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ABSTRACT

We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely
metal-poor star BD+44◦493 a ninth magnitude subgiant with [Fe/H] = −3.8 and enhanced carbon, based on data
acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest
example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not
exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance
determinations for a number of species that were previously studied in the optical region, and obtain strong upper
limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which
are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44◦493, log ε (B) < −0.70,
the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars.
In addition, we obtain even lower upper limits on the abundances of beryllium, log ε (Be) < −2.3, and lead,
log ε (Pb) < −0.23 ([Pb/Fe] < +1.90), than those reported by previous analyses in the optical range. Taken
together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that
BD+44◦493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally,
the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns
in CEMP-no stars.
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1. INTRODUCTION

Carbon-enhanced metal-poor (CEMP) stars are a subset of
metal-poor (MP; [Fe/H]13< −1.0, e.g., Beers & Christlieb
2005; Frebel & Norris 2013) and very metal-poor (VMP;
[Fe/H] < −2.0) stars that exhibit elevated carbon relative to
iron, [C/Fe], sometimes referred to as carbonicity ([C/Fe] �
+1.0; Placco et al. 2011). It has recently been recognized that
a more appropriate division on [C/Fe] for the identification of
CEMP stars is at somewhat lower carbonicity, e.g., [C/Fe] �
+0.7 (Aoki et al. 2007; Carollo et al. 2012; Norris et al. 2013).
In the past few decades, it has become clear that such stars
comprise a significant fraction of all VMP stars (∼10%–20%;
Beers et al. 1992; Norris et al. 1997, 2007, 2013; Rossi et al.
1999, 2005; Beers & Christlieb 2005; Cohen et al. 2005,

∗ Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS 5-26555. These observations are associated with program
GO-12554, and we also make use of data taken in program GO-12268.
13 [A/B] = log(NA/NB )� − log(NA/NB )�, where N is the number density of
atoms of a given element, and the indices refer to the star (�) and the Sun (�).

2013; Marsteller et al. 2005; Frebel et al. 2006b; Lucatello
et al. 2006; Carollo et al. 2012; Spite et al. 2013), one that
increases strongly with declining metallicity, from 30% for
[Fe/H] < −3.0, to 40% for [Fe/H] < −3.5, ∼75% for [Fe/H] <
−4.0 and 100% for [Fe/H] < −5.0. This trend has been
confirmed with the many thousands of CEMP stars identified by
Lee et al. (2013) from the Sloan Digital Sky Survey (SDSS; York
et al. 2000), and its extensions SEGUE-1 (Sloan Extension for
Galactic Exploration and Understanding; Yanny et al. 2009) and
SEGUE-2 (C. Rockosi et al., in preparation).

For most CEMP stars there exists a clear correlation between
carbon enhancement and the over-abundance of elements pro-
duced by s-process nucleosynthesis, such as Ba (CEMP-s stars;
see Beers & Christlieb 2005). This behavior is consistent with
the hypothesis that these enhancements (both for carbon and
elements produced by the s-process) are due to nucleosynthesis
processes that took place during the asymptotic giant branch
(AGB) stage of stellar evolution (e.g., Herwig 2005; Sneden
et al. 2008). The resulting abundance pattern can arise from the
star itself (which should rarely be found, but see Masseron et al.
2006) or by a now-extinct binary companion that transferred
material to the surviving (observed) companion (Stancliffe &
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Glebbeek 2008). Multi-epoch radial-velocity measurements by
McClure (1983), McClure & Woodsworth (1990), and Jorissen
et al. (1998) demonstrated that the frequency of detected bina-
ries among equivalent Population I Ba stars and Population II
CH stars indicated that essentially all are members of binary
systems. Lucatello et al. (2005) conducted a similar study for
members of the more metal-deficient CEMP-s sub-class of stars,
and reached the same conclusion.

An intriguing variation on this behavior was initially recog-
nized by Barbuy et al. (1997) and Hill et al. (2000). The CEMP
stars CS 22948-027 and CS 29497-034 were found not only
to be rich in the elements commonly produced by s-process
nucleosynthesis, such as Sr, Y, Ba, and La, but also in Eu,
an element that, for extremely low-metallicity stars, is more
likely produced by r-process nucleosynthesis. Additional stud-
ies by many groups have now identified ∼50 of these so-called
CEMP-r/s stars. These cases, once thought to be the rare ex-
ceptions, are as commonly represented among CEMP stars as
the “s-only” variety. The origin of the abundance patterns of the
CEMP-r/s stars is not yet clear, and many scenarios have been
proposed (Jonsell et al. 2006; Masseron et al. 2010; Lugaro et al.
2012). For example, an association with a 22Ne neutron source
in intermediate-mass AGB stars has been suggested for pro-
genitors of CEMP-r/s stars, rather than the 13C neutron source
thought to be active for low-mass AGB stars, the likely pro-
genitors of the CEMP-s stars (Placco et al. 2013; Hollek et al.
2014). Mass transfer from a companion that passed through the
AGB phase of stellar evolution has been suggested previously as
an explanation for the CEMP-s and CEMP-r/s classes of stars,
based on the high fraction of such stars found in binary systems
(Masseron et al. 2010; Allen et al. 2012; Bisterzo et al. 2012).

The story has become richer still. Aoki et al. (2007), and
others since, have shown that the correlation between carbon
enhancement and the overabundances of s- or r/s-elements no
longer persists (or at least is different in nature) for the majority
of CEMP stars with [Fe/H] < −2.7. These so-called CEMP-no
stars (indicating no enhancement of neutron-capture elements)
suggest that a variety of carbon-producing mechanisms, other
than that associated with AGB stars, may have played a role in
the early universe. Possible progenitors for this sub-class include
massive, rapidly rotating, mega MP ([Fe/H] < −6.0) stars,
sometimes referred to as “spinstars” (Chiappini 2013), which
models suggest have greatly enhanced abundances of CNO due
to distinctive internal burning and mixing episodes, followed by
strong mass loss (Meynet et al. 2006, 2010; Hirschi 2007). An-
other possible scenario is pollution of the interstellar medium
by so-called faint supernovae associated with the first genera-
tions of stars, which experience extensive mixing and fallback
during their explosions (Umeda & Nomoto 2005; Tominaga
et al. 2007). Although more data are desired for CEMP-no stars,
Hansen et al. (2013) report that the fraction of binaries among
stars within this sub-class is no higher than expected for random
samples of VMP giants. Cohen et al. (2013), Norris et al. (2013),
Starkenburg et al. (2014), and J. Andersen et al. (in preparation)
reach similar conclusions. Thus, contribution of material from
an evolved binary companion is apparently not required in order
to form CEMP-no stars.

The recently reported extremely MP damped Lyα system by
Cooke et al. (2011) ([Fe/H] ∼ −3.0) exhibits enhanced car-
bon ([C/Fe] = +1.5) and other elemental-abundance signatures
that Kobayashi et al. (2011b) also associate with production
by faint supernovae. This observation is suggestive of simi-
lar carbon-production and enrichment mechanisms in the early

universe—both locally and in high-redshift systems. It is pre-
sumably no coincidence (Beers & Christlieb 2005; Frebel et al.
2007) that five of the six stars known with [Fe/H] < −4.5 are
confirmed CEMP-no stars (Christlieb et al. 2002; Frebel et al.
2005; Norris et al. 2007; Caffau et al. 2011; Hansen et al. 2014;
Keller et al. 2014).

