‘ Yukawa-unified SUSY: cosmology and collider prospects l

Howard Baer
University of Oklahoma

* SO(10) motivation
* Yukawa unification
* Sparticle mass calculation

* Dark matter problem
e Decay to axino

e compromise sol'n

* cosmology of SUSY SO(10)

* SO(10) at LHC

— can see with just 0.1 fb—1!
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‘ SUSY is standard way beyond the SM l

“if we consider the main classes of new physics that are currently
being contemplated- - -, it is clear that (supersymmetry) is the most
directly related to GUTs. SUSY offers a well defined model computable

up to the GUT scale and is actually supported by the quantitative
success of coupling unification in SUSY GUTs.For the other examples- - -,
all contact with GUTs is lost or at least is much more remote. - - - the
SUSY picture- - - remains the standard way beyond the Standard Model”

G. Altarelli and F. Feruglio, hep-ph /0306265
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SO(10): synopsis

* SO(10) is a rank-5 Lie group which contains the SM gauge symmetry. It has
several important features:

e The SO(2n) groups have spinorial representations of dim'n 27"~ in
addition to the usual tensor reps

The 16-dim’l spinor rep of SO(10) is large enough to contain all the
matter in a single generation of the SM, plus a right-handed neutrino
state. This unifies matter as well as gauge groups.

The right-hand neutrino state is contained in a superfield

A

Nf = 0}.(2) + V200 ne 1 (2) + 900 Fve (3).

Upon breaking SO(10), the ]\Aff fields become SM singlets, and can obtain
a Majorana mass M ;. The superpotential obtains the form

A A A 1 Ao
f = fussm + (£)ijeas L Hy NS + 5]\4]\12-]\71-0]\71-C . (1)
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SO(10): continued

e Upon EWSB, the neutrinos obtain masses via the see-saw mechanism, where
the (dominantly) right-handed neutrino obtains a mass m, g ~ My, while
the (dominantly) left-handed neutrino obtains a mass m,,j, ~ (f” “) . For

third generation, with f, ~ f;, then m,_~ 0.03 eV for M3 ~ 1015 GeV,
very close to Mqayr!

Further, the group SO(n) (except n = 6) are naturally anomaly-free, thus
explaining the seemingly fortuitous anomaly cancellation in the SM and in

SU(5).

In the unbroken SO(10) theory, the superpotential is expected to have the
form

f = f1;161;16<g10 + ... (2)

with f being the single Yukawa coupling per generation in the GUT" scale

theory. The ellipses represent terms including for instance higher dimensional
Higgs representations and interactions responsible for the breaking of
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SO(10). Thus, naively, it is expected in SO(10) theories that the various
Yukawa couplings of each generation should unify as well. This should hold

especially for the 3rd generation. Yukawa coupling unification puts a strong

constraint on the phenomenology expected in SUSY models.
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Yukawa unification in SUSY: assumptions

some form of 4-d or x-d SO(10) SUGRA-GUT valid at @ > Mgy

SUGRA breaking via superHiggs mechanism: mz ~ 1 TeV and soft SUSY
breaking terms ~ 1 TeV

SO(10) breaks to MSSM or MSSM plus gauge singlets at Q = Mgy either
via Higgs mechanism (4-d) or x-d compactification

MSSM (or MSSM plus NC) is correct effective theory between Mg 5y and

Mgur

EWSB broken radiatively due to large my

we will assume that ¢ — b — 7 Yukawa couplings unify at Q) = Mgyt
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‘ lots of previous work! l

B. Ananthanarayan, G. Lazarides and Q. Shafi, PRD44 (1991)1613 and
PLB300 (1993)245;

V. Barger, M. Berger and P. Ohmann, PRD49 (1994)4908;

M. Carena, M. Olechowski, S. Pokorski and C. Wagner, NPB426 (1994)269;
B. Ananthanarayan, Q. Shafi and X. Wang, PRD50 (1994)5980;

