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Module for Lab #14: Basic Logic Circuits and Functions 
Revision: 02 November 2008 
 
  
Overview 
 
The three primary logic relationships, AND, OR, and NOT (or inversion) can be used to express any 
logical relationship between any number of variables. These simple logic functions form the basis for 
all digital electronic devices – from a simple microwave oven controller to a desktop PC. We can write 
logic equations of the form "F = A AND B" that use these three relationships to specify the behavior of 
any given digital system. Pause a moment and think about this: any digital system, up to and including 
a highly complex computer system, can be built entirely of devices that do no more than implement 
these three simple functions. 
 
As engineers, we must address two primary concerns: how to express a given requirement or problem 
statement in terms of these simple logic relationships; and how to build electronic devices (or circuits) 
that can be used to implement these relationships in real devices. This lab will begin to explore the 
second of these questions – how to arrange switching devices so that these relationships are realized. 
 
 
Before beginning this module, you should… 

• Read the section of your text that covers 
transistors and logic circuits; 

• Know the truth-table definitions of AND, 
OR, NOT, NAND, NOR, XOR, and XNOR 
(or EQV) logic relationships; 

• Be able to apply Ohm’s law to circuits that 
contain just resistors and switches, and 
understand how node voltages change when 
switches are opened or closed; 

• Know how to construct breadboard circuits. 

 

After completing this module, you should… 

• Understand how switching circuits can be used to 
implement basic logic functions; 

• Understand how transistor circuits implement 
basic logic functions; 

• Be able to create a truth table from a worded 
logic problem; 

• Be able to sketch a logic circuit from a logic 
equation, and be able to read a logic equation 
from a circuit; 

• Be able to create a logic circuit from a truth table 
definition. 

This module requires: 

• A Digilab circuit board 
• The Digital chip kit 
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Background 
 
Logic equations are used to show how an output logic signal should be driven in response to changes 
on one or more input signals. The equal sign (“=”) is typically used as an assignment operator to 
indicate how information should flow through a logic circuit. For example, the simple logic equation 
“F = A” specifies that the output signal F should be assigned whatever voltage is currently on signal A. 
Note this does not imply that F and A are the same circuit node – in fact, the use of a logic equation to 
specify circuit behavior implies that the inputs and outputs (in the case, F and A) are separated by a 
circuit component. In digital circuits, circuit components act like one-way gates. Thus, the logic 
equation “F = A” dictates that a change on the signal A will result in a change on the signal F, but a 
change on F will not result in a change on A. Because of this directionality, assignment operators that 
indicate direction, such as “F <= A”, are often used. Here, we will just assume that signals always flow 
from input to output, and we will carry on using the equal sign. 
 
Most useful logic equations specify an output signal that is some function of input signals. For 
example, the logic equation “F = A and B” specifies a logic circuit whose output will be driven to LHV 
only when both inputs are driven to LHV. Below are six common logical functions written as 
conventional logic equations. The AND relationship, F = AB, can be written without an operator 
between the A and B (but more properly, a dot (⋅) should be placed between the variables to make the 
relationship clear). The OR relationship uses the plus sign, and the NOT or inversion relationship is 
shown by placing a bar over the inverted variable or by placing a single quote character after the 
variable or quantity to be inverted (two possible notations are shown for several relationships). 
 
F = AB F = A + B F=A XOR B F = A BF = A F = A + B

F = A B F = A’ F = (A B)' F = (A + B)'F=A   B
 
Compound logic expressions can be built from these basic functions. For example, an output might be 
need to driven to LHV if input signals A and B are both at LHV, or if input C is LLV, or if C is LHV 
at the same time that A is LLV. This relationship can be concisely written as “F = AB + C’ +A’C”. 
 
