
Lecture 2
Solutions to the Transport Equation



Equation along a ray I

In general we can solve the static transfer equation along a ray in
some particular direction. Since photons move in straight lines we
want this to be a straight line (geodesic).
Then the RTE is

dIν
ds

= −χν Iν + ην

Now we just have to do the differential geometry to describe s in some
coordinate system, which we saw last time.
So let’s make our life as simple as possible and assume that we can
work in Cartesian coordinates and that our problem is
one-dimensional. Then we can let ds ≡ dz and for the moment only
look at rays headed directly toward us. Then the RTE becomes:

dIν
dz

= −χν I + ην



Equation along a ray II
We can write the equation in a somewhat more illuminating form by
dividing through by χν

dIν
dτν

= −I + Sν

where dτν = χνdz is the “optical depth” and Sν = ην/χν is the “Source
function”
Let us also suppress the frequency dependence. Then we have

dI
dτ

= S − I

or
dI
dτ

+ I = S

We can solve this equation with an integrating factor to obtain

I = I0e−τ + S(1− e−τ )



Equation along a ray III
assuming that S is a constant.
Consider the case I0 = 0. Then

Iν = Sν(1− e−τν )

Then in the case τν << 1
Iν = τνSν

or in LTE
Iν = τνBν = χν s Bν

so the atmosphere is bright where χν is large and dim where χν is
small. Hence you would expect to see an emission line spectrum.
Now consider the thick case τν >> 1

Iν = Sν = Bν

independent of χν .



Line Profile
Natural Damping

Power spectrum

I(ω) =
γ/2π

(ω − ω0)2 + (γ/2)2

This is a Lorentzian with width

∆λ =
2πcγ
ω2 =

4πe2

3mc2 = 1.2× 10−4

Pressure Broadening with lead to a bigger width and we also need to
convolve this with the effects of Thermal Doppler Broadening. The
Doppler Broadening will give a profile

φD =
1√
π

1
∆λD

e−[(λ−λ0)2/∆λD ]

where
∆λD =

λ0

c
(
2kT
m

)1/2



More on Solution

Now consider I0 6= 0

I = I0e−τ + (1− e−τ )S

expand e−τ ≈ 1− τ
I = I0 + τ(S − I0)

I = I0 + χ s (S − I0)

so if I0 > S we see absorption (and it is strongest where χ is strongest,
i.e. in lines if I0 < S we see emission (and it is strongest where χ is
strongest, i.e. in lines.
Again in the thick case I = S



Line Profiles



Simple Stars
Let’s consider a star in LTE. Then

Sν = Bν

Let’s cut the star into two regions bounded by τ = 1. In the upper layer

I0 = Bν(τ > 1)

and
Sν = Bν(τ < 1)

so

Iν = I0 + χν s (Bν(τ < 1)− Bν(τ > 1))

Now in stars we see absorption lines. Thus

Bν(τ < 1) < Bν(τ > 1)

which implies

T (τ < 1) < T (τ > 1)
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General Rays
So far we have considered just one ray directed along the z axis.
Clearly for the formal solution each ray is independent of all the others.
Let us consider a general ray in the direction defined by θ. But we want
to measure optical depths: 1) from the outside in; 2) along the z axis.

cosθdτ(s) = −dτν
Thus the RTE becomes:

cosθ
dIν
dτν

= Iν − Sν

it is customary to define µ ≡ cosθ



Solution for Plane-Parallel Atmosphere

Let us assume that we have a semi-infinite slab and we wish to know
the I(τ = 0, µ). Then we find:

I(τ = 0, µ) =

∫ ∞
0

Sν(τν)e−τν/µdτν/µ

Now τν/µ = τ(s) so this just says that the surface intensity is the sum
over the path of the emission (source function).



Eddington Barbier Relation

Let’s assume
Sν(τν) = aν + bντν

I(τ = 0, µ) =

∫ ∞
0

Sν(τν)e−τν/µdτν/µ

I(τ = 0, µ) =

∫ ∞
0

[aν + bντν ]e−τν/µdτν/µ

I(τ = 0, µ) = aν + bνµ = Sν(τν = µ)

Thus, the measurement of the emergent intensity as a function of µ
gives us information about S as a function of depth.



Eddington-Barbier and Limb Darkening



General Formal Solution I

µ
dIν
dτν

= Iν − Sν

I(τ, µ) = −1
µ

∫ τ

C
e(τ−t)/µS(t) dt + e(τ−C)/µI(C, µ)

Clearly the Formal Solution is a boundary value problem. But the
boundary depends on the sign of µ. For out-going rays, µ ≥ 0 I is
specified at the base of the atmosphere. For in-going rays, µ < 0 I is
specified at the surface of the atmosphere. We will generally assume
that there is no external illumination and the I(τ = 0, µ < 0) = 0. In
that case, unless I(τmax, µ) increases exponentially with τmax the
boundary term→ 0 as τmax →∞
Then for large τmax we have:

I(τ, µ) =
1
µ

∫ ∞
τ

e−(t−τ)/µS(t) dt ; µ ≥ 0



General Formal Solution II

and the emergent intensity in the semi-infinite case is:

I(0, µ) =
1
µ

∫ ∞
0

e−t/µS(t) dt ; µ ≥ 0



More on the Source Function I

In strict thermal equilibrium the RTE is:

dBν
ds

= −χν(Bν − Sν) = 0→ Sν = Bν(T )

While Iν = Bν in all directions implies Sν = Bν , the converse is NOT
true.