There are two observational keys required to advance our
understanding of these ancient stars and how they are related to
early Galactic chemical evolution. One is to obtain the full set
of C, N, and O abundances for as many CEMP stars as possible,
an activity that is being pursued by a number of groups (see,
e.g., Kennedy et al. 2011; Placco et al. 2013, 2014; Roederer
et al. 2014b; C. Hansen et al., in preparation; C. Kennedy et al.,
in preparation). The other is to obtain as complete an inventory
as possible of the light and heavy neutron-capture elements for
representative examples of the known varieties of CEMP stars.
Although we have partial information from previous ground-
based high-resolution spectroscopic observations, there remain
many key elements, such as the light species Ge and Zr, and
heavier species such as Os and Pt, that can only be obtained
through near-ultraviolet (NUV) spectroscopy (e.g., Sneden et al.
1998; Cowan et al. 2005). The element Pb is of particular
importance, as it may provide a useful discriminant between
a number of possible nucleosynthesis pathways (Busso et al.
1999; Cohen et al. 2006; Ito et al. 2013).

Since it was installed on board the Hubble Space Telescope
(HST) in 1997, the Space Telescope Imaging Spectrograph
(STIS) has been the only instrument available for the high-
resolution NUV spectroscopy required to make these measure-
ments. We have recently completed a new HST/STIS observing
program to collect high-quality NUV spectroscopy for three
CEMP stars, including one member of each of the CEMP-no,
CEMP-s, and CEMP-r/s sub-classes. In this paper, we perform
an abundance analysis of high-resolution NUV spectroscopy for
the star BD+44◦493, the brightest known member of the sub-
class of CEMP-no stars. We fill in the abundance patterns, as
best as possible, for elements beyond the iron peak, including
eight species not accessible from ground-based observations.
Section 2 describes our observations and reductions, and com-
pares abundances derived from NUV lines with those derived
previously from optical lines by Ito et al. (2013). Section 3
describes our abundance analysis in detail. We present a brief
discussion and our conclusions in Section 4.

2. OBSERVATIONS AND MEASUREMENTS

2.1. HST/STIS Spectra

New STIS (Kimble et al. 1998; Woodgate et al. 1998)
observations of BD+44◦493 were obtained as part of program
GO-12554, using the E230M echelle grating, centered on
2707 Å, and the NUV Multianode Microchannel Array detector.
There were two observational sequences of four individual
exposures, taken on 2012 February 28. Each sequence had an
exposure time of 2 hr and 52 minutes, with a total integration
time of 5 hr and 44 minutes. The 0.′′06 × 0.′′2 slit yields a ∼2 pixel
resolving power (R ≡ λ/Δλ) ∼30,000. Our setup produced a
wavelength coverage from 2280–3070 Å in a single exposure.
The observations were reduced and calibrated using the standard
calstis pipeline. The signal-to-noise ratio (S/N) of the combined
spectrum varies from ∼50 pixel−1 near 2300 Å, to ∼80 pixel−1

near 2700 Å, to >100 pixel−1 near 3070 Å.
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Figure 1. HST/STIS spectra for BD+44◦493, HD 108317, and HD 196944, in the region of the Mg ii doublet at 2800 Å. All three stars have similar Teff and log g;
the substantially lower metallicity of BD+44◦493 is immediately apparent.

Figure 1 shows a portion of the NUV spectra of BD+44◦493,
in the region of the Mg ii doublet at 2800 Å. HST/STIS spec-
tra of two MP giants with similar atmospheric parameters are
shown for comparison, HD 108317 (Teff = 5100 K, [Fe/H] =
−2.53; Roederer et al. 2012b) and HD 196944 (Teff = 5170 K,
[Fe/H]= −2.46; Roederer et al. 2008). The effective tempera-
tures and surface gravities of HD 108317 and HD 196944 are
comparable to BD+44◦493, but their metallicities are higher by
about 1.5 dex. The lower metallicity of BD+44◦493 is imme-
diately apparent from inspection of this figure. HD 108317 is
moderately enhanced in r-process material, ([Eu/Fe] = +0.5;
Roederer et al. 2012b), and HD 196944 is enhanced in s-process
material ([Ba/Fe] = +1.5; Roederer et al. 2014a). BD+44◦493
does not exhibit neutron-capture element enhancements. To bet-
ter illustrate the rather striking differences, Figure 2 shows por-
tions of the NUV spectra around the lines of several neutron-
capture elements for the same three stars shown in Figure 1. Note
in particular the absence of absorption by Cd i, Os ii, Lu ii, and
Pb i for BD+44◦493, which are well-known abundance mark-
ers for the operation of the s-process (see Gallino et al. 1998;
Arlandini et al. 1999; Sneden et al. 2008 for further details).

2.2. Line Measurements

Equivalent widths were obtained by fitting Gaussian profiles
to the observed atomic lines, using the Robospect package
(Waters & Hollek 2013). The line lists were based on the
compilation of Roederer et al. (2012b), as well as on data
retrieved from the VALD database (Kupka et al. 1999) and
the National Institute of Standards and Technology Atomic
Spectra Database (NIST; Kramida et al. 2013). Abundances for
individual Fe i and Fe ii lines, derived from equivalent widths as
well as from spectral synthesis, are listed in Table 1. Figure 3
shows a sample of the NUV spectra, with a number of the Fe
lines used for the synthesis.

The abundances of all Fe i and Fe ii lines in our STIS
spectrum were verified by spectral synthesis. We adopt the

model-atmosphere parameters derived by Ito et al. (2013), Teff =
5430 K, log g = 3.4 (cgs), vmicro = 1.3 km s−1, and [Fe/H] =
−3.8. The iron abundances we derive from NUV lines [Fe i:
log(ε) = 3.62 ± 0.02; Fe ii: log(ε) = 3.63 ± 0.02] differ little
from the values derived by Ito et al. from optical lines [Fe i:
log(ε) = 3.67 ± 0.01; Fe ii: log(ε) = 3.68 ± 0.03].

Previous work has shown that small differences between
optical and NUV Fe i and Fe ii lines may exist (Roederer et al.
2010b, 2012b). For example, Figure 6 of Ito et al. (2013)
reveals a small “dip” in the abundances of Fe i and Fe ii lines
blueward of the Balmer series limit in BD+44◦493. Roederer
et al. (2012b), Lawler et al. (2013), and Wood et al. (2013,
2014) investigated several causes of this effect for other MP
giants, but the differences are not fully understood at present.
To minimize this effect, we reference abundance ratios of other
elements derived from NUV transitions to the iron abundance
also derived from NUV transitions.