A truth table is the primary tool for capturing logical relationships in a concise and universally 
understood format. All possible combinations of inputs are shown in rows on the left of a truth table. A 
truth table with N inputs requires 2N rows to list all possible input combinations. A ‘0’ or ‘1’ in the 
rightmost column indicates whether the logical relationship evaluates to a “true” for the combination of 
inputs shown in the adjacent row. For example, a truth table with two inputs, A and B, will require 22, 
or 4 rows to list all possible combinations: “0 0”, “0 1”, “1 0”, and “1 1”. For the ANDing operation, 
the output is “true” only when both inputs are true, so the rightmost column would have a ‘1’ only in 
the last row. For “F = A’ and B”, the truth table would have a ‘1’ only in the second row. 
 
Problem 1: Complete the truth tables in the submission form for the basic logic functions and logic 

equations shown. 
 
In engineering, we are interested more in performing actions than in the "truth" of a given relationship. 
For example, let’s say we have produced a circuit that can turn on an automobile's dashboard warning 
light whenever the coolant level is too low AND the engine is too hot. If the coolant level ever 
becomes too low and the engine temperature too high, the circuit’s output is said to be asserted to 
indicate the output signal is ready to do some work (like illuminating a warning light). We likewise 
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apply the term to inputs – the AND relationship in this example may be stated as "the output F is 
asserted when the inputs A and B are both asserted". 
 
Some input signals to logic circuits might normally be at LLV, changing to LHV only when some 
input device or circuit is activated (like the pushbuttons on the Digilab board). Other input signals 
might normally be at LHV, changing to LLV only when an input device is activated. In either case, we 
can use the term “asserted” to indicate the input is producing a signal at either LLV or LHV in 
response to some action. Using this definition, an asserted signal at LHV is said to be asserted high, 
and an asserted signal at LLV is said to be asserted low. An asserted high signal at LLV is said to be 
“not asserted”, and an asserted low signal at LHV is said to be “not asserted”. The same signal 
definitions are also applied to output signals from logic circuits. If a logic circuit produces a LHV 
when its inputs are asserted, its output is said to be asserted high, and if a circuit produces a LLV at its 
output, the output is said to be asserted low. 
 
An example of a physical circuit composed of series switches and a resistor that can be used to 
implement the ANDing operation F = AB is shown in the circuit diagram below. Observe that when 
the switches are both closed, the output F is connected directly to GND, and so F it is at LLV. But 
when one switch or the other is left open, no direct path to GND exists and the output is "pulled high" 
(to LHV or VDD) by the resistor.  
The operation of the circuit is concisely described as follows: 
 
• if both switches are open, then F = VDD (or LHV); 
• if one switch is open and the other closed, then F = VDD (or LHV); 
• if both switches are closed, then F = GND (or LLV); 
 
If we assume that placing VDD on a switch input (labeled SW1 and SW2) 
causes it to close, and placing GND or 0V on a switch causes it to open, then 
we can complete a “voltage truth table” that clearly shows the behavior of the 
circuit network under all conditions. 
 
Problem 2: Complete the truth tables and answer the questions regarding 

figure 1. 
 
 
The circuit of figure 1 can show both the AND relationship and the OR relationship: F is LLV if SW1 
and SW2 are closed; and F is LHV (or VDD) if SW1 or SW2 are open. All logic circuits illustrate this 
property of duality, which simply means that any given logic circuit can be interpreted as performing 
an and’ing relationship or an or’ing relationship, depending on how the inputs and outputs are 
interpreted. 
 
A second circuit (figure 2) can also be used to implement the function F = AB or F = A + B. This 
circuit uses a parallel configuration instead of the series configuration shown in figure 1. Here again, 
we assume that Vdd closes a switch and 0V opens a switch. This circuit, like that of figure 1, can 
demonstrate either the AND relationship or the OR relationship depending on how the input and output 
signals are interpreted - F is LLV (or GND) if SW1 and SW2 are open, and F is LHV if SW1 or SW2 
are closed. 
 
 

SW1

SW2

GND

VDD

F

 
 

Figure 1. 
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Problem 3: Complete the truth tables and answer the questions 

regarding figure 2. 
 
Note that in both cases above, the physical circuit always behaves the 
same way, but the behavior can be interpreted as OR-like, or as AND-
like. As will be seen in later work, which interpretation is used is a 
matter of convenience. 
 
