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Abstract

A brief introduction to quantum computer.
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Chapter 1

Introduction

1.1 History of cryptography

Cryptography can date back thousands of years ago. Methods of secret com-
munication were developed by many ancient societies, especially during the
wartime. Spartans, the most warlike of the Greeks, employed a device called
SCYTALE for military communications between commanders(1). This de-
vice was used to perform a transposition cipher. Another cipher called Julius
Caesar’s cipher, is a type of substitution cipher(2). Although invented thou-
sands of years ago, these two basic methods of encryption - transposition
and substitution are still used frequently until the two world wars, with the
aid of physical devices. The Enigma machine, a family member of rotor
machines, is widely used by German government from late 1920s(3). These
physical implementations improve the cryptography a lot. However if eaves-
droppers crack and rebuild these machines, or even just steal an original
one, the cipher will turn out to be useless even harmful.

The revolution of classical computers has developed cryptography in an
unprecedented way, which bring up the concerns of the protection of elec-
tronic transmission and digitally stored data. The algorithms for encrypting
and decrypting can be revealed to anybody without compromising the se-
curity of a particular cryptogram(4). The key, a set of parameters for the
ciphers, is supplied as an input to the encrypting algorithm or an input to
the decrypting algorithm. Although the encrypting and decrypting algo-
rithm are known to public, the security of the cryptogram depends on the
secrecy of the key. One of the application of the classical ciphers is the
Vernam cipher, invented in 1917 by the American AT&T engineer Gilbert
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Vernam(5). In this cryptographic protocol, the key is the same as the the
length of the message, which is input to the message to form an encoded
message, and it cannot be decoded by any statistical methods. However,
even if the randomization of the key can be fulfilled, there are two problems
still comes up. Once the key is setup, we can send encrypted messages over
a channel and they are vulnerable to eavesdropping. This step is safe since
eavesdroppers do not have the key to decrypt the message. But how the two
users initially share no secrecy can send the key over a reliable and secure
channel? In the other way, a message can be ”signed” using a privately held
decryption key. This signature can be verified, but cannot be forged, and
the signer cannot later deny the validity of the signature. As the advances
in solving these problems, the public key cryptosystems were invented in the
1970s, and till today, some main public key cryptography techniques are in
general use.

1.2 RSA cryptography

RSA (which stands for Rivest, Shamir and Adleman who first publicly de-
scribed it), one of the public key cryptographic algorithms, is widely used
for electronic commerce protocols(6). The main feature of the public key
cryptographic algorithm is, it is very easy to compute in one direction but
very difficult in the other direction, therefore it is called ”trap-door one-
way function(7)”. The RSA algorithm can be represented as the following
schematic

Figure 1.1: RSA algorithm schematic.

Here, M is the message need to be encrypted. For the simplicity we break
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it into a series of blocks, and represent each block as an integer. p and q are
large-bit(more than 1000 bits) randomly chosen prime numbers, which are
of similar bit-length; e has a short bit-length but can not be so short. After
these certain parameters have been chosen, we take e-th power of M modulo
n and have the remainder as the ciphered information. For the decryption
process, by using Modular multiplicative inverse Extended Euclidean algo-
rithm we choose d as the private key to decrypt the encrypted message, in
association with the public key (n,e). In the schematic, Bob send out the
public key that everyone including eavesdroppers can get it. Alice get one,
encrypt the message and send it back to Bob. Finally, Bob use his private
key, which can not be obtained by the eavesdroppers, to decrypt the ciphered
text. The problem is, can the eavesdroppers can calculate the private key d?

By examining this problem, we can do a sample test on this algorithm.

Figure 1.2: Sample test of RSA algorithm

In order to find out d, we need to compute ϕ(n), which is equivalent
to factorize n(at least 1000-bit length) to two prime numbers (p,q). How
hard is it to factorize a 1000-bit integer using our contemporary comput-
ers? The scientists reported in December 2009 that they factored 768-bit
integer utilizing hundreds of machines over a span of 2 years(8). Especially,
the semiprimes, the product of two prime numbers, will be super hard to
factorize even for super fast computer and super efficient factorization al-
gorithms, providing both of the primes are large enough, randomly chosen,
about the same size. However, efforts by the scientists show that factoring a
large integer in a limited time scale is not a problem for quantum computers!
What make quantum computer such a special implementation for factoriza-
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tion than the classical computer? What kind of revolution it will bring to
the classical cryptography? Now let’s explorer the modern computer in the
quantum world.