L. Hall, R. Rattazzi and U. Sarid, PRD50 (1994)7048;

R. Rattazzi and U. Sarid, PRD53 (1996)1553;

T. Blazek, M. Carena, S. Raby and C. Wagner, PRD56 (1997)6919; T. Blazek
and S. Raby, PLB392 (1997)371 and PRD59 (1999)095002; T. Blazek,
S. Raby and K. Tobe, PRD60 (1999)113001 and PRD62 (2000)055001;
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‘ more recent work l

e H. Baer, M. Diaz, J. Ferrandis and X. Tata, PRD61 (2000)111701

e H. Baer, M. Brhlik, M. Diaz, J. Ferrandis, P. Mercadante, P. Quintana and
X. Tata, PRD63 (2001)015007;

e H. Baer and J. Ferrandis, PRL87 (2001)211803;

e T. Blazek, R. Dermisek and S. Raby, PRL88 (2002)111804 and PRD65
(2002)115004;

e D. Auto, H. Baer, C. Balazs, A. Belyaev, J. Ferrandis and X. Tata,
JHEP0306 (2003)023

e D. Auto, H. Baer, A. Belyaev and T. Krupovnickas, JHEP0410 (2004)066;

e R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz de Austri, JHEP0304
(2003)037 and JHEP0509 (2005)029

e H. Baer, S. Kraml, S.Sekmen and H. Summy, arXiv:0801.1831 (2008).
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‘ Sparticle mass spectra l

* Mass spectra codes

* RGE running: Maur — Myeak

e Isajet 7.75 (HB, Paige, Protopopescu, Tata)
x >7.72: Isatools

H

e SuSpect (Djouadi, Kneur, Moultaka) 7
o SoftSUSY (Allanach) A o

Ay=0; tanf=4; u>0
e Spheno (Porod)

| ‘ | | ‘ | | ‘ | | ‘ |
106 109 1012 1010

* Comparison (Belanger, Kraml, Pukhov) 2 (GeV)

* Website: http://kraml.home.cern.ch/kraml/comparison/
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YU requires precision calculation of SUSY spectrum:

Hall, Rattazzi, Sarid; Pierce et al. (PBMZ)
e need full 2-loop RGE running

e full threshold corrections calculated at optimized scale

— applies especially to b-quark self-energy

— by, Wifj, .- - loops included

e off-sets Yukawa coupling RG trajectory

e use Isajet/lsasugra spectrum generator
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Yukawa unification in MSSM:
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Yukawa unification in mSUGRA model? ;1 > 0 scan

o R=max(fi, fo, [-)/min(fi, fo, fr) at Q@ = Mgur

a)
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Yukawa unification in mSUGRA model? ;1 < 0 scan

SISO

A ooy
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Why Yukawa unification problematic in models with universality

For EWSB in MSSM (tree level), minimization condition:

(my +m3, +2u%)sin23

Bu = 5 , and
2 m%‘ld —m%{u tan® 3 B M_%
H (tan? 8 — 1) 9
dm2 ) 3 3
i = Tom (‘gQ%Mf — g3 M3 — =gt + 30 Xy + fTQXT) |
dm2 ) 3 3
rraal i T (—gngf — 3g3M; + 5975 + BfEXt) ,

e Unified YCs push m%{d more negative than m%,u

e Solution: require m3; < m3; already at Mgy so that m3; gets head start

in RG running
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‘ Higgs splitting: two approaches l

e DT (D-term) model:

e HS model: apply splitting only to Higgs SSB terms

* The HS method gives better Yukawa unification than DT model for o > 0
and myg 2 2 TeV

— HS can arise at 10-15% level at GUT scale due to threshold corrections
(BDR)
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Top-down scan of HS model with ;1 > 0

m mlm &

Aa/m15

Auto, HB, Balazs, Belyaev, Ferrandis, Tata
New analysis: HB, Kraml, Sekmen, Summy
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‘ Correlation of SSB terms for YU models l

* Note correlation amongst parameters:
o Ay~ —2mys
® 1o ~~ 1.2m16

e tan 3 ~ 50

* Earlier work: Bagger, Feng, Polonsky, Zhang derived A3 = 2m?, = 4m?3,

with mq /o tiny and Yukawa unified couplings: in context of “radiatively
induced inverted scalar mass hierarchy model”

— Meant to reconcile naturalness with FCNC suppression by having
m(third gen. scalars) < m(1st/2nd ge. scalars)

— Original model needed to be reconciled with EWSB; get hierarchy, but
much less than anticipated: HB, Balazs, Mercadante, Tata, Wang (2001)
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t — b — 7 Yukawa unification in HS model!

need myg =~ V2m1g
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Sparticle masses for H.S model with ;> 0
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Sparticle masses for S model with ;1 > 0
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‘ Neutralino dark matter l