Problem 4: State a simple theorem statement for converting 

between AND-like and OR-like circuit interpretations 
of a given circuit. 

 
Using just switches and resistors, it is also possible to create logical 
circuits that perform compound logical relationships, like “F = (A and 
B) or C”. Such circuits will be discussed in more detail a later section. 
 
Problem 5: Complete the design of a more complex switch/resistor circuit. 
 
 
 
Transistor as switches 
 
Digital electronic circuits are built from electronic switches called transistors instead of the mechanical 
switches and resistors discussed above. The basic concept is the same – the switches (transistors) are 
arranged so that they can be turned on or off by signals carrying either LLV or LHV.  The transistor 
switches used in modern digital circuits are called “Metal Oxide Semiconductor Field Effect 
Transistors”, or MOSFETs (or just FETs). FETs are three terminal devices that can conduct current 
between two terminals (the source and the drain) when a third terminal (the gate) is driven by an 
appropriate logic signal. In the simplest FET model (which is appropriate for our use here), the 
electrical resistance between the source and the drain is a function of the gate-to-source voltage – the 
higher the gate voltage, the lower the resistance (and therefore, the more current that can flow). In 
analog circuits (like audio amplifiers), the gate-to-source voltage is allowed to assume any voltage 
between GND and Vdd; but in digital circuits, the gate-to-source voltage is constrained to be either 
Vdd or GND (of course, when the gate voltage changes from Vdd to GND or vice-versa, it must 
necessary assume voltages between Vdd and GND – we assume that this happens infinitely fast, so 
that we can ignore FET characteristics during the time the gate voltage is switching).  
 
In a simple digital model, FETs can be thought of as electrically controllable "on/off" switches. An 
electrical connection is created between the source and the drain (i.e., the FET is turned “on”) when the 
gate input is asserted. One kind of FET, called an nFET, is turned on when Vdd is present at the 
control input, and a second type, called a pFET, is turned on when GND is present at the control input. 
Thus, an "asserted" input for an nFET means that the control signal is at Vdd, and for a pFET means 
the control input is at a GND. The figures below show the circuit symbols and equivalent switch 
diagrams for both nFETs and pFETs. 
 

SW1

GND

VDD

SW2

F

 
 

Figure 2. 
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Circuit symbol used
for an nFET in a
schematic deawing

drain

gate

source

When the gate of an nFET is
at GND, the nFET behaves
like an open switch

source

drain

When the gate of an nFET is
at Vdd, the nFET behaves like
an closed switch

source

drain

Circuit symbol used
for a pFET in a
schematic deawing

drain

gate

source

When the gate of a pFET is
at GND, the pFET behaves
like an closed switch

source

drain

When the gate of a pFET is at
Vdd, the pFET behaves like
an open switch

source

drain

GND

Vdd

Vdd

GND

 
 
 
Individual FETs are often used as stand-alone electrically controllable on-off switches. As an example, 
if a pFET were used to turn on and off an appliance, then a power source might be connected to the 
source connection, and a load (such as a motor, lamp, or other electrical component in an appliance) 
might be connected to the drain connection. A signal applied to the gate could then turn the load device 
on (gate = GND) or off (gate = Vdd). Typically, a relatively small voltage (on the order of a few volts) 
is required to turn on a FET, even if the FET is switching large voltages and currents. Individual FETs 
used for this purpose are typically rather large (macroscopic) devices. 
 
FETs can also be arranged into circuits that perform useful logic functions such as AND, OR, NOT, 
etc. In this application, several very small FETs are constructed on a single small piece of silicon (or 
chip of silicon) and then interconnected with equally small metal wires. These microscopic FETs 
typically occupy an area of less than 1 x 10e-7m2. Since a silicon chip might measure several 
millimeters on a side, several millions of FETs can be constructed on a single chip. Circuits assembled 
in this fashion are said to form "integrated circuits" (or IC’s), because all circuit components are 
constructed and integrated on the same piece of silicon. 
 
