
www.digilentinc.com Contains material © Digilent, Inc. 8 pages

Module for Lab #15:
 Introduction to Computer Aided Design
Revision: 2016 November 07 LAB

Overview: (Note that we are not going to do the simulations.)

Computer Aided Design (CAD) tools are an indispensable design resource used by engineers
everywhere on a daily basis. Engineers with even basic computer resources can use CAD tools to
create a picture-based or text-based definition of a circuit, simulate the circuit, and then implement the
circuit in any one of a variety of different technologies. Many CAD tools have been in use for several
generations, and are relatively stable and intuitive to use. Other CAD tools are emerging now, with still
others just over the horizon. It is safe to say that practicing engineers will need to learn and apply many
different CAD tools over their career.

This lab exercise introduces the Xilinx ISE/WebPack Computer Aided Design (CAD) tools. These
tools can be used to design and test virtually any digital circuit, and to automatically implement such
circuits in programmable chips. The Xilinx tools allow circuits to be defined using several different
methods - this exercise introduces a graphics-based program to create circuits, and a logic simulator
program to verify the circuit’s performance. After design and verification, a chip configuration
program can be used to download the circuit to the Digilab circuit board. The tools used in this lab,
which include a starter version of the popular ModelSim simulator from Mentor Graphics, can best be
learned by following the tutorials available at the class website.

Before beginning this module, you should…

• Be familiar with reading and
constructing basic logic circuits;

• Understand logic equations, and how to
implement a logic circuit from a logic
equation;

• Know how to operate Windows
computers and Windows programs.

After completing this module, you should…

• Understand how basic CAD tools are used in
basic circuit design;

• Be able to implement any given
combinational circuit using the Xilinx ISE
schematic editor;

• Be able to simulate any logic circuit using
the ModelSim simulator;

• Be able to examine the output of a logic
simulator to verify whether a given circuit
has been designed correctly.

This module requires:

• A Windows PC
• The Xilinx ISE/WebPack software
• A Digilab circuit board

Module for Lab #15: Introduction to Computer Aided Design Page 2

Background

An idea for a new circuit design rarely proceeds directly from concept to flawless implementation.
Rather, during the design phase, several potential circuits are considered, constructed, and evaluated.
These prototype circuits are intended to give the designer greater insight into a circuit’s behaviors and
characteristics before a final design is selected. In the early days of digital design, prototype circuits
were sketched on paper and then constructed from discrete components or simple integrated circuits
(like the 7400 devices used in earlier labs). But over the last 30 years, the use CAD tools to specify and
design digital circuits has made such methods obsolete. With the onset of the computer age, engineers
learned they could be far more productive by designing a virtual circuit on a computer instead of
actually building it. Now, after several generations of engineers have completed countless designs
using CAD tools, they are accepted as a basic and irreplaceable design resource. Their prolific use
across all engineering disciplines has allowed new concepts and new technologies to be developed and
exploited at an incredible pace. Without their use, it is fair to say technological progress would be
crippled. In recent years, CAD tools have become powerful enough to usher in a whole new class of
design methods and engineering processes. At the same time, they have become so affordable that
virtually any engineer can use them.

The product design process

A new product design process begins with an idea that might arise from any
one of several sources, including customers, sales and marketing personnel,
or engineers. A new idea that survives the scrutiny and challenges of various
marketing studies results in a proposal. A proposal document typically
describes high level product features, presents target budgets, defines
schedules, outlines marketing plans, and generally discusses any useful
information. Ideas that make it through the proposal stage enter the
engineering design process (indicated by the grayed area of the flowchart).
The engineering design process typically starts with a specification. A
product specification is an engineering document that contains enough
information to guide skilled engineers through the design process. Based on
the specification, a behavioral description, a structural description, or
some combination of both can be prepared. A behavioral description is
essentially a highly detailed specification that states only how a new design
is to behave, without providing any information as to how it might actually
be built (this is the job of a structural description). For example, a
specification for a status indicator on an automobile might be “a fuel_low
warning light shall be illuminated whenever the fuel tank indicator reads
less than 2 gallons for 10 continuous seconds”. A behavioral description
might be “fuel_warning_light <= check_2s(under_2_gallons)”. This
behavioral description is written in an easily readable format that clearly indicates a signal named
“fuel_warning_light” gets assigned a logic value based on the output of a process that evaluates the
input signal “under_2_gallons”. This behavioral description makes the basic design requirement
perfectly clear, but it provides no information to indicate how a circuit might be constructed. In fact,
before the circuit can be constructed, this behavioral description must be transformed into a structural
description. A structural description, such as a circuit schematic showing all components and their
interconnections, conveys not only a circuit’s behavior, but the information needed to actually
construct the circuit as well.