5



Chapter 2

Quantum computer basics

Many people associate the birth of quantum computation and quantum
computer with the talk given by Richard Feynman at MIT in 1981(9). He
pointed out the difficulties of simulating quantum systems using classical
computers, so the conjecture of a machine using quantum effects would ef-
fectively simulates quantum systems. Decades after that, in 2001 and after,
IBM (10) and D-wave (11) (12) claimed to have build quantum computers.
IBM claimed to have factorized 15 into two prime numbers with a seven
qubit quantum computer, while D-wave build a 28-qubit quantum machine
supposed to be available on-line in future for applications such as pattern-
matching and searching. Before we want to build the tower of the quantum
computer, we need to study its basic blocks.

2.1 Qubit and quantum register

In general, a quantum computer with n qubits can be in an arbitrary su-
perposition of up to 2n different states simultaneously, where a qubit in
quantum computer is the analogue to a bit in classical computer. Qubits
can be fundamentally chosen with the particles with two spin-1/2 states:
”up” and ”down”, usually written as |0〉 and |1〉. Based on the normal-
ized and orthogonal properties of this two-level system, we can represent a
general qubit state in this basis as

|q〉 = c0|0〉+ c1|1〉 (2.1)

where c0 andc1 are complex numbers. Generally, in a larger quantum system
with numerous two-level subsystems (such as the cluster of the electrons),
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it can be represented as

|q〉 = eiη(cos(
θ

2
)|0〉+ eiϕ(

θ

2
)|0〉) (2.2)

We can clearly see a qubit can exist as a any combination of |0〉 and |1〉,
while a bit can only be either 0 or 1. In another way, if we expand to a
system which is described by n orthogonal eigenstates, a general state in
this system is

|ψ〉 =
n−1∑
i=0

ci ∗ |xi〉 (2.3)

We all know that the processor register are crucial to a computer, and
registers are normally measured by the information they can hold. As the
top of the memory hierarchy, registers provide the fastest way for a CPU
to access data. Therefore, the capacity of the register will determine the
power of the computation significantly. As an analogue to the classical
register, quantum register has several interesting features. By its mathe-
matical description, an n-qubit quantum register can be described as an
element |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · ·|ψn〉 in the tensor product Hilbert space
H = H1⊗H2⊗ · · ·Hn. From Equ.(2.3), any state can be expresses as a com-
bination of n base qubit states, therefore, there are 2n ways of combination
for the any state to be. If we want to store 2n states in a classical register,
we need 2n bits to hold them! In some sense, we can store an exponentially
increasing amount of information in a quantum register.

There are several ways for storage quantum information, one of which is
using a disorder magnet(13). Researchers demonstrates that measurements
of nonlinear magnetic dynamics in the low-temperature liquid reveal the
alignment of coherent spins, in contrast with the behavior of similar mate-
rials. Labeled with frequency and controlled by the external magnetic field,
these excitations can perform in the encoding of information at multiple
frequencies simultaneously.

Some other ways help us from a dilemma when we choose the candidates
for quantum qubits. In an analogue to a classical register, the qubit should
be easily read and written, and its quantum nature will endure enough long
for processing. The problem is, a good quantum qubit will be not only well
isolated from the noisy world outside in order to be kept processing, but
also need to be easily read and written. Like in a drama we have a pair
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Operation name Formula

Hadamard H(c0|0〉+ c1|1〉) = 1√
2
[(c0 + c1)|0〉+ (c0 − c1)|1〉]

Not σ(c0|0〉+ c1|1〉) = (c0|1〉+ c1|0〉)
Phase shifter Φ(c0|0〉+ c1|1〉) = e−iϕ/2(c0|0〉+ c1e

iϕ|1〉)
Two-qubit |c〉1|x〉2 ⇒ |c〉1Uc|x〉2

Table 2.1: Several examples of one-qubit and two-qubit quantum gates

of twins to behave different, we can also put two physical objects into the
qubits, one for reading and writing and the one for interacting. The team in
Yale University find a good way to solve this dilemma(14). They achieved
the coupling of the electrons by placing the crystals,which are impure, next
to tiny superconducting cavities that resonate at a specific microwave fre-
quency. When the energy of the flip in the electron spins induced by the
external magnetic field matches the energy of the microwaves in the cavity,
the spins will flip back and forth which can help exchange the photons be-
tween the electrons and the superconducting cavity.

