Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

University of Oklahoma, Norman, Department of Physics

June 12, 2018

- When applying a bias voltage in the presence of a magnetic field, a Hall Voltage will develop due to the Lorentz force
- Hall Voltage is proportional to a geometric factor, electron mobility, bias voltage, and magnetic field

• Hall Sensors utilize the Hall Effect to measure magnetic fields

- Know geometric factor, electron mobility, and bias voltage
- Hall Voltage will depend only on magnetic field
- Uses for Hall Sensors include:
 - Navigation
 - Detection of metallic objects
 - Non-destructive location of cracks in metallic objects
- Design Considerations
 - Material with large electron mobility
 - Small
 - Reduce internal magnetic fields

A B > A B >

- Measuring the sensitivity of a specific Hall Sensor array made of Indium Antimonide
- Previous Results
 - In optimal conditions, each element of array has a resolution of 50 nT
- Next Step
 - Improve experimental set up (magnetic isolation and controlling thermal drift)
 - Optimize Parameters (bias voltage and electron mobility)
 - How does resolution vary with frequency of the magnetic field?