Most FETs are manufactured using the semi-conductor silicon. During manufacturing, a silicon chip is 
implanted with ions to make it more conductive in the areas that will become the FET source and the 
drain regions – these regions are commonly called diffusion regions. Next, a thin insulating layer is 
created between these diffusion regions, and another conductor is "grown" on top of this insulator. 
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Silicon substrate or chip

Charged ions implanted in silicon
in areas that will become FET

source and drain

An insulator and conductor are grown in area
between source and drain; this structure will

form the FET's gate

Source and drain diffusion regions
are formed beneath the silicon

surface

Metal wires are added to connect
the source, drain, and gate to other

circuit nodes.

Vias connect metal wires to
diffusion and gate structures

Cross-sectional view of FET

A FET device is symmetrical; we simply label
one side the source and the other side the drain.

gate

source drain

Silicon surface

Insulator

Channel region

FET structure

 
 
This grown conductor (typically silicon) forms the gate, and the area immediately under the gate and 
between the diffusion regions is called the channel. Finally, wires are connected to the source, drain, 
and gate structures so that the FET can be connected in a larger circuit. Several processing steps 
involving high temperatures, precise machine alignments, and various materials are required to 
produce transistors. Although a description of these processes is beyond the scope of this document, 
the processes are well documented and many very readable references exist (e.g. see the IBM website 
http://www.chips.ibm.com/bluelogic/manufacturing/makechip/makechip1.html). 
 
The basic principles of FET operation are actually quite straightforward. The following very basic 
discussion applies only to nFETs; pFET operation is entirely similar, but the voltages must be 
reversed. Refer to one of the many available texts for a more proper and detailed presentation of FET 
operation. 
 
As the figure below shows, both the source and drain diffusion areas of an nFET are implanted with 
negatively charged particles. When an nFET is used in a logic circuit, its source lead is connected to 
GND, so that the nFET source, like the GND node, has an abundance of negatively charged particles. 
If the gate voltage of an nFET is at the same voltage as the source lead (i.e., GND), then the presence 
of the negatively charged particles on the gate repels negatively charged particles from the channel 
region immediately under the gate (note that in semiconductors such as silicon, positive and negative 
charges are mobile and can move about the semiconductor lattice under the influence of charged-
particle induced electric fields). A net positive charge accumulates under the gate, and two back-to-
back positive-negative junctions of charge (called pn junctions) are formed. These pn-junctions 
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prevent current flow in either direction. If the voltage on the gate is raised above the source voltage by 
an amount exceeding the threshold voltage (or Vth, which equals about 0.5V), positive charges begin 
to accumulate on the gate and positive charges in the channel region immediately under the gate are 
repelled. A net negative charge accumulates under the gate, forming a channel of continuous 
conductive region in the area under the gate and between the source and drain diffusion areas. When 
the gate voltage reaches Vdd, a large conductive channel forms and the nFET is “strongly” on. 
 
 

gate

source drain

- - --- -- ---
-
----

+ +
+ +

++

+

- - -- - --

GND

GND

Vdd

gate

source drain

- - --- -- ---
-
----

+

++ +++ +

-- --

GND

GND

Vdd

+
+ +

+
+ +

With the at Vdd, a conductive channel of negatively
charged particels forms under the gate and the nFET is on.

With the nFET OFF, the
drain is not connected to
GND; thus, some other

circuit element must
determine whether the drain

is at HV or LV.

With the nFET ON, the
drain is directly

connected to GND and is
therefore at LV.

With the gate held at GND, back-to-back pn junctions are
formed, current flow is prevented, and the nFET is off  

 
As the following figure shows, nFETs used in logic circuits have their source leads attached to GND 
and Vdd on their gate turns them on, while pFETs have their source leads attached to Vdd and GND on 
their gate turns them on.  
 

gate

source

GND

drain

Vdd: on
GND: off

Vdd

source

drain

gate

GND

Vdd: off
GND: on

In a pFET, Vdd on the
gate means 0V between
the gate and source --
turning the pFET off.

 
For reasons that will become clear later, an nFET with it's source attached to Vdd will not turn on very 
strongly, so nFET sources are rarely connected to Vdd. Similarly, a pFET with its source attached to 
GND will not turn on very well either, so pFETs are rarely connected to GND. 
 