We can see from the above two experiments that the external magnetic
field is popularly used, which hints that a electro-magnetic field controlled
quantum processor might be possible.

2.2 Quantum gate

In classical digital circuits, logic gates play important roles in signal pro-
cessing. Similar to classical logic gates, quantum circuits are composed of a
sequence of quantum gates, and a quantum gate operates on a small num-
ber of qubits. There are many ways to realize quantum gates, which will
be discusses in next chapter. The following are some basic single-qubit and
two-qubit quantum gates

Take The Hadamard gate for example. This gate acts on a single qubit,
and it turns the basis state |0〉 to |0〉+|1〉√

2
and |1〉 to |0〉−|1〉√

2
, which can be

expressed as a matrix 1√
2

(
1 1
1 −1

)
.

Specifically, there is one kind of quantum cotrolled gates useful for per-
forming selective state copying, called quantum controlled-NOT gate. This
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2-qubit quantum controlled gate performs NOT operation on the second
qubit when the first qubit is |1〉. And the operation is expressed as

(α|0〉1 + β|1〉1)|0〉2 −→ α|0〉1|0〉2 + β|1〉1|1〉2 (2.4)

Here we can see this performance deposits the quantum information
α, β in both systems.Actually, most of the quantum gates can operate on
one qubit or two qubits, just like the common classical logic gates. If we
denote the qubit in Dirac notation, we can find out these quantum gates
can be viewed as 2 × 2 or 4 × 4 unitary matrices, such as Hadamard gate
matrix and 2-qubit controlled-NOT gate matrix. People initially want to
find a quantum gate to handle three-qubit operation, but it turned out to
be very hard(15). Fortunately, scientists showed that all the quantum gates
can be decomposite to one set of universal quantum gates, which are all of
the one-qubit quantum gates and the two-qubit Controlled-NOT quantum
gates(16). Therefore, constructions of quantum computational networks are
not impossible with the universal quantum gates. The problem is how can
we realize these quantum gates in physical systems, which will be discussed
in the next chapter.

2.3 Quantum processor

In 2007 D-wave announced they have built 28-qubit quantum computer by
using the technology ”adiabatic quantum computing”, based on supercon-
ducting electronics. Experts are skeptical if it is a classical computer which
decoheres qubtis acting like random classical bits. Leaving the debates alone
in 2009, NIST demonstrated a two-qubit ”universal” programmable quan-
tum processor(17). Although there are infinite number of programs available
for two-qubit quantum system, they perform 160 programs on this quantum
processor, which are large and diverse enough that the authors believe the
processor is universal. However, theoretical evidences showed that it is im-
possible to ”build a fixed, general purpose quantum computer which can be
programmed to performed an arbitrary quantum computation” (18). They
used a linear number of gates to reach an exponentially small probability of
result. A more efficient programmable array of quantum gates are needed
and the ways to increase the probability of desired measurement results are
top issues for constructing a quantum computer. Perhaps quantum entan-
glement may provide a alternative way to execute quantum programs.
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Chapter 3

Physical realizations of
quantum computer

In the previous chapter, we show the theories how to create the building
blocks of the quantum computer. Now we need to choose the what the ma-
terial of the building blocks. Quantum logic gates are the basic controls of
the quantum computation, and there are many ways to build quantum gates
using physical systems. Here we will talk about the physical realization of
quantum controlled-NOT gate, since it is an important gate in constructing
the set of universal quantum gates.

One of the practical implementations of the quantum controlled-NOT
gate is the selective driving of optical resonance of two subsystems undergo-
ing a dipole-dipole interaction(19). Here we do not anticipate this will be a
universal quantum controlled NOT gate, which is a practical consideration
in real quantum computer.

