NanoLab (Phys4970) Homework (40pts) Name _

A sphere of radius R is composed of atoms of radius a. Make the assumption that the surface atoms occupy a spherical shell 2athick. Use the packing fraction f to correct for the interstitial volume. You do not need to consider the granular nature of the particle any further (ignore packing, stacking, surface corrugations, etc.).

Solve problems 1 & 2 so you get a general equation that can be used to generate the numbers to fill in the table in part 3.

1. 10 pts) Find the number of atoms in a nanoparticle give the *R*, *a*, and *f*.

2. 10 pts) What fraction of atoms lie on the surface?

Packing fractions:

FCC & HCP f = 0.740BCC f = 0.680SC f = 0.524 $f = \frac{nV_a}{V}$

 $V_{\rm a}$ is the volume of a spherical atom n is the number of atoms in volume V

3. 20 p	ts) Fill o	out the f	ollowing	table for	gold	nanoparti	cles (a =	= 1.44 Å).	Gold is	an FCC	crystal.

Total Number of Atoms and the Percent of Atoms on the Surface in a							
Gold Nanoparticle as a Function of Radius							

<i>R</i> (µm)	1	0.3	0.1	0.03	0.01	0.003
п						
$n_{ m surface}/n$ (%)						