As a check on our procedures, we also used the equivalent-
width values published in Ito et al. (2013) as input to our ma-
chinery. Figure 4 shows the differences between the abundances
derived by equivalent-width analysis between Ito et al. (2013)
and this work. Apart from Si (which differs by −0.07 dex relative
to Ito et al.), all of the other differences lie within ±0.04 dex,
with a mean difference of −0.01 dex. This test demonstrates
that our analysis procedures and machinery can reproduce the
Ito et al. values to excellent precision.

3. ABUNDANCE ANALYSIS AND UPPER LIMITS

Chemical abundances or upper limits were obtained from
the NUV spectrum of BD+44◦493 for 26 elements, including
measurements for C, O, Sc, Ti, Cr, Mn, Fe, and Ni, and upper
limits for Be, B, Ge, Zr, Nb, Mo, Cd, Te, Ce, Nd, Eu, Gd, Yb,
Lu, Hf, Os, Pt, and Pb.

Our abundance analysis utilizes one-dimensional plane-
parallel ATLAS9 model atmospheres with no overshooting
(Castelli & Kurucz 2004), computed under the assumption of
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Figure 2. HST/STIS spectra for BD+44◦493, HD 108317, and HD 196944, in the regions of the lines of Os ii, Cd i, Lu ii, and Pb i. The contrast in the abundances of
these neutron-capture elements for the latter two stars, relative to BD+44◦493, is clear.

(A color version of this figure is available in the online journal.)
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Figure 3. Spectral synthesis of Fe i and Fe ii features. The dots represent the observed spectra, the solid line is the best abundance fit, and the dotted and dashed line
are the lower and upper abundance limits, indicating the abundance uncertainty. The shaded area encompasses a 0.4 dex difference in log ε (Fe). The light gray line
shows the synthesized spectrum in the absence of Fe.

(A color version of this figure is available in the online journal.)
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Table 1
Equivalent-width Measurements

λ χ log gf W log εW log εsyn

(Å) (eV) (mÅ)

Fe i

2283.30 0.12 −2.22 21.10 3.62 3.70
2283.66 0.11 −2.22 · · · · · · 3.70
2293.85 0.09 −2.37 13.10 3.43 3.60
2294.41 0.11 −1.54 43.40 3.71 3.65
2296.93 0.11 −2.02 29.60 3.68 3.70
2297.79 0.05 −1.10 52.80 3.59 3.60
2298.66 0.11 −2.42 13.90 3.54 3.60
2299.22 0.09 −1.55 38.00 3.48 3.65
2320.36 0.05 −0.99 57.80 3.66 3.65
2350.41 0.00 −3.03 7.30 3.67 · · ·
2369.46 0.11 −2.19 19.10 3.49 3.50
2371.43 0.09 −1.95 33.30 3.67 3.70
2374.52 0.12 −2.10 22.90 3.53 3.60
2389.97 0.09 −1.57 39.70 3.50 3.60
2443.87 0.86 −1.24 28.00 3.58 3.65
2445.21 0.86 −2.02 5.40 3.40 · · ·
2453.48 0.92 −0.92 27.90 3.31 · · ·
2457.60 0.86 −0.32 48.00 3.32 · · ·
2462.18 0.05 −1.30 49.80 3.54 3.60
2462.65 0.00 −0.32 78.40 3.46 3.60
2463.73 0.96 −1.13 20.60 3.33 · · ·
2468.88 0.86 −0.62 42.50 3.41 3.55
2470.97 0.92 −1.62 8.40 3.27 · · ·
2472.89 0.05 −0.08 99.50 3.65 3.60
2485.99 0.92 −1.61 10.30 3.36 3.60
2486.69 0.96 −0.91 28.50 3.35 3.50
2487.07 1.01 −0.75 32.90 3.38 3.55
2487.37 0.09 −1.90 31.60 3.51 3.55
2491.16 0.11 +0.13 104.30 3.55 3.60
2495.87 0.86 −1.76 12.70 3.56 3.65
2496.53 0.92 −0.66 39.10 3.37 3.50
2501.13 0.00 −0.35 81.70 3.55 3.60
2501.69 0.86 −1.51 23.50 3.69 3.70
2507.90 0.96 −0.79 34.50 3.40 3.50
2508.75 0.99 −1.95 · · · · · · 3.65
2517.66 0.99 −0.98 32.80 3.57 3.65
2518.10 0.09 −0.26 75.10 3.37 3.60
2519.63 1.01 −1.20 19.70 3.41 3.65
2522.48 0.92 −1.92 12.20 3.76 3.70
2522.85 0.00 +0.26 · · · · · · 3.70
2530.69 0.09 −2.37 · · · · · · 3.70
2543.92 2.45 +0.70 31.40 3.32 3.55
2552.61 0.11 −2.52 15.30 3.62 3.65
2556.86 0.86 −2.02 · · · · · · 3.55
2560.56 1.01 −2.11 · · · · · · 3.65
2569.74 0.99 −2.24 3.10 3.47 · · ·
2576.69 0.86 −0.91 35.90 3.43 3.55
2584.54 0.86 −0.39 51.00 3.42 3.60
2610.75 0.09 −2.96 5.10 3.45 3.70
2612.77 0.05 −2.59 17.30 3.68 3.70
2618.02 0.96 −0.97 38.60 3.66 3.65
2618.71 0.00 −2.43 14.20 3.35 3.50
2623.37 0.11 −2.57 · · · · · · 3.65
2623.53 0.96 −0.70 48.40 3.72 3.60
2632.24 0.99 −1.20 25.60 3.54 3.60
2632.59 0.09 −2.33 23.80 3.67 3.65
2635.81 0.99 −0.81 43.60 3.69 3.60
2636.48 0.92 −2.04 6.00 3.49 3.55
2641.03 2.45 −1.25 1.70 3.72 · · ·
2644.00 1.01 −0.91 29.50 3.38 3.50
2647.56 0.05 −2.42 18.50 3.55 3.60
2651.71 0.96 −2.04 5.80 3.51 3.70
2656.14 2.40 −0.59 3.70 3.36 3.60
2656.79 1.49 −1.77 3.90 3.61 3.65

Table 1
(Continued)

λ χ log gf W log εW log εsyn

(Å) (eV) (mÅ)