* Why R-parity? natural in SO(10) SUSYGUTS if properly broken, or broken
via compactification (Mohapatra, Martin, Kawamura, - - )

* In thermal equilibrium in early universe
* As universe expands and cools, freeze out

* Number density obtained from Boltzmann eq'n
e dn/dt = —3Hn — (ov,¢)(n? — nd)

e depends critically on thermally averaged annihilation cross section times
velocity

* many thousands of annihilation/co-annihilation diagrams

* several computer codes available

e DarkSUSY, Micromegas, IsaReD (part of Isajet)
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‘ Some neutralino (co)annihilation processes l

wt W~

|
|

1
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Problem reconciling DM with Yukawa unification

il 1.1|11||1| .
1000 10000

e one solution: axino DM instead of neutralino

o Qzh? ~ Q- h*: = warm DM
Z 1

e also thermal component depending on Tkr: = CDM
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Consistent cosmology for SUSY SO(10): gravitino problem

e gravitino problem in generic SUGRA models: overproduction of G followed by
late G decay can destroy successful BBN predictons: upper bound on T’y
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(see Kohri, Moroi, Yotsuyanagi; Cybert, Ellis, Fields, Olive)
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‘ Leptogenesis via inflaton decay l

Upper bound on T’ from BBN is below that for successful thermal
leptogenesis: need T ~ 10'° GeV  (Buchmuller, Plumacher)

Alternatively, one may have non-thermal leptogenesis where inflaton
¢ — N;N; decay

additional source of N; in early universe allows lower T'g:

ng 11 1R 2mny, ( Mus )
— ~ 8.2 x 10 e 3
S . . (106 GeV) ( mg ) 0.05 eV/ "7 (3)

WMAP observation: ny/s ~ 0.9 x 10710 = T < 10° GeV
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‘ Cold and warm axino DM in the universe l

e Non-thermal axino production via 71 — ay decay:
= warm DM for mg S 1 GeV (Jedamzik, Lemoine, Moultaka)

e thermal production of a: cold DM for mgz > .1 MeV
(Brandenberg, Steffen)

1.108\ /10 GeV\? / ma T
OTPR2 ~ 55001 a K 4
a 0595 n( 75 ) ( fo /N ) (0.1 GeV) (104 Gev) W

o with 0.1 >~ Qzh* = Q) "h? + 22O -h?, can calculate value of T needed
Z

given a PQ breaking scale f,/N ~ 10! GeV
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Consistent cosmology for SO(10) SUSY GUTs with ¢ DM

e Happily, T falls into the right range to give cold axino DM with a small
admixture of warm axino DM, preserve BBN predictions and have

non-thermal leptogenesis!

e See HB and H. Summy, arXiv:0803.0510 (2008)

NT leptogenesis

-

AL A A ///
00001 0.001
m. (GeV)
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MCMC scan: compromise solution with m; ~ 3 TeV

-300 -200 -100
my — 2m5(3

e can have Zl — LSP in this case

° 2121 annihilate through h resonance

e lower mig means R ~ 1.09
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Prediction of new physics at LHC from SO(10) SUSYGUTs:

e gluino pair production with mgz ~ 350 — 450 GeV
e high b-jet multiplicity

e my —my ~50—175 GeV dilepton mass edge
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Production of sparticles at LHC
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Sparticle cascade decays

Point A Point D
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Event generation for sparticles

Hadrons

Event generation in LL - QCD

1) Hard scattering / convolution with PDFs
2) Intial / final state showers
3) Cascade decays

4) Hadronization
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Sparticle production at CMS (LHC)

NS

GEANT figure ' e
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‘ Search for SUSY at CERN LHC l

~ A~ ~ ~

* gg, gq, qq production dominant for m S 1 TeV

* lengthy cascade decays are likely
— K1+ jets
14+ K7+ jets
OS 204 Er—+ jets
SS20+4 K+ jets
3+ Er+ jets
40+ K7+ jets

* BG: W + jets, Z + jets, tt, bb, WW, 4t, - -
* Grid of cuts gives optimized S/B
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‘ Pre-cuts and cuts l

* N, > 2 (where pr(jet) > 40 GeV and |n(jet)| < 3

* B > 200 GeV

* Grid of cuts for optimized S/B:
N; >2-10
FEr > 200 — 1400 GeV
Er(j1) > 40 — 1000 GeV
Er(52) > 40 — 500 GeV
St >0-0.2

muon isolation

* S > 10 events for 100 fb~!