Specification

Structural description

Behavioral description

Physical circuit

Marketing studies,
focus groups, etc.

Proposal

Abstract design idea

Manufacturing and
support engineering

Tests and approvals

Product design process

Module for Lab #15: Introduction to Computer Aided Design Page 3

This progression from a more abstract behavioral description to a more detailed structural description
is a required part of any design process, and may in fact be defined as the design process. Even in this
simple “warning light” example, the structural definition might take any one of several forms,
including a circuit based on a microprocessor, a circuit based on discrete components, or a circuit
based on a programmable device. Which form the structural design takes depends on many factors,
including the designer’s skills, the cost of various components, the amount of power required by
different approaches, etc.

CAD tools are useful throughout the engineering design process, and they benefit simple logic designs
and complex system designs alike. In the early stages of a design, CAD tools allow designers to
capture circuit definitions on a computer using any one of several different entry modes. Some text-
based modes, such as those using a “Hardware Definition Language” or HDL editor, allow highly
behavioral descriptions. Other picture-based modes, such as those using a schematic editor, require
highly structural designs. Any given circuit can be entered in most any mode, but significant
differences exist. For example, a schematic description that shows all components and interconnections
can take significant effort to create, but it yields a description that can be accurately simulated and
directly implemented. A
behavioral HDL definition
can be quickly entered, but
since it contains no
information about the
structure of a circuit, it must
be transformed to a structural
representation before a circuit
can be implemented.

Much of the work in
generating a structural
description lies in drawing a
circuit, and not in defining a
circuit to meet a given need
(i.e., its one thing to sketch a
house to meet a family’s
needs, but another thing to
actually build it). Likewise,
transforming a behavioral
circuit description to a
structural description can
require significant work, and
this work may not add
significant value to the
ultimate solution. A class of
computer programs called
synthesizers can perform this
work, thereby freeing design
engineers to focus on other
design tasks. Although
synthesizers use rules and

Design Capture

entity lab1 is
 port (A,B,C : in STD_LOGIC;)
 Y : out STD_LOGIC);
end lab1;

architecture behavioral of lab1 is
begin
 Y <= A or (C and B);

HDL

Synthesize Timing Analysis

Implement

Download

Physical test

Implement and test

DFF

DFFLUT

LUT

LUT

00

01

11 10

Red<='1'

go='1'

a='0' a='1'

A
B

C

D

Schematics State Diagrams

CLK

A

IN

X

Test and Verify

CLK - IN 2ns

CLK - NETA 2.3ns

STROBE - B 0.8ns

Simulate

CLB CLB

CLB CLB

Download

CAD tool framework

Module for Lab #15: Introduction to Computer Aided Design Page 4

assumptions that allow for a wide range of behavioral definitions, several studies have shown that they
are nevertheless able to produce structural descriptions that are better than most engineers can produce.
HDL editors and synthesizers will be examined in a later lab exercise.

CAD tools allow designers to capture circuits in a convenient manner, using highly evolved tools that
significantly reduce labor. They allow captured circuits to be simulated and thoroughly studied before
they are actually constructed. They also allow a circuit definition to be implemented in a given
technology, so that engineers can readily interact with their “virtual” designs in real hardware. Circuits
captured in CAD tools are easily stored, transported, and modified. HDL definitions are largely CAD-
tool and hardware platform independent, so that designers can change computing and software
platforms. All of these reasons clearly show why CAD tools are used in virtually every new design.
But of all of these obvious advantages, one overriding advantage exists: CAD-designed circuits can be
simulated. Of all computer-based applications ever developed, it is safe to say that none are more
important than circuit simulators.

Circuit Simulators

Constructing circuits from discrete components can be somewhat time consuming, and often of limited
value in providing insight into circuit performance. Yet it is difficult to gain confidence in a circuit’s
performance without actually testing and measuring its various characteristics. With the advent of
modern computers, engineers realized that they could define a “virtual” copy of a circuit in the form of
a computer program, and then use that virtual definition to simulate a circuit’s performance without
actually building it. Simulators allow engineers to experiment with a circuit design, and challenge it
with a wide array of inputs and operating assumptions before undertaking the job of actually building
it. Further, complex circuits like modern microprocessors use far too many components to assemble
into a prototype circuit – they simply could not have been built without the heavy use of simulators.