2660.40 0.99 −2.33 5.40 3.80 3.70
2662.06 0.96 −1.61 9.00 3.30 · · ·
2679.06 0.86 −0.75 50.90 3.72 3.60
2680.45 0.99 −1.74 7.40 3.35 3.50
2689.21 0.92 −0.89 41.70 3.61 3.60
2690.07 0.00 −2.72 11.00 3.48 3.55
2699.11 0.92 −1.26 24.50 3.47 3.60
2710.54 1.61 −1.33 4.30 3.34 3.60
2714.87 0.96 −2.19 3.50 3.41 3.60
2723.58 0.09 −0.72 73.50 3.66 3.70
2726.05 1.01 −1.21 19.60 3.37 3.55
2728.02 0.92 −1.46 19.10 3.50 3.55
2735.47 0.92 −0.40 54.50 3.53 · · ·
2737.31 0.11 −0.61 · · · · · · 3.70
2744.07 0.12 −0.98 · · · · · · 3.65
2754.03 0.99 −1.38 · · · · · · 3.60
2755.18 2.43 −1.28 · · · · · · 3.65
2756.27 0.05 −2.17 · · · · · · 3.65
2756.33 0.11 −1.09 · · · · · · 3.65
2759.81 1.01 −1.58 12.00 3.45 3.55
2772.07 0.86 −1.53 · · · · · · 3.65
2772.11 0.09 −1.48 · · · · · · 3.65
2813.29 0.92 −0.35 · · · · · · 3.60
2823.28 0.96 −0.90 · · · · · · 3.60
2827.89 0.05 −2.80 8.00 3.43 3.60
2838.12 0.99 −1.11 · · · · · · 3.55
2936.90 0.00 −0.79 · · · · · · 3.50
2959.99 2.69 −0.07 9.90 3.55 3.55
2965.25 0.12 −1.34 · · · · · · 3.70
2970.10 0.11 −1.15 · · · · · · 3.65
2970.12 0.09 −1.87 · · · · · · 3.65
2983.57 0.00 −0.58 · · · · · · 3.65
2994.43 0.05 −0.53 · · · · · · 3.70
2994.50 0.12 −2.22 · · · · · · 3.70
2999.51 0.86 −0.60 · · · · · · 3.70
3000.45 1.49 −1.09 · · · · · · 3.50
3008.14 0.11 −0.84 · · · · · · 3.60
3016.18 0.99 −1.44 · · · · · · 3.60
3021.07 0.05 −0.36 · · · · · · 3.60
3026.46 0.99 −1.12 · · · · · · 3.60
3037.39 0.11 −0.70 · · · · · · 3.60
3042.66 0.99 −1.30 · · · · · · 3.60
3047.61 0.09 −0.56 79.70 3.45 3.60
3059.09 0.05 −0.69 · · · · · · 3.70

Fe ii

2331.31 0.23 −0.68 110.40 3.58 3.70
2354.89 0.35 −1.05 84.70 3.49 3.65
2359.11 0.11 −0.60 · · · · · · 3.70
2359.60 2.68 −0.73 21.40 3.57 3.55
2360.00 0.23 −0.52 · · · · · · 3.70
2360.29 0.30 −0.51 · · · · · · 3.70
2361.73 2.69 −0.79 12.30 3.31 3.50
2368.60 0.35 −0.69 102.70 3.58 3.55
2370.50 0.39 −1.23 76.10 3.68 3.70
2384.39 0.39 −0.96 85.30 3.60 3.70
2399.24 0.08 −0.14 · · · · · · 3.65
2422.69 3.89 +0.01 7.80 3.45 3.60
2429.39 2.70 −0.61 26.70 3.63 3.60
2430.08 2.83 +0.23 40.50 3.37 · · ·
2432.87 4.08 +0.55 12.90 3.36 3.55
2433.50 2.68 −0.86 23.80 3.76 3.70
2446.47 2.66 −0.42 31.30 3.54 3.60
2447.20 3.89 −0.21 8.50 3.71 3.65
2463.28 3.15 −0.19 23.20 3.54 3.60
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Table 1
(Continued)

λ χ log gf W log εW log εsyn

(Å) (eV) (mÅ)

2464.91 3.23 −0.09 22.00 3.48 3.60
2468.30 2.68 −1.05 15.90 3.67 3.70
2470.41 3.23 −0.48 11.20 3.47 3.50
2470.67 2.83 −0.07 40.50 3.65 3.60
2476.27 2.69 −1.05 12.70 3.56 3.60
2497.82 3.23 −0.03 23.10 3.44 3.60
2502.39 3.22 +0.03 23.80 3.40 3.55
2506.09 3.20 −0.03 20.10 3.32 3.55
2527.10 2.66 −0.45 32.10 3.56 3.70
2529.55 2.81 +0.33 51.90 3.64 3.70
2533.63 2.66 +0.35 48.60 3.33 · · ·
2555.07 2.84 −0.81 12.30 3.44 3.60
2555.45 2.86 −0.83 11.30 3.43 3.60
2559.77 3.23 −0.72 9.30 3.59 3.60
2560.28 3.20 −0.16 · · · · · · 3.60
2562.54 0.99 +0.02 105.30 3.50 3.65
2563.48 1.04 −0.23 94.60 3.64 3.70
2566.62 2.81 −1.07 6.60 3.34 3.55
2566.91 1.08 −0.64 · · · · · · 3.70
2582.58 1.08 −0.45 77.50 3.52 3.65
2590.55 2.70 −1.32 7.20 3.52 3.60
2591.54 1.04 −0.46 80.40 3.56 3.65
2592.78 4.08 +0.65 18.20 3.44 3.50
2608.85 2.81 −1.39 7.80 3.73 3.70
2610.63 0.05 +0.92 · · · · · · 3.70
2620.17 2.84 −1.15 · · · · · · 3.65
2620.70 2.83 −0.55 · · · · · · 3.60
2621.67 0.12 −0.94 110.30 3.63 3.70
2626.50 2.86 −0.67 12.60 3.30 3.50
2637.64 3.34 −0.56 6.80 3.37 · · ·
2652.57 3.27 −1.43 2.50 3.69 · · ·
2664.66 3.39 +0.31 29.90 3.43 3.55
2684.75 3.81 +0.23 13.00 3.38 3.60
2721.81 3.15 −1.25 4.20 3.63 3.70
2732.45 0.23 −2.96 39.70 3.68 3.70
2769.36 3.15 −0.48 18.20 3.60 3.60
2917.47 1.04 −2.85 · · · · · · 3.65
2965.41 3.42 −2.24 · · · · · · 3.65

local thermodynamic equilibrium (LTE). We use the 2011 ver-
sion of the MOOG synthesis code (Sneden 1973) for this
analysis. To treat isotropic, coherent scattering in this version
of MOOG, the solution of the radiative transfer considers both
absorption and scattering components, rather than treating such
scattering as pure absorption (see Sobeck et al. 2011 for further
details).

Our final abundance ratios, [X/Fe], are given with respect to
the solar abundances of Asplund et al. (2009). Upper limits
for elements for which no absorption lines were detected
provide additional information for the interpretation of the
overall abundance pattern of the stars. Based on the S/N in
the spectral region of the line, and employing the formula
given in Frebel et al. (2006a), we derive 3σ upper limits for
18 elements. Abundances and upper limits for individual lines,
derived from both equivalent widths and spectral synthesis, are
listed in Table 2.