Logic circuits built from FETs 
 
Armed only with this basic description of FET operation, it is possible to construct the basic logic 
circuits that form the backbone of all digital and computer circuits. These logic circuits will combine 
one or more input signals to produce an output signal according to the logic function requirements. The 
following discussion is restricted to circuits for basic logic functions (like AND, OR, and INV), but 
FET circuits can readily be built for more complex logic circuits as well. 
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When building FET circuits to implement logic relationships, four basic rules must be followed: 
 
• pFET sources must be connected to Vdd and nFET sources must be connected to GND; 
• the circuit output must always be connected to Vdd via an “on” pFET or to GND via an “on” nFET 

(i.e., the circuit output must never be left floating); 
• the logic circuit output must never be connected to both Vdd and GND at the same time (i.e., the 

circuit output must not be “shorted”); 
• the circuit must use the fewest possible number of FETs. 
 
Following these rules, a circuit that can form the 
AND relationship between two input signals is 
developed. But first, note that in the circuit on 
the right, the output (labeled Y) is connected to 
GND only if the two inputs A and B are at Vdd. 
The two nFETs labeled Q1 and Q2 are said to 
be in series; in general, a series connection of 
FETs is required for an AND function. In the 
circuit on the right below, the output Y is connected to GND if A or B are at Vdd. The two nFETs 
labeled Q3 and Q4 are said to be in parallel; in general, a parallel connection of FETs is required for 
an OR function.  
 
Keeping in mind the rules for FET logic circuits, an AND structure is created from Q1 and Q2 below. 
Using just these two FETs, Y is driven to GND whenever A and B are at Vdd. But we must also 
ensure the output Y is at Vdd when A and B are not both at Vdd; restated, we must ensure the output Y 
is at Vdd whenever A or B are at GND. This can be accomplished with an OR'ing structure of pFETs 
(Q3 and Q4 below). The AND'ing structure and OR'ing structure are assembled in the circuit on the 
right below. The adjacent operation table shows the input and output voltages for all four possible 
combinations of inputs. Note that this circuit obeys all the rules above – pFETs are connected only to 
Vdd, nFETs are connected only to ground, the output is always driven to Vdd or to GND but never to 
both simultaneously, and the fewest possible number of FETs are used. 
 

B

Y

Q1

Q2

GND

A Q3 Q4

Vdd

B

Y

Q1

Q2

GND

A

Y

A Q3 Q4

Vdd

B

Y <= GND when
A and B = Vdd

Y <= Vdd when
A or B = GND

Y <= GND iff
A and B = Vdd;
else Y <= GND

 A   B    Y
GND GND  Vdd
GND Vdd  Vdd
Vdd GND  Vdd
Vdd Vdd  GND

Operation table

 
 
This AND’ing circuit has the interesting property of producing an output signal at GND when both 
inputs A and B are at Vdd. In order to have this circuit's performance match the AND logical truth 
table above, we must associate an input signal at Vdd with a logic 1 (and therefore, an input signal at 

A

B

Y

A
Q1

Q2

Series configuration:
Y = LLV if A and B are LHV

Q3 Q4B

Y

Parallel configuration:
Y = LLV if A or B are LHV
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GND must be associated with a logic 0); and we must associate an output signal at GND with a logic 
1. This creates a potentially confusing situation – considering the “1” symbol to represent a signal at 
Vdd on the input of a gate, and then considering that same “1” symbol to represent a signal at GND on 
the output of a gate. Note that if the outputs in the Y column of the truth table were inverted (that is, if 
Vdd were changed to GND and GND were changed to Vdd), then a “1” symbol could represent Vdd 
for both the inputs and outputs, resulting in the AND truth table presented earlier. Because of this, the 
circuit shown above is called a NOT AND gate (were NOT means inversion), which is shortened to 
“NAND” gate. To create an AND circuit in which both the input signals and output signals can 
associate a Vdd signal with a logic “1”, an inverter circuit must be added to the output of the NAND 
gate (as the name implies, an inverter produces a Vdd output for a GND input, and vice-versa). 
Shown below are the five basic logic circuits: NAND, NOR (for “NOT OR”), AND, OR and INV (for 
inverter). The reader should verify that all truth tables show the correct circuit operation. These basic 
logic circuits are frequently referred to as logic gates. 
 
