STELLAR ABUNDANCE OBSERVATIONS AND HEAVY ELEMENT FORMATION

J. J. COWAN University of Oklahoma

206th American Astronomical Society Meeting - June 2, 2005

Top 11 Greatest Unanswered Questions of Physics

- 1. What is dark matter?
- 2. What is dark energy?
- 3. How were the heavy elements from iron to uranium made?
- 4. Do neutrinos have mass?
- 5. Where do ultrahigh-energy particles come from?
- 6. Is a new theory of light and matter needed to explain what happens at very high energies and temperatures?
- 7. Are there new states of matter at ultrahigh temperatures and densities?
- 8. Are protons unstable?
- 9. What is gravity?
- 10. Are there additional dimensions?
- 11. How did the Universe begin?

National Research Council Report, Discover Magazine (2002).

Abundance Clues and Constraints

- New observations of n-capture elements in lowmetallicity Galactic halo stars providing clues and constraints on:
 - 1. Synthesis mechanisms for heavy elements early in the history of the Galaxy
 - 2. Identities of earliest stellar generations, the progenitors of the halo stars
 - Suggestions on sites, particularly site or sites for the r-process
 - 4. Galactic chemical evolution
 - 5. Ages of the stars and the Galaxy

Solar System Abundances

Heavy Element Synthesis

- About ½ of nuclei above iron formed in the slow (s) neutron capture process
- The other half of the nuclei formed in the rapid (r) neutron capture process
- Timescale (slow or fast) with respect to radioactive decay time of unstable nuclei produced by the neutron capture

s-Process Nucleosynthesis

- For the s-process:
- T_{nc} >> T_β decay
 (typically hundreds to thousands of years)
- Site for the s-process well identified as AGB (red giant) stars

r-Process Nucleosynthesis

For the r-process:
T_{nc} << T_β decay (typically 0.01– 0.1 s)
Site for the r-process still not

still not identified

The Nuclear Isotopes in Nature

Solar System s- and r-Process Abundance Peaks

SS isotopic deconvolution by s- and r-process $Log \epsilon(A) = log_{10}(N_A/N_H) + 12$

Most Likely Site(s) for the r-Process

- Supernovae: The Prime Suspects
 - Regions just outside neutronized core: 1957 (Woosley et al. 1994; Wanajo et al. 2002)
 - Prompt explosions of low-mass Type II SNe (Wheeler, JC, Hillebrandt 1998)
 - Jets and bubbles (Cameron 2001)
- NS & NS-BH mergers (Rosswog et al. 1999; Freiburghaus et al. 1999)

Rapid Neutron Capture in Type II SNe ?

Total Abundances in CS 22892-052: A Metal-Poor Halo Star

Light elements mostly scale with [Fe/H].

n-Capture Abundances in CS 22892-052

Even s-process elements like Ba made in r-process early in the Galaxy.

Very old star. Robust r-process over the history of the Galaxy.

Stellar elemental abundances consistent with scaled SS r-process only

Eu Isotopic Abundances in Three Metal-Poor Halo Stars

Many more examples of Eu isotopes in other stars. Same ratio found.

Ba now seen as well in one star: isotopes appears to be consistent with SS ratios.

More lines in the same star

Focus On Individual Elements: Nd, Ho & Sm

Reduce abundance uncertainties with new experimental atomic physics data.

Focus On Individual Elements: Nd, Ho & Sm

New experimental atomic physics data:

Nd done (Den Hartog et al. 2003)
<u>Ho done (</u>Lawler et al. 2004)
Pt done (Den Hartog et al. 2005)
Sm in progess

Working our way through the Periodic Table!

Halo Star Abundances

4 r-process rich stars

Same abundance pattern at the upper end and ? at the lower end.

Light n-Capture Elements: Evidence for a Second r-process ?