A summary of the chemical abundances and upper limits for
BD+44◦493 is provided in Table 3. The σ refers to the stan-
dard error of the mean. We have also addressed the systematic
uncertainties that could affect the model-atmosphere parame-
ters. Table 4 shows the effect of changes in each atmospheric

Table 2
Abundances and Upper Limits

Species λ χ log gf log ε (X) Ref.
(Å) (eV)

Be i 2348.61 0.000 +0.140 <−2.30 1
B i 2496.77 0.000 −0.800 <−0.70 1
B i 2497.72 0.002 −0.500 <−0.70 1
C i 2478.56 2.682 −1.110 +5.80a 1
C i 2967.21 0.005 −6.800 +5.75a 1
Sc ii 2552.35 0.022 +0.030 −0.44 2
Ti ii 2524.64 0.122 −1.320 +1.42 3
Ti ii 2525.60 0.151 −0.570 +1.44 3
Ti ii 2531.25 0.135 −0.670 +1.48 3
Ti ii 2534.62 0.122 −0.930 +1.44 3
Ti ii 2841.93 0.607 −0.590 +1.35 3
Ti ii 2888.93 0.574 −1.360 +1.49 3
Ti ii 2891.06 0.607 −1.140 +1.44 3
Ti ii 3058.09 1.180 −0.420 +1.42 3
Cr ii 2740.10 1.506 −1.090 +1.62 4
Cr ii 2751.87 1.525 −0.290 +1.72 4
Cr ii 2757.72 1.506 −0.360 +1.66 4
Cr ii 2762.59 1.525 +0.050 +1.68 4
Cr ii 2766.54 1.549 +0.320 +1.66 4
Mn ii 2576.11 0.000 +0.400 +1.00a 5
Mn ii 2605.68 0.000 +0.136 +1.00a 5
Mn ii 2933.05 1.175 −0.102 +1.00a 5
Mn ii 2949.20 1.175 +0.253 +0.90a 5
Ni i 2289.99 0.000 +0.060 +2.24 6
Ni i 2293.12 0.109 −0.970 +2.25 6
Ni i 2312.34 0.165 +0.410 +2.48 6
Ni i 2325.80 0.165 +0.400 +2.23 6
Ni i 2346.63 0.165 −0.840 +2.33 6
Ni i 2356.87 0.025 −1.510 +2.23 6
Ni i 2360.64 0.275 −1.080 +2.24 6
Ni i 2376.02 0.109 −1.700 +2.36 6
Ni i 2386.59 0.109 −1.180 +2.28 6
Ni i 2419.31 0.165 −1.050 +2.27 6
Ni i 2821.29 0.025 −1.410 +2.37 6
Ni i 2943.91 0.025 −1.170 +2.34 6
Ni i 2992.59 0.025 −1.220 +2.48 6
Ni i 3003.62 0.109 −0.320 +2.17 6
Ni i 3012.00 0.423 +0.000 +2.23 6
Ni i 3031.87 0.000 −1.810 +2.46 6
Ni i 3037.93 0.025 −0.520 +2.40 6
Ni i 3050.82 0.025 −0.100 +2.33 6
Ni i 3054.31 0.109 −0.600 +2.39 6
Ni ii 2278.77 1.680 +0.190 +2.21 7
Ni ii 2297.14 1.254 −0.070 +2.27 7
Ni ii 2297.49 1.322 −0.330 +2.19 7
Ni ii 2356.40 1.859 −0.830 +2.29 7
Ni ii 2387.76 1.680 −1.070 +2.32 7
Ni ii 2394.52 1.680 +0.170 +2.09 7
Ni ii 2416.14 1.859 +0.130 +2.20 7
Ni ii 2437.89 1.680 −0.330 +2.13 7
Ge i 2651.17 0.175 +0.020 <−0.80 8
Ge i 2691.34 0.069 −0.700 <−0.00 8
Ge i 3039.07 0.883 +0.070 <−0.05 8
Zr ii 2567.64 0.000 −0.170 <−1.11 9
Zr ii 2699.60 0.039 −0.660 <−0.40 10
Zr ii 2700.14 0.095 −0.080 <−1.03 9
Zr ii 2732.72 0.095 −0.490 <−0.45 9
Zr ii 2758.81 0.000 −0.560 <−0.46 9
Zr ii 2915.99 0.466 −0.500 <−0.38 9
Zr ii 3054.84 1.010 +0.080 <−0.16 10
Nb ii 2950.88 0.510 +0.240 <−0.77 11
Nb ii 3028.44 0.440 −0.200 <−0.51 11
Mo ii 2871.51 1.538 +0.060 <−0.29 12
Cd i 2288.02 0.000 +0.150 <−1.79 13
Te i 2385.79 0.589 −0.810 <−0.05 14
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Table 2
(Continued)

Species λ χ log gf log ε (X) Ref.
(Å) (eV)

Ce ii 3063.00 0.900 +0.400 <−0.51 15
Nd ii 3014.17 0.200 −0.660 <−0.01 16
Eu ii 2906.67 0.000 −0.350 <−1.46 16
Gd ii 3010.13 0.000 +0.190 <−1.21 17
Yb ii 2891.39 0.000 −1.169 <−1.75 16
Lu ii 2615.43 0.000 −0.270 <−2.16 18
Hf ii 2641.41 1.036 +0.570 <−1.11 19
Hf ii 2820.23 0.380 −0.140 <−1.31 19
Hf ii 2929.64 0.000 −0.940 <−1.02 19
Os i 3058.66 0.000 −0.410 <−0.30 20
Os ii 2282.28 0.000 −0.050 <−0.90 20
Pt i 2659.45 0.000 −0.030 <−1.40 21
Pt i 2929.79 0.000 −0.700 <−0.66 21
Pb i 2833.05 0.000 −0.500 <−0.23 22

Notes.
a Synthesis.
References. (1) Kramida et al. 2013; (2) Lawler & Dakin 1989; (3) Wood
et al. 2013; (4) Bergeson & Lawler 1993; (5) Den Hartog et al. 2011; (6) Wood
et al. 2014; (7) Fedchak & Lawler 1999; (8) Fuhr & Wiese 2009; (9) Ljung et al.
2006; (10) Malcheva et al. 2006; (11) Nilsson & Ivarsson 2008; (12) Sikström
et al. 2001; (13) Morton 2000; (14) Roederer et al. 2012a; (15) Biémont et al.
1999; (16) Kurucz & Bell 1995; (17) Den Hartog et al. 2006; (18) Roederer
et al. 2010a; (19) Lawler et al. 2007; (20) Quinet et al. 2006; (21) Den Hartog
et al. 2005; (22) Biémont et al. 2000, using hfs presented in Appendix C of
Roederer et al. (2012b).