In each of these logic gates, a minimum number of FETs 
has been used to produce the required logic function. Each 
circuit has nFETs "on the bottom" and pFETs "on the top" 
performing complementary operations; that is, when an OR 
relationship is present in the nFETs, an AND relationship is 
present in the pFETs. FET circuits that exhibit this 
complementary nature are called Complementary Metal 
Oxide Semiconductor, or CMOS, circuits. CMOS circuits 
are by far the dominant circuits used today in digital and 
computer circuits. (Incidentally, the Metal-Oxide-
Semiconductor name refers to older technologies where the 
gate material was made of metal and the insulator beneath 
the gate made of silicon oxide). These basic logic circuits 
form the basis for all digital and computer circuits. 
 

CMOS NANDCMOS INVERTER

A B FA
B

F

Vdd

A F

Vdd
A

B
F

Vdd

L
L
H
H

L
H
L
H

H
H
H
L

CMOS NOR

A B F

L
L
H
H

L
H
L
H

H
L
L
L

A F

L
H

H
L

CMOS AND

A B F

L
L
H
H

L
H
L
H

L
L
L
H

A B F

L
L
H
H

L
H
L
H

L
H
H
H

CMOS OR

A
B

Vdd

F

A

B

Vdd

F

 
 

pFETs

nFETs

Vdd

Output

Inputs
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When these circuits are used in schematic drawings, the well-known symbols shown below are used 
rather than the FET circuit diagrams (it would simply be too tedious to draw the FET circuits). A 
straight edge on the input side of a symbol and smoothly curved output side means AND, while a 
curved edge on the input side and pointed output side means OR. A bubble on an input means that 
input must be at LLV to produce the indicated logic function output, and a bubble on the output means 
that a LLV output signal is produced as a result of the logic function. The lack of a bubble on inputs 
means that signals must be at LHV to produce the indicated function, and the lack of a bubble on the 
output means that a LHV signal is produced as a result of the logic function. 

 
 

INV NAND NOR AND OR  

Note that each of the symbols above has two appearances. The symbols on the top may be considered 
the primary symbols, and those on the bottom may be considered the conjugate symbols (properly, 
each symbol is the conjugate of the other). Conjugate symbols swap AND and OR shapes, and input 
and output assertion levels. The reader should verify that both symbols are appropriate for the 
underlying CMOS circuit. For example, the AND shaped symbol for the NAND circuit shows that if 
two inputs A and B are at LVH, then the output is at LLV. The OR shaped symbol for the NAND 
circuit shows that if either of two input A and B are at LLV, then the output is at LHV. Both 
statements are true, illustrating that any logic gate can be thought of in conjugate forms. (Why 
conjugate forms? In certain settings, it can be easier for humans to follow circuit schematics if the 
appropriate symbol is used – more on this later).  
 
Problem 6: Complete the tables in the submission form to illustrate CMOS circuit behavior. 
 
 
Integrated Circuits (or “chips”) 
 
The terms chip and integrated circuit refer to FET circuits using microscopic transistors that are all 
co-located on the same small piece of silicon. Chips have been designed to do all sorts of functions, 
from very simple and basic logical switching functions to highly complex processing functions. Some 
chips contain just a handful of transistors, while others contain several million transistors. Some of the 
longest-surviving chips perform the most basic functions. These chips, denoted with the standard part 
numbers "74XXX", are simple small-scale integration devices that house small collections of logic 
circuits. For example, a chip known as a 7400 contains four individual NAND gates, with each input 
and output available at an external pin. 
 