The qubits in this dipole-dipole interaction can be one of the magnetic
dipoles and electric dipoles. In the article the researchers take single-electron
quantum dots for example. A quantum dot is a semiconductor whose exci-
tons are confined in all three spatial dimensions. We can treat the quantum
dot as confining the electron is a box(20). Two single-electron quantum dots
separated by a distance R are imbedded in a semiconductor. Let’s take the
first quantum dot, with resonant frequency ω1〉, acts as the control qubit,
while the second quantum dot with resonant frequency ω2 acts as the target
qubit. Due to the quantum-confined Stark effect(21), the charge distribu-
tion of the two levels will shift to the other directions, shown in Figure (3.1).
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Figure 3.1: Charge density redistributed due to the quantum-confined Stark
effect, with the quantum well on the right side in the biased electric field.
Produced from(19)

For simplicity, we do not take into account holes in the valence band of
the semiconductors. As we see, the charge distribution of the quantum dot
will shift to opposite directions for the ground state and the first excited
state, therefore, we can utilize the external field to control the control qubit.
Since it is a confined two-electron system under the perturbation of external
electric field, we can write the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + V̂12 (3.1)

Here, the interaction term V̂12 is diagonal in the four-dimensional state space
spanned by eigenstates |ε1〉, |ε2〉 of the Hamiltonian Ĥ1 + Ĥ2. The we have

(Ĥ1 + Ĥ2)|ε1〉|ε2〉 = ~(ε1ω1 + ε2ω2)|ε1〉|ε2〉 (3.2)

V̂12|ε1〉|ε2〉 = (−1)ε1+ε2~ω̄|ε1〉|ε2〉 (3.3)

where

ω̄ = − d1d2
4πε0R3

(3.4)

Shown in Figure(3.2), if we set state of the first quantum dot as the
control qubit, the transition frequency is ω2 − ω̄ when the control qubit is
|0〉. If control qubit is |1〉, the transition frequency becomes ω2 + ω̄. This
is a similar situation for state of the seconde quantum dot to be the control
qubit. We can conclude that in the dipole-dipole interaction, the transition
frequency of one quantum dot between |0〉 and |1〉 depends on the state of its
neighboring dot. Some other models, including the method based on cavity
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Figure 3.2: (a) Energy levels distribution before and after applying the exter-
nal field; (b) Resonance spectrum of the two quantum dots. Produced from(19)

quantum electrodynamics(22), selective excitation of trapped ions(23), etc.
Once these models can be implemented, it will easier for the quantum gates
to be integrated into the complex quantum circuits, which is anxiously re-
quired in the quantum information processing.
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Chapter 4

Shor’s algorithms

4.1 overview of Shor’s algorithm

Determining if a problem is computable is to find out if it can be resolved by
a computer in a reasonable mount of time. Within a finite steps of compu-
tation, an algorithm can be characterized by the number of operations, the
amount of memory and the input program, which determines the algorithm
complexity. According to Cobham-Edmonds thesis, the computational prob-
lems can be feasibly computed on some computational device only if they
can be computed in polynomial time, while in the way of computation com-
plexity, the problems lie in the complexity class P. For example, the quicksort
sorting algorithm on n integers requires at most AN2 operations for some
constant. This algorithm runs in time O(n2) and is a polynomial algorithm.
These polynomial-time computable algorithms are generally deemed to be
”tractable”. On the other hand, problems which require more than poly-
nomial time are usually considered to be ”intractable”, one of which is the
determination of the prime factors of a large number.

However, as we see from the other chapters, quantum register demon-
strates greater advantages over the classical register, showing that an n qubit
register can store 2n qubit states, and this hints that it may be tractable for
the exponentially-time-solved problems on a quantum computer, providing
a good quantum algorithm.

Most of the quantum algorithms are very famous for the better efficiency
of solving problem than the classical algorithm. A well-known example is
Shor’s Algorithm. The list of all quantum algorithms can be viewed through
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this link Quantum Algorithm Zoo.