Table 3
Final NUV LTE Abundances of BD+44◦493

Species log ε� (X) log ε (X) [X/Fe] σ N

Be i 1.38 <−2.30 <+0.20 · · · 1
B i 2.70 <−0.70 <+0.48 · · · 2
C i 8.43 5.78 +1.23 0.20 2
OH 8.69 6.35 +1.54 0.20 11
Sc ii 3.15 −0.44 +0.29 0.10 1
Ti ii 4.95 1.43 +0.36 0.02 8
Cr ii 5.64 1.67 −0.09 0.02 5
Mn ii 5.43 0.97 −0.58 0.03 4
Fe i 7.50 3.62 −3.88a 0.01 98
Fe ii 7.50 3.63 −3.87a 0.01 53
Ni i 6.22 2.32 −0.02 0.02 19
Ni ii 6.22 2.21 −0.13 0.03 8
Ge i 3.65 <−0.80 <−0.57 · · · 3
Zr ii 2.58 <−1.11 <+0.18 · · · 7
Nb ii 1.46 <−0.77 <+1.65 · · · 2
Mo ii 1.88 <−0.29 <+1.71 · · · 1
Cd i 1.71 <−1.79 <+0.38 · · · 1
Te i 2.18 <−0.05 <+1.65 · · · 1
Ce ii 1.58 <−0.51 <+1.79 · · · 1
Nd ii 1.42 <−0.01 <+2.45 · · · 1
Eu ii 0.52 <−1.46 <+1.90 · · · 1
Gd ii 1.07 <−1.21 <+1.60 · · · 1
Yb ii 0.84 <−1.75 <+1.29 · · · 1
Lu ii 0.10 <−2.16 <+1.62 · · · 1
Hf ii 0.85 <−1.31 <+1.72 · · · 3
Os i 1.40 <−0.30 <+2.18 · · · 1
Os ii 1.40 <−0.90 <+1.58 · · · 1
Pt i 1.62 <−1.40 <+0.86 · · · 2
Pb i 1.75 <−0.23 <+1.90 · · · 1

Note. a [Fe i/H] and [Fe ii/H] values.

Table 4
Systematic Abundance Uncertainties

Species ΔTeff Δlog g Δvmicro σtot

(+150 K) (+0.5 dex) (+0.3 km s−1)

Sc ii −0.10 −0.17 +0.02 0.20
Ti ii −0.09 −0.17 +0.04 0.20
Cr ii −0.07 −0.16 +0.11 0.21
Mn ii −0.12 −0.06 +0.13 0.19
Fe i −0.18 +0.02 +0.06 0.19
Fe ii −0.05 −0.15 +0.05 0.17
Ni i −0.20 +0.02 +0.09 0.22
Ni ii −0.06 −0.17 +0.14 0.23

parameter on the determined abundances, using spectral lines
from which abundances were determined by equivalent-width
analysis alone. The adopted variations are 150 K for Teff , 0.5 dex
for log g, and 0.3 km s−1 for vmicro. Also shown is the total un-
certainty, taken as the quadratic sum of the individual errors.

We discuss the determinations of beryllium, boron, carbon,
the iron-peak elements, and the neutron-capture elements in
more detail in the following subsections.

3.1. Beryllium and Boron

The Be i resonance line at 2348 Å is not detected in our
spectrum of BD+44◦493. However, we can make use of this line
to place a significantly lower (by 0.5 dex, a factor of three) upper
limit on the Be abundance in BD+44◦493 (log ε (Be) < −2.3)
than obtained by Ito et al. (2013) from the NUV Be ii doublet
at 3130 Å (log ε (Be) < −1.8). The blue dotted line in the
left panel of Figure 5 shows our 3σ upper limit for the Be i
2348 Å line. For comparison, the red dashed line shows the Ito
et al. upper limit. We note, following Ito et al. (2013), that three-
dimensional (3D) and non-LTE (NLTE) effects on the beryllium
abundance in MP stars are expected to be small (Asplund 2005).

The B i resonance doublet at 2497 Å is also not detected
in our spectrum of BD+44◦493. We derive an upper limit of
log ε (B) < −0.5 from these lines, as shown in the right
panel of Figure 5. NLTE corrections for measured B abundances
appear to be important (e.g., Kiselman & Carlsson 1996), and
could possibly perturb the results (as inferred from the NLTE
calculations of Kiselman & Carlsson) by up to +0.5 dex, for
stars of metallicity similar to BD+44◦493. For the purpose of
comparing our present upper limit on B to previous detections,
we prefer to use the LTE results.

3.2. Carbon and Oxygen

The upper panels of Figure 6 show the spectral synthesis of
the atomic C i features at 2478.56 Å and 2967.21 Å. Although
the 2967.21 Å line is clean, the 2478 Å line is blended with
several other species, and in more metal-rich stars these blends
prohibit its use as an abundance indicator. The most severe
of these blending features is an Fe ii line at essentially the
identical wavelength, 2478.57 Å. The NIST Atomic Spectra
Database reports uncertainties of σ � 18% (�0.09 dex) on
the log gf values of both the C i lines. Thus, to the extent that
we know the Fe abundance, and are modeling the line formation
appropriately, we can use the C i line as a C abundance indicator
in BD+44◦493.

From the spectral synthesis of these lines, we obtain an
average of log ε (C) = 5.78, which yields a carbonicity of
[C/Fe] = +1.23 (using [Fe/H] = −3.88). These values agree
well with the optical determinations from Ito et al. (2013)
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Figure 4. Comparison between abundances determined from the equivalent-width analysis of Ito et al. (2013) and this work. The agreement is quite satisfactory.
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Figure 5. Left panel: the Be i line at 2348 Å, showing the 3σ upper limit from this work (log ε (Be) = −2.30) and from Ito et al. (2013) (log ε (Be) = −1.80). Right
panel: the B i line at 2497 Å, showing the 3σ upper limit from this work (log ε (B) = −0.70); see the text for discussion.

(A color version of this figure is available in the online journal.)

(log ε (C) = 5.95 and [C/Fe] = +1.35, using [Fe/H] = −3.83),
but are a few tenths of a dex higher than the near-infrared (NIR)
determinations from Takeda & Takada-Hidai (2013) (log ε (C) =
5.69 and [C/Fe] = +0.83, using [Fe/H] = −3.68). It must be
kept in mind that the optical values are determined from the CH
G-band, and the NIR from C i 1.068–1.069 μm lines.

To our knowledge, this is the first determination of [C/Fe]
based on atomic lines in the NUV region. The relatively close
agreement of this determination with the [C/Fe] inferred from
the molecular CH G-band is encouraging. Previous modeling
has suggested that 3D effects on the CH and C2 features for
giants and subgiants at [Fe/H] ∼ −3.0 can lead to an over-
estimate of [C/Fe] of +0.5 to +0.8 dex (Asplund 2005; Collet

et al. 2007), although NLTE effects are not expected to be
large. Another possibility is that uncertainties in the UV opacity
determination have the same magnitude as 3D effects. Schuler
et al. (2008) found that the [C/Fe] ratio derived from an LTE
analysis of the [C i] forbidden line at 8727 Å for the CEMP
star HE 1005−1429 ([Fe/H] = −3.08) was on the order of
0.3–0.4 dex lower than the value reported by Aoki et al. (2007),
based on the molecular C2 feature at 5170 Å. Future observations
of the NUV C i features for additional (necessarily bright, and
ideally extremely MP) CEMP stars may thus prove illuminating.

The lower panel of Figure 6 shows the spectral region
2965–2972 Å, where several OH features are available. We
were able to obtain adequate fits for 11 lines with the same
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Figure 6. Upper left panel: spectral synthesis of the atomic C i feature at 2478.5 Å. The dots represent the observed spectra, the solid line is the best abundance fit,
and the dotted and dashed line are the lower and upper abundance limits, indicating the abundance uncertainty. The shaded area encompasses an 0.8 dex difference in
[C/Fe]. The light gray line shows the Fe ii line, located at essentially the same wavelength as the C i line. Upper right panel: C i feature at 2967.2 Å, with the shaded
area representing a 0.4 dex difference in [C/Fe]. Lower panel: several OH features in the 2965–2972 Å range. The shaded area shows a 0.8 dex difference in [O/Fe].