- Only recently any detections of elements, Z = 40-50
 - → Best evidence CS 22892-052
- Heavier element (Z ≥ 56) abundances seem to follow SS r-process curve, not so for the lighter elements
 - Same pattern appears in several other r-process rich stars
- Two separate sites (Wasserburg, Busso & Gallino): strong and weak r-process (two types of SNe or SNe and NS mergers) or
- One site (different epochs or regions)

New HST Abundance Observations

- Dominant transitions for elements such as Ge, Os and Pt in NUV requires HST
- New abundance determinations of these elements (and Zr) in 11 metal-poor halo stars
- Attempt to identify abundance trends and correlations

NUV HST STIS Spectra

Heavy n-capture elements do not scale with iron.

Ge scales with Fe.

More spectra

Note the resolution.

Ge Abundances in Halo Stars

Ge vs. Eu in Halo Stars

Zr as a Function of Metallicity

Zr independent of [Fe/H], as shown already by Travaglio et al. (2004).

Zr and Eu Abundances in Halo Stars

n-Capture Element Correlations

n-Capture Element Correlations

n-Capture Element Correlations

3rd r-process peak elements correlate with Eu.

Eu Abundance Scatter in the Galaxy

Early Galaxy chemically inhomogeneous and unmixed for r-process elements.

Eu Abundance Scatter in the Galaxy

Early Galaxy chemically inhomogeneous and unmixed for r-process elements.

n-Capture Element Abundance Trends

Os-Pt & Eu correlated and show similar scatter with [Fe/H]

RARE

Ge & Zr Show little Scatter.

COMMON

r- and s-Process Abundance Trends

Th Detections in Four Halo Stars and the Sun

R-Process Chronometers

- Use various radioactive abundance ratios: Th/Eu, Th/U, Th/Pt, etc. to predict initial timezero values
- Compare with observed ratios
- Is independent of chemical evolution models
- A range of values depending upon uncertainties in nuclear physics predictions (i.e., mass formulae) and abundance uncertainties

Radioactive-Decay Age Estimates

- The measured abundance of Th in stars such as CS 22892-052 allows for age determinations using the long half-life of ²³²Th (14 Gyr).
- $N_{Th(t)} = N_{Th(t0)} \exp(-t/\tau_{Th})$ • SS Th/Eu (today) = 0.344
- SS Th/Eu (at formation) = 0.463
- Measured Th/Eu in CS 22892-052 = 0.24

Theoretical r-Process Predictions

Calculate radioactive abundance ratios based upon fitting stable elemental & isotopic values.

Chronometric and Other Ages

- For CS 22892-052 (latest values of Th/Eu, Th/Pt) give <14.2> +/- 3 Gyr
- For bd+17 3248 (with the detection of U) Th/U, Th/Eu, Th/Pt, etc. (<13.8> +/- 4 Gyr)
- Compare to globular values (M15 ≈ 14Gyr, from chronometers) & typically 13-15 Gyr
- WMAP of 13.7 Gyr
- SN Ia of 14.2 +/- ≈ 2 Gyr

Problems and Uncertainties

What about CS 31082-001? Th/Eu give unrealistic age – Th/U give 14.1 – 15.5 +/- ≈ 3 Gyr (from different groups)
Th & U very high: actinide boost? fission recycling? What about low Pb? Need more U detections and need better Nuclear values.

Some Concluding Thoughts on: Nucleosynthesis Early in the Galaxy

- r-process elements observed in very metal-poor (old) halo stars
- Implies that r-process sites, earliest stellar generations
- rapidly evolving: live and die, eject r-process material into ISM prior to formation of halo stars
- Elements (even s-process ones like Ba) produced in r-process early in Galaxy
- Robust for heavy end:
- places constraints on sites for the r-process

More Deep Thoughts on: Element Synthesis

- Ge and Zr complicated element formation: challenge to theorists
- Evidence for a second r-process?
- Os, Ir & Pt correlated (and scatter) with Eu
- s-process onset at low [Fe/H]: how?

 Detections of radioactive elements (Th & U) allow age estimates for oldest stars: Galaxy & Universe

With Collaborators at:

- U. of Texas
- MSU
- U. of Chicago
- Caltech
- MIT
- Carnegie Obs.

- U. of Wisconsin
- U. of Mainz
- Obs. de Paris
 - U. of Basel
 - U. di Torino
 - ESO

With generous support from: the National Science Foundation & the Space Telescope Science Institute.