READ 9.1-9.2 Evaluations today

Conservation of <u>angular</u> <u>momentum</u>

We know linear momentum (p) 15 conserved
Let's look at angular momentum

Linear	Angulan	X CO
Force (F) *	Torque (T)	VENU
		a ex
Kinetic Energy	LIWE	$m \leftrightarrow I$
= MV		

Linear momentum angular momentum

$$\hat{p} = M\vec{V}$$
L=IW

$$\Sigma \dot{F} = m\dot{\alpha} = \frac{\Delta \dot{\rho}}{\Delta t}$$
 $\Sigma \dot{\tau} = I \dot{\alpha} = \frac{\Delta \dot{L}}{\Delta t}$

linear momentum
conserved if no
net external forces $\dot{z}_{i}^{2} = \dot{z}_{i}^{2}$

angular momentum
conservel if no
net external torques

Eli = Elf

E I.W: = E I, Wf

E mr. w: = E mr. Wf

Interactive Question

moment of inertia about the axis of rotation? outstretched arms close to her body. What happens to her An ice skater performs a pirouette by pulling her

- A) It does not change.
- B) It increases.
- C) It decreases.
- D) It changes, but it is impossible to tell which way.

Interactive Question

angular momentum about the axis of rotation? outstretched arms close to her body. What happens to her An ice skater performs a pirouette by pulling her

- A) It does not change.
- B) It increases.
- C) It decreases.
- D) It changes, but it is impossible to tell which way.

Interactive Question

rotational kinetic energy about the axis of rotation? outstretched arms close to her body. What happens to her An ice skater performs a pirouette by pulling her

- A) It does not change.
- B) It increases.
- C) It decreases.
- D) It changes, but it is impossible to tell which way.

K.E. i = 2 I; wie K.E. i = 2 I; wie

I:Wi= Isws conservation of angular momentum

If = Iilwi wf

K.E. f = 2 File: with

K.Es = \(\frac{1}{2} \tau_i \omega_i \omega_i

K.E: = } Fi wi2

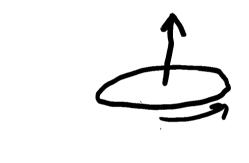
wf)w: so k.E.f > k.E.

why is it increasing?

Work: DK = Flass

am I doing work?

yes


Force & centripetal

A in same direction as Force

Note Angular momentum is a vector and so has a direction.

Direction can be determined using right hand rule

Fingers in direction of rotation thumb points in direction of vector

ミア= AL

Need a net torque to change angular momentum. So need a net torque to change direction of L.

-> stability of bicycle