(A color version of this figure is available in the online journal.)

input abundance, using the line list from Kurucz (1993).
The value of the O abundance we obtain, [O/Fe] = +1.54,
is in good agreement with that derived by Ito et al. (2013, also
using an OH feature as an indicator), [O/Fe] = +1.64.

3.3. The Iron-peak Elements

Abundances for Sc, Ti, Cr, and Ni were determined with an
equivalent-width analysis only. Mn ii lines are broadened by
hyperfine splitting (hfs) of the 55Mn isotope, so we derived
those abundances from spectral synthesis. Figure 7 shows
the synthesis of four Mn ii lines in the NUV spectrum of
BD+44◦493.

To make a fair comparison with the Ito et al. (2013) abun-
dances, we recomputed their optical abundances of Ti ii, Mn ii,
and Ni i on the same log gf scale we used for the NUV lines.
From the Wood et al. (2013) study, we find that the Ito et al. Ti ii
abundance would have decreased by only 0.01 dex. From lines
in common with the Den Hartog et al. (2011) study, we find that
the Ito et al. (2013) Mn ii abundance would have increased by
0.08 dex. From lines in common with the Wood et al. (2014)
study, we find that the Ito et al. Ni i abundance would have had
no change. There would also be no change for the Sc ii abun-
dance, since Ito et al. used the log gf values reported by Lawler
& Dakin (1989).

As a result of this exercise, we find good agreement between
the abundance ratios determined by this work and those from
Ito et al. (2013)—these are [Sc ii/Fe] = +0.29, identical to
that obtained from the optical work (+0.29); [Ti ii/Fe] = +0.36
(+0.36 in the optical); [Cr ii/Fe] = −0.09 (−0.22 in the optical);

[Mn ii/Fe] = −0.58 (−0.79 in the optical); and [Ni i/Fe] =
−0.02 (+0.08 in the optical).

3.4. The Neutron-capture Elements

Only upper limits were determined in BD+44◦493 for
neutron-capture elements in the NUV region; Figure 8 shows
examples of these limits for Zr ii, Ge i, and Pt i. Figure 9 shows
the comparison between the observed and the synthetic spec-
tra around the Pb i 2833.05 Å feature. We determine a 3σ (2σ )
upper limit of log ε (Pb) < −0.23 (<−0.42) from this line,
assuming the poorly fit absorption features at 2832.9 Å and
2833.2 Å are noise, and not absorption lines. Our value con-
firms and strengthens the Ito et al. (2013) upper limit of log
ε (Pb) < −0.10, estimated from the weak optical Pb i line at
4057.80 Å. Syntheses of both the 3σ and 2σ upper limits are
shown in Figure 9, as well as for log ε (Pb) = 0.00 and log
ε (Pb) = −2.00, for reference.

Figure 9 reveals that our upper limit on the abundance of Pb
might indeed be too conservative, depending on the nature of
the nearby noise features. The wavelength of the Pb i line is
known to better than 1 mÅ (Wood & Andrew 1968), so these
supposed noise features are not due to Pb i absorption. The
feature at 2832.9 Å, however, is also observed in our spectra
of HD 108317 and HD 196944 (see Figure 2), but the NIST
database does not include any probable lines at this wavelength.
The known Fe ii line at 2833.09 Å (Roederer et al. 2012a)
does not appear in our spectrum of BD+44◦493. The feature
at 2833.2 Å may also appear in HD 108317 and HD 196944, but
there it is weak. From examination of the summed spectra from
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(A color version of this figure is available in the online journal.)

the first four observations and the second four observations of
BD+44◦493 independently, these unidentified features appear
in both. This indicates that they are not random noise spikes. If
we do not treat these unfit features as noise, the upper limit on
Pb becomes tighter—by at least several tenths of a dex—but it
is still limited by our ability to correctly identify the continuum
or other contaminants.

4. DISCUSSION AND CONCLUSIONS

Ito et al. (2013) have discussed in detail the importance of
the low upper limit they derived for Be in the optical spectrum
of BD+44◦493, which we have now lowered by about a factor
of three, to log ε (Be) < −2.3, based on our NUV HST/STIS
measurements. Our estimate of the upper limit on B
(log ε (B) < −0.7), is also of significance, since these limits are
at the lowest level yet determined for very and extremely MP
stars. Figure 10 shows a comparison between Be and B abun-
dances, as a function of [Fe/H], for the upper limits determined
in this work and data from Primas et al. (1999), Boesgaard et al.
(2011), and the SAGA database (Suda et al. 2008). Individual
references are listed in the caption of Figure 10.

How can we account for the low upper limits for Be and
B, taken together with the fact that the Li abundance for

BD+44◦493 (log ε (Li) = 1.0, reported by Ito et al. 2013)
is significantly below the level of the Spite Plateau? The low
abundance of Li in this star, compared to the Spite Plateau
value, could be a result of convective mixing with internal
layers in which Li is fully depleted. Be might also be affected
by mixing with material from layers that reach its burning
temperature (3.0 × 106 K), which is slightly higher than that
of Li (2.5 × 106 K). Compared to these two elements, B has
an even higher burning temperature (5.0 × 106), and would
be expected to be less affected by mixing, although such an
interpretation depends on detailed modeling of stellar evolution
during the subgiant phase. Alternatively, the very low upper
limits of Be and B are consistent with the view that CEMP-no
stars such as BD+44◦493 may have formed in the very early
universe, prior to the establishment of the level of cosmic-ray
flux necessary to produce Be and B by spallation (for a more
detailed discussion, see the review by Prantzos 2012). The low
abundance of Li could then be accounted for by mixing of
Li-astrated material (due to burning by first-generation stars)
with primordial Li created by big bang nucleosynthesis (Piau
et al. 2006).

This alternative receives some support from the recent obser-
vations of Li abundances below the Spite Plateau for CEMP-
no stars by Hansen et al. (2014), including two stars with
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Figure 8. Examples of the 3σ upper limits determined for Zr ii, Pt i, and Ge i. The solid line shows the synthesized spectrum in the absence of the labeled features.

(A color version of this figure is available in the online journal.)

Teff = 6100 K, presumably too warm for conventional Li-
depletion from convective mixing to have taken place. It is worth
recalling that Masseron et al. (2012) reports that the CEMP-no
class only contains Li-depleted stars. Unfortunately, Be and B
abundance estimates are not yet available for the CEMP-no
stars of Hansen et al. (2014). Improved models and, in partic-
ular, additional observations of Be and B for CEMP-no stars,
are necessary in order to constrain these ideas further. It should
be noted that, as already discussed by Ito et al. (2013), the pro-
genitor of BD+44◦493 is unlikely to be a significant source of
high-energy CNO nuclei that could yield lighter elements by
spallation processes. This fact might be a useful constraint on
the nature of the progenitor, most likely a faint (mixing and fall-
back) supernova, that produces the high C and O abundances
found in BD+44◦493.