Factoring larger integers is crucial for quantum cryptography, and it has
been proven that this can be achieved on a classical computer in exponential
time, even for conjectured classical deterministic or randomized computers.
Shor’s algorithm can factorize a large number n in O((log n)2 ∗ log log n), or
in polynomial time.

4.2 Period-finding and Quantum Fourier Trans-
form

The essence of Shor’s algorithm is to find the period of some sequence.
Suppose we want to find factors of number N > 1. Randomly choose some
integer a ⊂ 2, ..., N − 1. If the greatest common divider(gcd) of a and N is
larger than 1, then a is the factor what we need to find. If gcd(a,N) = 1,
consider the following sequence

1 = a0 mod N, a1 mod N, a2 mod N, ... (4.1)

We can find a least r which satisfy both of the following equation

1 = ar mod N 0 < r ≤ N (4.2)

This r is called the period of this sequence. For simplicity, r is even, so we
can have

ar mod N = 1 
 (a
r
2 +1)(a

r
2−1)mod N = 0 
 (a

r
2 +1)(a

r
2−1) = kN (4.3)

Here k > 0 because both a
r
2 + 1 > 0 and a

r
2 − 1 > 0 (x > 1). Therefore,

a
r
2 + 1 > 0 OR a

r
2 − 1 > 0 will share a factor with N. Accordingly, if we

have r then we can compute gcd(a
r
2 +1, N) and gcd(a

r
2 −1, N) effectively(in

O((log n)2 ∗ log log n) steps), and both of the two gcds will be nontrivial fac-
tors of N. If we choose an x that does not give a factor, a few more attempts
can be made to obtain random x which gives a high probability of finding a
factor.

Problem is how can we find r? Before that let’s warm up by the concept
of the quantum fourier transform. Let Zq = 0, ..., q − 1, for each a ∈ Zq we
define a function χa : Zq → C by

χa(b) = e
2πiab

q (4.4)
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The set of basis states |a〉|a ∈ Zq is called standard basis. An alternative
basis is the set |χa〉|a ∈ Zq, called Fourier basis, can be defined by

|χa〉 =
1
√
q

∑
b ∈ Zqχa(b)|b〉 (4.5)

The quantum fourier transform(QFT) is the unitary transformation that
maps the standard basis to the Fourier basis

QFT : |a〉 → |χa〉 (4.6)

It is proved that if q is smooth(meaning all factors of q are O(log q), such
us q = 2i), then the QFT can be implemented on the quantum computer.

4.3 Two steps to factorize with Shor’s algorithm

Now let’s see how the whole factorization process occurs with Shor’s algo-
rithm.

The first step is transferring the factoring problem to the problem of
order-finding. Based on what we have in the previous section ,we have the
flowing chart as follows

Figure 4.1: Flowing chart of first step of Shor’s algorithm: reduction to
period-finding

The second step is the subroutine of period-finding, which requires quantum
computer to finish in a polynomial time. We need to mention that the
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quantum circuits are different for each choice of a and N. Suppose we already
have q quantum computer which can determine which type of sub-circuit
will be chosen for different set of a and N. Pick some Q = 2q such that N2 <
Q ≤ 2N2. For input and output registers, they need to hold superpositions
expanded from 0 to Q-1. After these prerequisites have been prepared, we
can proceed the flowing chart Figure (4.2)

Figure 4.2: Flowing chart of second step of Shor’s algorithm: period-finding

If we treat the quantum part: period-find part as the classical analogue,
except we using the quantum register, we find that there is no exponen-
tial processing involve during these two steps. We clear demonstrate that
the Shor’s algorithm have a great advantage over the classical algorithms
in factoring numbers into prime number, proving the existence of quantum
computer.
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Chapter 5

End of world?

Is that the end of the world? It seems that quantum computer will come out
very soon and the public key distribution system will be broken down very
soon! There is no secret in the e-commercial transactions, and the whole
economy will fall into parts! Do not worry! Even if the quantum decryption
algorithms will come out and be used for monitor the secrets of the world,
the counterpart of quantum encryption algorithms will compete with these
quantum eavesdroppers. We believe that science is always in harmony with
the development of human-beings’ nature. As long as people keep an objec-
tive and righteous attitude towards the applications of quantum computer,
it can only help us to make a better and easier life.
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