Elements (even s-process ones like Ba) produced in r-process early in Galaxy
- Robust for heavy end :
- places constraints on sites for the r-process

# Some Concluding Thoughts on: Abundance Trends in the Galaxy

- New Os-Pt abundance values show same scatter as [Eu/Fe] at low metallicity
- New La/Eu ratios more reliable than Ba/Eu:
  - 1. N-capture elements show scatter
  - 2. Only most metal-poor stars show r-process only ratio
  - 3. Stresses importance of nuclear measurement
  - 4. Some "dusting" of s-process even at [Fe/H] < -2 ?</p>