Sν = Bν 6→ Iν = Bν



More on the Source Function II
At the surface Iν(µ ≥ 0) = Bν(T ) and Iν(µ < 0) = 0. Thus

J = 1/2
∫ 1

−1
Iν dµ = 1/2Bν(T )

H = 1/2
∫ 1

−1
Iν µdµ = 1/4Bν(T )

Fν = 4πHν = πBν

B =

∫ ∞
0

Bν dν =
σ

π
T 4 σ =

2π5k4

15h3c2 = Stephan′s constant

Effective Temperature of a star defined by

F = σT 4
eff or L = 4πR2

∗σT 4
eff

In LTE Sν = Bν(T (r)), then we get Iν from the formal solution.
Another standard case is Sν = Jν : pure, monochromatic (coherent),
isotropic scattering. This follows from integrating the RTE over all



More on the Source Function III

directions and equating power absorbed to power emitted in a given
volume.
If we combine thermal emission and scattering we get that the RTE is
given by

dIν
ds

= −κν(Iν − Bν)− σν(Iν − Jν)

= −(κν + σν)(Iν − Sν)

→ Sν = (1− εν)Jν + ενBν (1)

εν ≡
κν

κν + σν

χν ≡ κν + σν



Moment Equations I
For a plane-parallel atmosphere the RTE is:

µ
dIν
dz

= −χν(Iν − Sν)

Let Sν and χν be independent of µ
Recall

Jν = 1/2
∫ 1

−1
Iν dµ

Hν = 1/2
∫ 1

−1
Iν µdµ

Kν = 1/2
∫ 1

−1
Iν µ2 dµ

Integrating the RTE over µ gives

dHν

dz
= −χν(Jν − Sν)



Moment Equations II
or multiplying the RTE by µ and integrating

dKν
dz

= −χνHν

The net flux integrated over all frequencies is

H =

∫ ∞
0

Hν dν

In Radiative equilibrium (only radiation carries energy)

dH
dz

=

∫ ∞
0

χν(Jν − Sν) dν = 0

For combined thermal emission and scattering

Sν = ενBν + (1− εν)Jν

Jν − Sν = εν(Jν − Bν)



Moment Equations III

Thus, Radiative Equilibrium→∫ ∞
0

κν(Jν − Bν) dν = 0

scattering drops out.



Two-Stream Eddington Approximation I

Assume

I(µ) =

{
I+ µ ≥ 0
I− µ < 0

Where I± = constant Then

Jν = 1/2
∫ 1

−1
Iν dµ = 1/2(I+ + I−)

Hν = 1/2
∫ 1

−1
Iν µdµ = 1/4(I+ − I−)

Kν = 1/2
∫ 1

−1
Iν µ2 dµ = 1/6(I+ + I−) = 1/3Jν

From the moment equations we have

dK
dτ

= H → 1/3
dJ
dτ

= H



Two-Stream Eddington Approximation II

Then
J = 3Hτ + constant

at τ = 0
J = 1/2I+

0 H = 1/4I+
0

→ J = 2H

J(τ) = 3H(τ + 2/3)

In RE J = B
B = 3H(τ + 2/3)

σT 4

π
= 3

σT 4
eff

4π
(τ + 2/3)

→
T = Teff at τ = 2/3



Exponential Integral Solution I

The solution to the RTE is really not Iν , but rather Jν , since once we
have Jν we know Sν and we just have to perform a formal solution.
From the general expression for Iν(τ, µ) we can write

Jν = 1/2
∫ 0

−1
−
[

1
µ

∫ τ

0
e(τ−t)/µS(t) dt + eτ/µI(0, µ)

]
dµ

+ 1/2
∫ 1

0

[
1
µ

∫ τmax

τ
e−(t−τ)/µS(t) dt

+ e−(τmax−τ)/µI(τmax, µ)
]

dµ

For simplicity consider zero incident intensity at both boundaries.
Define:

E1(x) =

∫ 1

0

e−x/µ

µ
dµ



Exponential Integral Solution II

where E1 is the first exponential integral. Let y = 1/µ, then

E1(x) =

∫ ∞
0

e−xy

y
dy =

∫ ∞
x

e−z

z
dz

where z = xy . For large x

E1(x) ≈ e−x/x

Then we can write

J(τ) = 1/2
∫ τmax

0
E1(|t − τ |)S(t) dt + incident terms

J(τ) = Λτ{S}



Exponential Integral Solution III
Similarly

Hν(τ) = 1/2
∫ 1

−1
I(τ, µ)µdµ

+ 1/2
∫ 0

−1
−
[∫ τ

0
e(τ−t)/µS(t) dt + eτ/µI(0, µ)

]
dµ

+ 1/2
∫ 1

0

[∫ τmax

τ
e−(t−τ)/µS(t) dt + e−(τmax−τ)/µI(τmax, µ)

]
dµ

For simplicity again consider zero incident intensity at both boundaries.
Define:

En(x) = xn−1
∫ ∞

x

e−z

zn dz

Then
E ′n(x) = −En−1(x)



Exponential Integral Solution IV
and

En(x) =
[
e−x − xEn−1(x)

]
/(n − 1)

Then we can write

H(τ) = −1/2
∫ τ

0
E2(τ − t)S(t) dt + 1/2

∫ τmax

τ
E2(t − τ)S(t) dt

+ incident terms

H(τ) = 1/2
∫ τmax

0
E2(|t − τ |)sgn(t − τ)S(t) dt

H(τ) = Φτ{S}

Similarly,

K (τ) = 1/2
∫ τmax

0
E3(|t − τ |)S(t) dt

K (τ) = Xτ{S}



Exponential Integral Solution V

Can show

Λτ (a + bt) = a + bτ + 1/2 [bE3(τ)− aE2(τ)]

Φτ (a + bt) = 4/3b + 2 [aE3(τ)− bE4(τ)]

Xτ (a + bt) = 4/3(a + bτ) + 2 [bE5(τ)− aE4(τ)]