As shown in the figures below, the chips themselves are much smaller than their packages. During 
manufacturing, the small, fragile chips are glued (using epoxy) onto the bottom half of the package, 
bond-wires are attached to the chip and to the externally available pins, and then the top half of the 
chip package is permanently affixed. Smaller chips may only have a few pins, but larger chips can 
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14

13

12

11

10

9

8

1

2

3

4

5

6

7

VDD

GND

have more than 500 pins. Since the chips themselves are on the order of a centimeter on each side, very 
precise and delicate machines are required to mount them in their packages. 
 
Smaller chips are usually packaged in a "DIP" package (DIP is an acronym for Dual In-line Package) 
as shown below. Typically on the order of 1" x 1/4", DIP packages are most often made from black 
plastic, and they can have anywhere from 8 to 48 pins protruding in equal numbers from either side. 
DIPs are used exclusively in through-hole processes. Larger chips use many different packages -- one 
common package, the "PLCC" (for Plastic Leaded Chip Carrier) is shown below. Since these larger 

packages can have up to several hundred pins, it is often not practical to use the relatively large leads 
required by through-hole packages. Thus, large chips usually use surface mount packages, where the 
external pins can be smaller and more densely packed. 
 
Shown on the right is a representation of a 7400 logic IC that contains 16 
transistors organized as four 2-input NAND gates. This small chip is housed in a 
14-pin DIP package that provides pins for each of the NAND gates inputs and 
outputs, as well as a power and ground pin (labeled Vdd and GND). Note the 
picture shows the four logic gates placed inside a DIP outline, thereby showing 
both the function and pinout (or pin definition) of the IC. On schematics and on 
circuit boards, chips are most often shown as square boxes denoted with a "U__" 
reference designator. 
 
When placing chips in a circuit, pin 1 must be correctly oriented so that all 
connections can be properly made. The circuit board silkscreen, IC sockets, and 
IC's all indicate the location of pin1. For smaller chips and their sockets, a small notch is located on 
one end indicating pin 1 is to the immediate left. By convention, that same notch pattern appears in the 
circuit board silk screen. For larger IC's, either the corner of the IC nearest (and to the left) of pin 1 is 
shaved off, or a small indentation (or dot) is located at the corner nearest pin 1. 
 
Logic Circuit Schematics 
 
Digital logic circuits can be built from individual logic chips, or from resources available on larger 
chips (like the user-programmable Xilinx chip on the Digilab board). Regardless of how logic circuits 
are implemented, they can be fully specified by truth tables, logic equations, or schematics. This 
section will present the preparation and reading of logic circuit schematics. A later lab will explore the 
relationships between circuits and truth tables.  
 

Actual chip die

Bond wire
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A circuit schematic for any logic equation can be easily created by substituting logic gate symbols for 
logical operators, and by showing inputs as signal wires arriving at the logic gates. Perhaps the only 
step requiring some thought is in deciding which logic operation (and therefore, which logic gate) 
drives the output signal, and which logic operations drive internal circuit nodes. Any confusion can be 
avoided if parenthesis are used liberally in logic equations to show operator precedence, of if rules of 
precedence are established. For example, a schematic for the logic equation “F = A.B + C.B” might 
use an OR gate to drive the output signal F, and two AND gates to drive the OR gate inputs, or it 
might use a three-input AND gate to drive F, with AND inputs coming from the A and B signals 
directly and a “B + C” OR gate. 
If no parentheses are used, then 
NAND/AND has the highest 
precedence, followed XOR, 
then NOR/OR, and finally 
INV. In general, it is easiest to 
sketch circuits from logic 
equations if the output gate is 
drawn first. 
 
Inverters can be used in logic equations to show that an input signal must be inverted prior to driving a 
logic gate. For example, a schematic for “F = A’B + C” would use an inverter on the A input prior to a 
2-input AND gate. Equations may also show that the output of a logic function must be inverted – in 
this case, an inverter 
can be used, or the 
preceding circuit 
symbol can show an 
inverted output (i.e., the 
preceding symbol can 
show an output bubble).  
The figure on the right 
shows an example.  
 
 
Problem 7. Sketch circuits for the logic equations in the submission form. 
 
