Lecture 2
Solutions to the Transport Equation



Equation along a ray |

In general we can solve the static transfer equation along a ray in
some particular direction. Since photons move in straight lines we
want this to be a straight line (geodesic).

Then the RTE is

A b+
dS_ Xvly — Ty

Now we just have to do the differential geometry to describe s in some
coordinate system, which we saw last time.

So let’s make our life as simple as possible and assume that we can
work in Cartesian coordinates and that our problem is
one-dimensional. Then we can let ds = dz and for the moment only
look at rays headed directly toward us. Then the RTE becomes:

dl,

gz~ vl



Equation along a ray |l

We can write the equation in a somewhat more illuminating form by
dividing through by x,,

d,
dr,

where d7, = x,,0dz is the “optical depth” and S, = 7,,/x, is the “Source
function”

Let us also suppress the frequency dependence. Then we have

—1+S,

al
—=5-1

o al
+1=5

We can solve this equation with an integrating factor to obtain

I=he ™ +S(1—e)



Equation along a ray |l

assuming that S is a constant.
Consider the case Iy = 0. Then

L=S,(1-e™)
Then in the case 7, << 1
Iu = TIJSIJ

orin LTE
L, =1,B, = Xv sB,

so the atmosphere is bright where y,, is large and dim where y,, is
small. Hence you would expect to see an emission line spectrum.
Now consider the thick case 7, >> 1

lu: V:BI/

independent of ..



Line Profile
Natural Damping
Power spectrum
/21
(w) =
)= Gt (/28
This is a Lorentzian with width

_ 2mey 47e?
 w?  3me?
Pressure Broadening with lead to a bigger width and we also need to

convolve this with the effects of Thermal Doppler Broadening. The
Doppler Broadening will give a profile
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More on Solution

Now consider Iy # 0
I=he "+(1—-e7)S
expand e " =1 —171
I=1h+7(S-1h)
I=l+xs(S—b)

so if [y > S we see absorption (and it is strongest where y is strongest,
i.e. inlines if [y < S we see emission (and it is strongest where  is
strongest, i.e. in lines.

Again in the thick case I = S



Line Profiles
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Figure 2.2:  Spectral lines from a homogencous object with S, = S5 = S, everywhere, according to
(2.35)-(2:36). No lines emerge when the object is optically thick (top left). When it is optically thin,
emission lines emerge when the object is not back-lit (1,(0) = 0, top right), or when it is ilhminated with
1,(0) < S,.. Absorption lines emerge only when the object is optically thin and 1,(0) > S,. The emergent
lines saturate to I, ~ S, when the object is optically thick at line center.



Simple Stars

Let’s consider a star in LTE. Then

S, =8B,
Let’s cut the star into two regions bounded by 7 = 1. In the upper layer
Iy =B,(r>1)
and
S, =B, (r<1)
o)

L=1Ih+x,8(B,(r<1)=B,(r>1))
Now in stars we see absorption lines. Thus
B,(r<1) < By(r>1)
which implies
T(r<1) < T(r>1)
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General Rays

So far we have considered just one ray directed along the z axis.
Clearly for the formal solution each ray is independent of all the others.
Let us consider a general ray in the direction defined by 6. But we want
to measure optical depths: 1) from the outside in; 2) along the z axis.

A

7
“¥)

cosfdr(s) = —dt,
Thus the RTE becomes:

dl,
cosé dr, = L —S,

it is customary to define u = cosf




Solution for Plane-Parallel Atmosphere

Let us assume that we have a semi-infinite slab and we wish to know
the /(7 = 0, ). Then we find:

(7 =0, 1) = /0 S,(n,)e ™ /mdr, [

Now 7, /1 = 7(S) so this just says that the surface intensity is the sum
over the path of the emission (source function).



Eddington Barbier Relation

Let’s assume
SI/(TZ/) =a,+ bI/Tl/

I(r=0,1) _/0 S(r)e ™/"dn, /u

I(r = 0, 1) = / 8, + by ]e ™/ dr, [
0

/(T = Oaﬂ) =a,+bu= S,,(Tl, = N)

Thus, the measurement of the emergent intensity as a function of
gives us information about S as a function of depth.



Eddington-Barbier and Limb Darkening
rl

Figure 2.3: The Eddington-Barbier approximation. Left: the integrand S, exp(—7.) measures the contri-
bution to the radially emergent intensity I, (1, =0, jr=1) from layers with different optical depth 7. The
value of S, at 7, = 1 is a good estimator of the area under the integrand curve, i.e., the total contribution
Right: for a slanted beam the characteristic Eddington-Barbier depth is shallower than for a radial beam;
it lies at 7, = j1.
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Figure 2.4:  Solar limb darkening. The viewing angle 8 increases with the fractional radius r/R,
of the apparent solar disk. The emergent intensity samples shallower layers towards the limb, with smaller
source function. The final drop at r/Re = 1 marks the viewing angle at which the sun becomes optically
thin. Note that substantial decrease of y = cosf is reached only close to the limb, for r/Ro = sinf =
(1—p?)"/? close to unity (Table 7.2 on page 159). The off-limb extension to this sketch is given in Figure 7.2
on page 148.




