Homework #8
Due Friday Dec 5

Homework is due by 5:00 pm on the due date. Late homework will not be accepted.

1. For a zero temperature Fermi gas:
 (a) Show that \(n = \frac{4\pi g}{(2\pi \hbar)^3} \frac{p_F^3}{3} \)
 (b) Find \(p_F \) in terms of \(n \).
 (c) What is the Fermi energy \(\epsilon_F \) in the non relativistic (NR) case?
 (d) What is the Fermi energy \(\epsilon_F \) in the extremely relativistic (ER) case?
 (e) Given that the pressure is:

\[
P = \frac{2g}{(2\pi \hbar)^3} \int_0^{2\pi} \int_0^{\pi/2} \int_0^{p_F} v_p p^3 dp \cos^2 \theta \sin \theta d\theta d\phi \int_0^{p_F} v_p p^3 dp
\]

find the pressure in the NR and ER cases in terms of the number density \(n \).
 (f) Find the energy density \(U \) in terms of the number density \(n \) in the NR and ER cases.
 (g) Show that \(P = (\gamma - 1)U \) in both the NR and ER cases

2. LeBlanc 6.2
3. LeBlanc 6.7
4. LeBlanc 6.15