* S > 5v/B for optimal set of cuts
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Sparticle reach of LHC for 100! fb

m3ugrawith tan = 10, A,= 0, u>0 m3ugrawith tan = 30, A,= 0,1 >0

S imu)=2Tev |

1000 2000 3000 4000 5000 1000 2000 3000
m, (GeV) m, (GeV)

HB, Balazs, Belyaev, Krupovnickas, Tata: JHEP 0306, 054 (2003)

5000

Howie Baer, UT-Arlington seminar, October 27, 2008

36



Sparticle reach of all colliders and relic density

mSugrathh tan = 10, A, = 0, u >0 mSugraW|th tanB =45, A= 0, u<0
0 L e Qh<0129 | | | 0 L e 0QN<0.129 ;
LEPg excluded | : : LEP2 3@(cl uded
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HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)
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What SO(10) SUSY GUTs look like at LHC

with mgz ~ 400 GeV, expect o(pp — §gX) ~ 10° fb!
LHC detectors would have LOTS of SUSY events!

But, it will take time to measure many SM processes to reliably calibrate the
entire detector for jets+ K search

Could be a year or two if experience is similar to that of Tevatron DO
detector....
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‘ As theorists, we are an impatient bunch... l

Can we make early discovery of SUSY at LHC without K17
Expect gg events to be rich in jets, b-jets, isolated /s, 7-jets,....

These are detectable, rather than inferred objects

Inferred objects like /1 require knowledge of complete detector performance

— dead regions
— "hot” cells
— Cosmic rays

— calorimeter mis-measurement

Answer: YES! See HB, Prosper, Summy, arXiv:0801.3799
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Require simple cuts:

No. of Isolated Leptons
Cuts Cla
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If early e ID problematic: focus on SS and multi-muons

o
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e HB, A. Lessa and H. Summy, arXiv:0809.4719
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Require > 4-jets plus SS isolated di-muons
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Cuts C1’ plus > 2 OS/SF /(

Cuts C1' + 2 SF/OS
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Cuts C1’ plus > 4 b-jets+ (T(~

Cuts C1” += 4 b-jets + 2 SF/OS leptons
T T T | T T ll | T T T | T T T
m. - m -
GRS l ll ms m%)
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o Get m(bb) from § — bbZs decay
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Cuts C1’ plus > 4 b-jets+ (T(~

Cuts C1” += 4 b-jets + 2 SF/OS leptons
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‘ Conclusions l

SO(10) + SUSY is extremely compelling effective theory at Q = Mgy

In simple SO(10) SUSYGUTs, expect ¢t — b — 7 unification

For u > 0, get YU for HS model with A3 ~ 2m7, = 4mi,

Can reconcile with DM abundance: Z; — a7y or “‘compromise solution” or ...

Cosmology: axino DM solution gives consistent cosmology: gravitino problem
and non-thermal leptogenesis

Predict mz ~ 400 GeV, decoupled scalars: LHC awash in gg events

Can see signal with only 0.1 fb~! of integrated luminosity in jets +OS/SF
leptons or > 3¢ channel

m(¢T¢~) mass edge ~ 50 — 75 GeV; reconstruct mg, myz , My ?

We will soon know if Yukawa unified SUSY is correct theory of weak scale
physics! LHC turn-on in 2008!
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Reconciling DM with YU: non-universal gaugino masses

|
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GUT
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Reconciling DM with YU: non-universal m4

1 l 1 1 1 l 1
4000 6000
m,(1,2) (GeV)

e gives extremely light g, cg ~ 130 GeV due to HS in RGEs
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Can generate BDR solutions with both WS /GS BCs

l [ L T R R
400 500 600 700
m,, (GeV)

e Using top-down approach and exact Yukawa unification, BDR generate low

1, ma solutions with low x? fit to m¢, my, m,
e best fit for BFPZ BCs, HS model and tan 3 ~ 50

e our numerical code differs sustantially from BDR
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Can generate BDR-type solutions with low m 4 ~ 150 GeV

-300 —-200 -100

° 2121 annihilate through A resonance

e comb. large tan 3 ~ 50 and low my4: excluded by By — utu~
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