Simulators need two kinds of input – a description of the virtual circuit that includes all of the gates (or
other components) and interconnections, and stimulus input describing how the circuit’s inputs are to
be driven over time. The virtual circuit is entered in to the computer in the form of a “circuit definition
language”. Several such languages are currently in use, and they may be divided into two major
groups: the “netlist” languages (most popular is the edif format); and the “hardware definition
languages”, or HDL’s (VHDL and Verilog are the most popular). For several decades, netlists have
been the predominant form of circuit description, but lately, HDL’s are being used more and more. In
this lab, we'll look at netlists and the tools used to create, simulate, and download them to
programmable devices.

A netlist is simply a textual description of the components and
interconnections in a given circuit. A netlist for a simple circuit
might appear as shown to the right. The first entry in each line of
the netlist (before the colon) is a label that uniquely identifies a
given logic gate or circuit. Next comes the name of the gate and a
list of all the inputs and outputs in some predetermined order – in
this netlist, the logic gate output is last in the list. Line 2, for
example, describes a 2-input NAND gate labeled G2 with inputs
net1 and a and output net2.

G1: INV(sel,net1)
G2: NAND2(net1,a,net2)
G3: NAND2(sel,b,net3)
G4: NAND2(net2,net3,y)

Example netlist

Module for Lab #15: Introduction to Computer Aided Design Page 5

Force a,b,sel to ‘0’
simulate 100ns
Force a to ‘1’
simulate 100ns
Force sel to ‘1’
simulate 100ns
Force b to ‘1’
Simulate 100ns

Example stimulus

Netlists use many different formats, with the "electronic data interchange format" (or edif) being the
most popular. Although edif-fomatted netlists look somewhat different than this example, they contain
the same essential information. Whatever the appearance, the entries in a netlist provide a simulation
program with all information needed to simulate the described circuit. In the example shown, you can
think of each line as a subroutine call, where the logic function name refers to a particular subroutine
and the input/output list provides the subroutine parameters. At each simulation time step, any
subroutines whose inputs have changed are executed to compute a new output value. Each newly
computed output value might be the input of some other subroutine, and that subroutine would then be
executed in a later time step.

To simulate a circuit, a set of stimulus inputs is also required.
Often, a sequential list of stimulus commands are collected into a
text file, and then given to the simulator (along with the netlist)
for a “batch” run. But it is also possible to enter the simulation
commands one at a time, and watch the circuit respond in real-
time. A set of stimulus inputs may look like those shown in the
box to the right.

Problem 0: On the submission form, sketch the circuit

described by the netlist above, and complete a
timing diagram to show the circuit’s response to
the example stimulus.

Schematic Capture

A netlist could be created by hand and typed directly into a computer. But this would be a tedious and
laborious practice, even for a moderately complex circuit. First, an accurate and complete circuit
sketch would need to be created, then all logic gates and interconnecting nets in a circuit would need to
be assigned unique names, and finally the netlist itself, with all components together with a list of all
interconnects could be prepared. Note that once a sketch of the circuit is prepared, the remaining tasks
are straightforward, repetitious, and time consuming – characteristics that make them well suited to a
computer.

A sketch (or a computer-based graphical drawing) of a circuit, with symbols representing logic
functions and lines representing interconnecting wires, is commonly referred to as a schematic. A
schematic is simply graphical rendition of a netlist, and it is much easier to draw a schematic on a
computer than to create a netlist by hand. Computer programs known as “schematic capture tools”
allow designers to draw circuits on a computer using a graphical interface. The schematic drawing tool
allows symbols representing logic gates (or logic functions) and lines representing wires to be added to
a computer-based drawing.

Basic symbols take the shape of recognizable logic gates and functions (NAND’s, OR’s, INV’s, etc.),
and more complex functions may appear as simple boxes. Users may also create their own custom
symbols to represent logic circuits that they design themselves. Whether a symbol comes from a
standard parts library, or whether it is designed by an user, it will have several protruding lines about
its periphery representing inputs (generally on the left of the symbol) and outputs (generally on the
right of the symbol). Referred to as pins or ports, these inputs and outputs provide connection points

lab
Problem 0:

lab
On the submission form, sketch the circuit

lab
described by the netlist above, and complete a

lab
timing diagram to show the circuit’s response to

lab
the example stimulus.

Module for Lab #15: Introduction to Computer Aided Design Page 6

for the lines that represent wires.
Although symbols usually do not
show ports for power and ground
connections, their presence is
always assumed.