We have discussed above that our measurement of [C/Fe],
based on the NUV atomic C i lines at 2478.56 Å and 2967.21 Å,
provides an important validation of [C/Fe] estimates for CEMP
stars based on the CH G-band in the optical, as well as from
C i lines in the NIR. Since this is the first determination of
[C/Fe] from NUV spectroscopy, it would clearly be important
to carry out similar observations of additional bright CEMP
stars, in order to test if this level of agreement holds for stars
that are cooler, or more metal-rich, than BD+44◦493.

The [Ni/Fe] abundance ratio for BD+44◦493 can also place
further constraints on Galactic chemical-evolution models. By

comparing this quantity with the value measured for the main-
sequence turnoff star HD 84937 (Teff = 6300 K, log g =
4.0, vmicro = 1.5 km s−1, and [Fe/H] = −2.32; Wood et al.
2014), one can see that, even though their metallicities are
more than 1.5 dex apart, their [Ni/Fe] ratios exhibit only a
0.05 dex difference. This corroborates the predicted plateau
for Ni abundances as a function of the metallicity from the
theoretical models of Kobayashi et al. (2011a), and can set
observational limits on the Galactic initial mass function and
yields from both core–collapse supernovae and hypernovae.

Figure 11 shows a comparison between a set of s- and
r-process templates and the upper limits on neutron-capture
elements determined in this work. Also shown are the optical
abundances from Ito et al. (2013). These are used to normalize
the models (to Sr in the upper panel and to Ba in the lower
panel). The template for the weak component of the r-process
is the MP giant HD 122563 (Honda et al. 2006; Roederer et al.
2012b). The template for the main component of the r-process
is the MP giant CS 22892–052 (Sneden et al. 2003, 2009;
Cowan et al. 2005; Roederer et al. 2009). The template for
the s-process shows the AGB yields from the model presented
in Placco et al. (2013), with M = 1.3 M� and [Fe/H] =
−2.5.14 This is necessary due to the fact that, in contrast to

14 Intermediate-mass AGB yields are beyond the scope of the current work,
and were not added to this analysis.
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(A color version of this figure is available in the online journal.)

the “universal” r-process, the s-process abundances are highly
dependent on metallicity. These templates are not intended as
firm representations of the expected nucleosynthesis outcomes,
since, for example, the yields depend on the physical conditions
at the time the nucleosynthesis events took place.

Stars with metallicities as low as BD+44◦493 do not exhibit
enhancements of s-process material (e.g., Simmerer et al. 2004),
at least none have been identified to date. At somewhat higher
metallicities, the s-process elements in CEMP-s stars typically
show substantial enhancements relative to the solar abundance
ratios (e.g., Aoki et al. 2002), which are attributed to a mass-
transfer event from a companion star that passed through the
AGB phase of evolution. At lower metallicity, the high neutron-
to-seed ratios are expected to drive the flow to the most massive
stable elements that can be produced by the s-process, Pb and
Bi (e.g., Gallino et al. 1998). Enhanced Pb abundances are
considered unmistakable signatures of the operation of s-process
nucleosynthesis in a low-metallicity environment.

To the best of our knowledge, Pb has not been detected for any
stars with [Fe/H] < −3.2 (see, e.g., Figure 3 of Roederer et al.
2010a). Our results do not change this finding. Figure 12 shows
the [Pb/Fe], [Ba/Fe], and [Pb/Ba] values for BD+44◦493,
compared with four different model prescriptions from Bisterzo
et al. (2010). Even though BD+44◦493 exhibits a clear lack
of Pb and Ba when compared to the models, the upper limit
we place on Pb, relative to barium, [Pb/Ba] < +2.5, is on
the cusp of excluding s-process nucleosynthesis in low-mass
low-metallicity AGB stars with the highest neutron exposures
possible.

This is not yet definitive evidence against an s-process origin
of the neutron-capture elements in BD+44◦493; however, the
lack of significant radial-velocity variations (Carney et al. 2003;
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Figure 10. Be and B abundances (and upper limits), as a function of the
metallicity, for BD+44◦493 and the stars listed in Primas et al. (1999), Boesgaard
et al. (2011), and the SAGA database (Suda et al. 2008). Individual references
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(A color version of this figure is available in the online journal.)

Ito et al. 2013, spanning over 25 yr) and the sub-solar [Sr/Fe] and
[Ba/Fe] ratios are suggestive that enrichment from an unseen
companion that passed through the AGB phase of evolution
appears extremely unlikely, calling for non-AGB sources, such
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as spinstars or faint supernovae explosions that undergo mixing
and fallback.

Some form of r-process nucleosynthesis may have been the
dominant production mechanism for the neutron-capture ele-
ments observed in BD+44◦493, and other stars at extremely low
metallicity (e.g., Truran 1981). Barium is the heaviest element
detected in BD+44◦493. The abundance pattern presented in
the bottom panel of Figure 11 cannot exclude that the neutron-
capture abundance pattern in BD+44◦493 resembles that found
in the main or weak components of the r-process. Roederer
et al. (2014b) also reached this conclusion, based on their anal-
ysis of optical spectra of BD+44◦493 and other members of the
CEMP-no sub-class of stars.

BD+44◦493 is also the most MP star where the Ge abun-
dance can be reasonably evaluated. The upper limit on the Ge
abundance in BD+44◦493 we obtain is only about a factor of
three higher than the mean [Ge/Fe] ratio found for stars with
−3.0 < [Fe/H] < −1.6 (see Figure 3 of Roederer 2012). This
indicates that Ge was not manufactured in large quantities by
the stars that produced the metals in BD+44◦493. The primary
nucleosynthesis mechanism of Ge assumed for the stars with
−3.0 < [Fe/H] < −1.6, some form of explosive or charged-
particle nucleosynthesis, is not excluded as a possible source for
whatever Ge may be present in BD+44◦493.

The Te upper limit we obtain is still about 2 dex higher than
what might be required to secure a Te detection in BD+44◦493,
based on the Ba abundance in BD+44◦493 and the log ε
(Te/Ba) ratios reported by Roederer et al. (2012a). Similarly,
the Cd upper limit is about 1 dex higher than what might be
required to secure a Cd detection in BD+44◦493. If the third
r-process peak elements in BD+44◦493 are assumed to follow
a scaled-solar r-process abundance pattern, the Pt upper limit is
about 0.5 dex higher than what might be required to secure a Pt
detection in BD+44◦493. If the third r-process peak elements
in BD+44◦493 are deficient relative to Ba and the rare-earth
elements, as found in the MP giants HD 122563 and HD 128279
by Roederer et al. (2012b), it would be even more challenging to
secure a Pt detection in BD+44◦493. Te and Pt are expected to
be two of the most abundant elements heavier than Zr (Sneden
et al. 2008), yet it is unlikely that either of these elements can be
detected in BD+44◦493. This highlights the challenge of firmly
establishing the nucleosynthetic origins of the elements heavier
than the iron group for extremely MP CEMP-no stars.
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