Reading logic equations from schematics is straightforward. The logic gate that drives the output 
signal defines the “major” logic operation, and it can be used to determine how other terms must be 
grouped in the equation. An inverter, or an output bubble on a logic gate, requires that the inverted 
signal or function output be shown in the output of the “downstream” gate (see example below). A 
bubble on the input of a logic gate can be thought of as an inverter on the signal leading to the gate.  
 

(A.B)'
A
B

C

F = (A.B)' + C'.B

C'.B

(A.B)'
A
B
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F = (A.B) + (C'.B)'

C'.B

Input bubbles also cause inversion
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"F = A.B + C.B"   can be interpreted in two different ways as shown

 

"F = (A.B)' + C'.B"   can be implemented in two different ways as shown

A
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C

F

A
B

C

F
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Two “back-to-back” signal inversions cancel each other. That is, if a signal is inverted, and 
immediately inverted again before it is used anywhere else, then the circuit would perform identically 
if both inversions were simply removed. This observation can be used to simplify circuits, or to make 
them more efficient. As an example, consider the circuits below, both of which perform identical logic 
functions. The circuit on the right has been simplified by removing the two inverters on signal C, and 
made more efficient by adding inversions on internal nodes so that NAND gates (at four transistors 
each) could be used instead of AND/OR gates (at six transistors each).  
 
A
B

C

F = A.B + C.B

22 transistors

A
B

C

F = A.B + C.B

12 transistors  
 
 
Problem 8. Write logic equations for the circuits shown in the submission form. 
 
 
Lab Procedure 
 
This lab procedure requires that two simple circuits be constructed on the solderless breadboard, using 
the logic chips and wires that were introduced in the previous lab. Both designs will be presented as 
worded problems. You must transfer the requirements in the worded problem first to a formal 
engineering representation (i.e., a truth table or a Boolean equation), and then build a circuit based on 
that truth table or equation. 
 
A simple temperature controller (25 points) 
 
Design a circuit to control the temperature of a building. Circuit inputs include a signal A that is driven 
to a LHV whenever the outside temperature is less than 16oC, a signal B that is driven to a LHV 
whenever the inside temperature is less than 23oC, and a safety override signal S that is driven to LLV 
whenever the safety monitor device indicates a fault condition (so the heater should not run when S is 
at LLV). The circuit must drive a signal F to LHV (to turn on the heater) whenever the outside 
temperature is less than 16oC or the inside temperature is less than 23oC, provided the safety signal 
does not indicate a fault. 
 
Problem 9. Write the Boolean equation that defines the required logical relationship (you may want 

to sketch a truth table to focus your thinking). Then sketch the design for a circuit to 
implement your temperature control system on the submission form using any logic 
gates that you desire. All the inputs and the output are active high. (Hint: Can you use 
three logic gates available in a single chip to implement this circuit?). 

 
Problem 10. Using the chips and wires that came with your Digilab kit, implement the circuit. Use 

switches on the Digilab board to take the place of the three inputs, and use an LED to 
show when the heater would be turned ON. To construct the circuit, choose the 
appropriate chips and add them to the solderless breadboards so that they straddle the 
center groove. Check the IC pin-out diagrams in the previous lab to assist you in 
choosing which chips to use (i.e., if the circuit requires a 2-input AND'ing operation, 
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choose an IC that contains 2-input AND's). Once the appropriate chips have been added 
to the breadboards, connect the Vdd and GND power supplies, and then connect the 
switch inputs and LED output according to your design. After your circuit is complete, 
test it by completing the truth table in the submission form, and demonstrate your 
circuit to the lab assistant. 

 
 
A three-switch light controller (25 points) 
 
Design a light switch system for a room with three switches located near three doors (the switches are 
labeled S1, S2, and S3). The circuit must turn the lights ON only if one of the following switch 
patterns are present: S1 and S2 are ON when S3 is off, or S2 is ON while S1 and S3 are OFF. (Hint: 
Can you implement this circuit using just one logic gate and one inverter?). 
 
Problem 11. Implement the circuit on the Digilab breadboard using the logic chips and three 

switches for the light switches, and an LED for the light. Demonstrate your circuit for 
the lab assistant. 
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