A circuit is defined in the
schematic capture tool by adding
symbols and wires until all
required components and
interconnections are present. Once
the schematic is complete, a program called a “netlister” processes the graphical information to
produce (or “extract”) the netlist. A schematic must be transformed into netlist representation before it
can be simulated. Although the netlist and schematic descriptions of a given circuit look very different
from one another, they contain exactly the same information. A one-to-one relationship exists between
the schematic and netlist, and it is always possible to convert from one to the other using a simple
replacement algorithm. Since it is generally easier for humans to read a circuit schematic than a netlist,
circuits are more often shown in schematic form. The process of defining and entering a circuit using a
graphical computer tool, and extracting a netlist from the schematic is known as schematic capture.

Each circuit symbol has an outline shape and several pins that act as connection points. Many symbols
represent common logic functions that can be readily identified due to shape association (and, or, xnor,
etc.). Many symbols also appear as rectangular boxes that give no clue as to their function. These non-
shape-specific symbols are "wrappers" around circuit blocks that have been designed from more basic
logic gates. Circuits grouped into such symbols are commonly called macros, and they are frequently
used by designers to hide the details of more basic circuits. In this sense, circuit macros are used in
schematics in the same way that subprograms are used in computer programs. Circuit macros are most
useful when used as building blocks for larger, more complex circuits. Macros are more complex than
simple logic gates or circuits, but they are smaller, simpler and easier to understand than the overall
circuit. A circuit built from macros is said to be a hierarchical circuit, and many levels of hierarchy
can be used (i.e., macros can contain other macros as circuit elements). Once designed, macro
components can be stored in a project library so that they can be recalled and reused as needed. “I/O
markers” are used to identify signals in hierarchical circuits that are meant to be inputs or outputs (as
opposed to signals that are limited to internal nodes).

Hierarchical schematic editors allow design complexities to be abstracted away, and hidden inside
macros. Macros can be designed and verified independently, often before the overall design is started.
Then, they can be used as trusted building blocks for a more complex design. Hierarchical editors
allow a “divide and conquer” approach to complex design problems. A primary challenge, and one of
the more important design tasks, is to partition a design appropriately – a good partition can make a
complex task flow relatively smoothly, and a poor partition can create additional work or cause a
design to fail.

Associated with each symbol in a schematic, hidden from view, are computer routines that tell a logic
simulator program exactly how to model the circuit. A netlister translates the shapes and lines of a
schematic into a netlist, and the netlist is essentially a list of calls to these computer routines. Thus,
when a schematic is drawn on the screen, the source for a netlist (and therefore, the input to a
simulator) is being created as well.

Library schematic symbols for
a 3-NAND and 2-XOR

User-created symbol for some
logic funciton

Input ports Output ports

Moduel for Lab #15: Introduction to Computer Aided Design Page 7

Schematic design flow

A detailed schematic design flow is shown to the right. The
design flow starts with a clear specification, and the
specification is used to generate a schematic (and therefore a
netlist). The process of generating an error-free schematic
and netlist can be somewhat challenging based on the
complexity of the design and the features of the CAD tool.
Once the netlist is complete, stimulus input can be generated
to test the design. In a schematic flow, stimulus inputs can
typically be generated using a simple graphical interface in a
waveform editor. A waveform editor allows signals to be
assigned different logic values over time. When all input
values have been assigned, the simulation can be executed,
and the simulator will produce output values based on the
inputs. The output values are typically shown in the same
graphic interface window so it is easy to match circuit inputs
with the resulting outputs. In general, the simulator inputs
should drive the circuit with all possible input conditions so
that the designer can verify that the output is correct for every
possible combination of inputs. Once the simulation has been
executed, the designer must determine whether the simulation
results demonstrate that the design requirements have been
met. Verifying that the simulation outputs indicate a working
design consistent with the specification is probably the most
important and challenging process in the design flow.

Problem 3: Create a truth table that corresponds to the
simulation shown in the waveform editor
window in the submission form.

Once the simulation is correct and all design requirements
have been confirmed, the design can be implemented and
verified in hardware. This process involves the use of various
meters, oscilloscopes, and other test and measurement
equipment, all of which are introduced in later labs. The
intent of the verification process is to ensure that the design
still meets specification after it has actually been constructed
in its target hardware. Several problems, such as slow
operation, electronic noise, or excessive power consumption may be encountered for the first time after
the circuit is actually constructed.

Most modern CAD tools have a top-level graphical interface called a framework from which all other
required CAD tools can be launched. Such a framework is well illustrated in the Xilinx design tools
used in this lab – all the steps that need to be taken from the beginning to the end of a design process
are presented in outline form.

