PROTOSTARS IN THE ORION MOLECULAR CLOUD COMPLEX

LISA PATEL

DR. TOBIN

GIANT MOLECULAR CLOUDS,

- An enormous, dense and cold cloud of gas and dust
- Mass can range up from 10^3 to 10^7 solar masses
- WITHIN GMCs are regions of high DENSITY AND LOW TEMPERATURE CALLED LUMPS → BEGIN STAR FORMATION
- WHY ORION?
 - NEAREST SITE OF MASSIVE STAR FORMATION
 - Most populous within 1400 light years
 - MORE REPRESENTATIVE ENVIRONMENT

STAR FORMATION

[2]

OBSERVATIONS WITH ALMA

- A SURVEY OF 331 CLASS 0 AND I PROTOSTARS IN THE ORION
 A AND B CLOUDS AT 0.09" (38 AU) RESOLUTION
 - Large and relatively unbiased sample with high resolution and sensitivity
- OBSERVE:
 - DUST CONTINUUM CHARACTERIZE MULTIPLICITY AND PRESENCE OF COMPACT, RESOLVED STRUCTURES
 - DEBATE ON FREQUENCY AND SEPARATION DISTRIBUTION OF MULTIPLES
 - CO EMISSION LINES TRACE THE COMPACT OUTFLOW EMISSION AND OBSERVE DISK KINEMATICS LIKE ROTATION

CONCLUSION

- DATA PROCESSING STAGE USING CASA
 - CALIBRATION OF RAW DATA
 - IMAGING
- AFTER, STATISTICAL ANALYSIS OF DISK MASSES USING CONTINUUM
 - DISKS MORE MASSIVE AS YOUNGER TIMES?
 - Examine systematic difference in disk mass b/w higher and lower luminosity source

REFERENCES

- http://chandra.harvard.edu/edu/formal/stellar_ev/story/index2.html
- http://elte.prompt.hu/sites/default/files/tananyagok/InfraredAstronomy/ch09.html
- http://adsabs.harvard.edu/abs/2006ApJ...646.1070A