General Formal Solution |

da,
'udTV B

L, —S,

I(7, 1) = _L / eT=0/nS(t) dt + e/ 1 I(C, 1)
c

Clearly the Formal Solution is a boundary value problem. But the

boundary depends on the sign of n. For out-going rays, u > 0 /is

specified at the base of the atmosphere. For in-going rays, 1 < 0 /is

specified at the surface of the atmosphere. We will generally assume

that there is no external illumination and the /(7 = 0, x < 0) = 0. In

that case, unless /(mmax, 1) increases exponentially with 7,.x the

boundary term — 0 as 7. — 00

Then for large m,.x We have:

I(7, 1) = :L / e =/ng(tydt; >0



General Formal Solution Il

and the emergent intensity in the semi-infinite case is:

10, 1) = /1/0 e UnS(tydt: p>0



More on the Source Function |

.
/) sehi))], e

7: Cﬂlrf%ﬁml > 4

In strict thermal equilibrium the RTE is:

aB,
ds

= (B, —8,)=0-8, =B,(T)

While I, = B, in all directions implies S, = B,, the converse is NOT
true.
S, =B,41,=8,



More on the Source Function Il
At the surface I,(n > 0) = B,(T) and I,(x < 0) = 0. Thus

J = 1/2/1 I, du=1/2B,(T)
-1

|
H= 1/2/ Lpdu=1/4B,(T)
—1

F,=4rH, =B,
B 2mo k4

7~ 15h8¢2

Effective Temperature of a star defined by

B:/ B,dv=2T4
0 i

= Stephan’s constant

F=0TkorL=4rR2TH

In LTE S, = B,(T(r)), then we get I, from the formal solution.
Another standard case is S, = J,.: pure, monochromatic (coherent),
isotropic scattering. This follows from integrating the RTE over all



More on the Source Function Il

directions and equating power absorbed to power emitted in a given
volume.

If we combine thermal emission and scattering we get that the RTE is
given by

d,
E - _"iu(lu - Bl/) - UV(IV - JV)
= —(kwto)(h—5)
- SI/ = (1 - EV)JV +e By (1)
_  hy
€, =
Ky + 0y

Xv = Ky + 0y



Moment Equations |
For a plane-parallel atmosphere the RTE is:

al, _
NE = _XV(IV - SV)

Let S, and x, be independent of
Recall

|
J,,:1/2/ L, du
1
;
Hl,—1/2/ Lopwdu
1

1
K,,:1/2/ L, 12 dp
-1

Integrating the RTE over u gives

aH,
dz

= _XV(JV - SV)



Moment Equations Il
or multiplying the RTE by 1 and integrating

aK,
dz

The net flux integrated over all frequencies is

H:/ H, dv
0

In Radiative equilibrium (only radiation carries energy)

aH
dz_/o oldy — S))dv =0

For combined thermal emission and scattering

- _XVHV

S, =B +(1—¢€)d,
JV - SV — EV(JV - BV)



Moment Equations IlI

Thus, Radiative Equilibrium —

/ ku(Jy — B,)dv =0
0

scattering drops out.



Two-Stream Eddington Approximation |

>0
’(“):{ - Zlo

Assume

Where I+ = constant Then
J, = 1/2/11 Ldu=1/2(I" +17)
H, = 1/2/11 Lpdu=1/4(I" —17)
K, = 1/2/11 b2 dp = 1/6(1 + 1) = 1/34,
From the moment equations we have
aK aJ



Two-Stream Eddington Approximation I

Then
J = 3HT7 + constant
att=20
J:1/2/8r H = 1/4/8’
—J=2H
J(r) =3H(r +2/3)
InRE J=B
B=3H(r+2/3)
T4 T4
7 —3Z e+ 4 2/3)
T 47

T = TeffatTZZ/S



Exponential Integral Solution |

The solution to the RTE is really not /,, but rather J,,, since once we
have J, we know S, and we just have to perform a formal solution.
From the general expression for 1, (7, 1) we can write

0 T
J, = 1/2/ —[:L/ eT=0/nS(t) dt + 7/*I(0, )| du
—1 0
1

+o1)2 / [1 / " e =1/ g 1) at
0 mJr
+ e_(Tmax_T)/MI(TmaX’M)] dy

For simplicity consider zero incident intensity at both boundaries.
Define:

1 e—x/,u
Eq(X) = / dy
0 2



Exponential Integral Solution I

where E; is the first exponential integral. Let y = 1/u, then

ooe—xy OOe—Z
Ei(x :/ d :/ dz
1(x) 5 y y Lz

where z = xy. For large x

Ei(x)~ e ¥/x

Then we can write

Tmax

J(r)=1/2 E;(|t — 7|)S(t) dt + incident terms
0

J(7) = \{S}



Exponential Integral Solution Il
Similarly

H) = /2 11 I, 1)y
4 1/2/_(: - [/0 eT-0/1S(t) dit + eT/M/(o,u)] dy

1 Tmax
+o1)2 / [ / e (=i S (1) dt + & =)/ (i, u)} du
0 T

For simplicity again consider zero incident intensity at both boundaries.
Define:

o e—Z

-1
En(x) = x" /X 7 dz

Then



Exponential Integral Solution IV
and
En(x) = [eX — XEn_1(x)] /(n—1)

Then we can write

H(r) = —1/2/ Eg(r—t)S(t)dt+1/2/max Eu(t — 7)S(t) dt
0 T
+ incident terms

Tm;

H(r) = 1/2/0 " Ex(|t — 7))sgn(t — 7)S(1) dit
H(r) = .{S}
Similarly,
K(r)=1/2 /0 Es(|t — 7|)S(t) at

K(r) = X.{S}



Exponential Integral Solution V

Can show

A(a+ bt) = a+ br +1/2[bEs(r) — aEa(r)]
®,(a+ bt) = 4/3b + 2[aEs(r) — bE4(7)]

X-(a+ bt) = 4/3(a+ br) + 2[bEs(r) — aE4(7)]