You are encouraged to perform the Xilinx tutorial, and/or watch the tutorial video before proceeding.

Specification

Generate
schematic

Generate netlist

Netlist errors?

Generate
stimulus

Simulate

Implement

Y

N

Design
requirements

met?

Verify

N

Y

Hardware
problems?

Document and
submit design

Y

N

Schematic design flow

Module for Lab #15: Introduction to Computer Aided Design Page 8

Lab Procedure Part 1: Basic VHDL

Problem 4: Use the Vivado Design Suite to implement separate VHDL code blocks for each of the
the three logic statements as described in the work sheet.

Problem 5: Adapt the three VHDL code blocks from problems 4a, 4b, and 4c as lower level modules
and use them in a new top-level VHDL code block as described in the work sheet.

Part 2: A simple logic problem in VHDL

Problem 6: Design and implement in VHDL, logic that describes the Overhead Coffee Company
buy decision (below). Minimize the logic problem before implementing it in VHDL,
as described in the work sheet.

Amy, Baker, Cathy, and David are responsible for buying new beans for the "Overhead
Coffee Company". Buy decisions are made according to the following criteria – a
“buy” order is placed if:

Amy, Cathy, and David vote NO and Baker votes YES,
or Amy and David vote NO and the rest vote YES,
or Baker and David vote YES and the rest vote NO,
or Amy votes NO and the others vote YES,
or Baker votes NO and the others vote YES,
or Baker and Amy vote YES and the others vote NO,
or Cathy votes NO and the others vote YES,
or David votes NO and the others vote YES,
or Amy and Cathy vote YES and the others vote NO,
or they all vote YES.

Although they are good voters, they are unable to consistently tally all votes. Design and implement a
simplified logic circuit that will indicate whether they should buy new beans. Use slide switches for
vote entry (either "buy" or "not buy"), and an LED to indicate when beans should be purchased. (Hints:
One way to solve this problem is to write down a function F in terms of A, B, C, and D from the list
above, and then simplify the function using Boolean algebra. Consider using a truth table as well).

Basic VHDL Hierachy

user
Sticky Note
Unmarked set by user

Boolean Identities
1 = TRUE 0 = FALSE · = AND + = OR ⊕ = XOR

Negation: 10 =
 01=

Complementarity: 0=⋅ AA
 1=+ AA

Involution: AA =

Idempotence: AAA =
 AAA =+

Identity: AA =⋅1
 AA =+ 0

Dominance: 00 =⋅A
 11=+A

Commutativity: BAAB =
 ABBA +=+
 ABBA ⊕=⊕

Associativity: () ()BCACABABC ==
() ()CBACBACBA ++=++=++

 () ()CBACBA ⊕⊕=⊕⊕

Distributivity: () ACABCBA +=+
()()CABABCA ++=+

DeMorgan’s Laws: BABA ⋅=+
 BAAB +=

Absorption: () ABAA =+
 AABA =+

 Redundancy: BABAA +=+
() ABBAA =+

Consensus: CAABBCCAAB +=++
()()() ()()CABACBCABA ++=+++

XOR (exclusive OR): BABABA +=⊕
EQV (equivalence) aka XNOR: ()()BABABA ++=⊕

Examples using Boolean algebra to simplify logical expressions.

1) DCBACBACBA ⋅⋅⋅++++⋅⋅

() () BABADCBADCCCBA

DCBACBACBA

+=⋅=⋅+⋅=⋅++⋅=

⋅⋅⋅+⋅⋅+⋅⋅=

1

2) DCBACBACBA ⋅⋅⋅++++⋅⋅

() () ()DCBADCCBADCCCBA

DCBACBACBA

+⋅=⋅+⋅=⋅++⋅=

⋅⋅⋅+⋅⋅+⋅⋅=

3))()(EDDEDBBD ++++

EDBDBEEDBD

EDDDBEBDBD

+=++=

++++=

4) CDABCDABABCD ++

CDAB
CDABCDCDAB

+=
++=)(

5)))((ABCBAAB +++

CAB
ABCABABCABAB

+=
++=++=)()(

6) C AB B A BA ++

CA BC AB BC AB B) A A(+=+=++=

7) A CAB AB ++

 CA C 1)A(B A C AB +=++=++=
 also

CA)BC(1ACB CA

CB CAA)CBA(1)A(B

+=++=++=

++=+++=

8) ED CBA BCDA CBA BA +++

 BA1 BA E)D C CD C(1 BA =⋅=+++=

