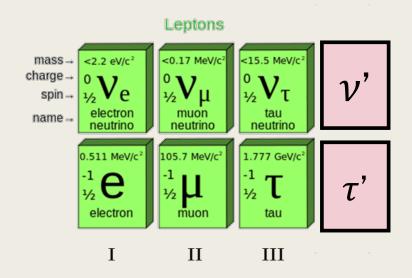


VECTORLIKE LEPTONS AT THE LARGE HADRON COLLIDER

Jon Franco

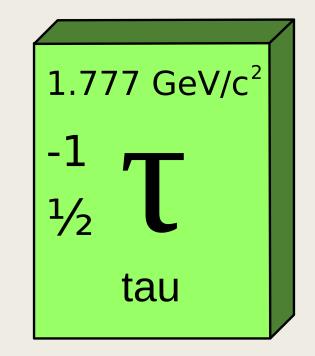
Standard Model of Elementary Particles



- Largest collider in the world functioning at the highest energy
- ~ 40 Million collisions/s, recording only
 ~1000 collisions/s
- \blacksquare > 10¹⁰ events/year

 $\sqrt{s} = 13 \, TeV$

What is a vector-like lepton?


- We don't know the mass
- Looking for it's existence
- Based on measurements m > 100 GeV
- Heavy (theoretically ≃ mass of iron atom)
- Written as τ ', ν '

Theory

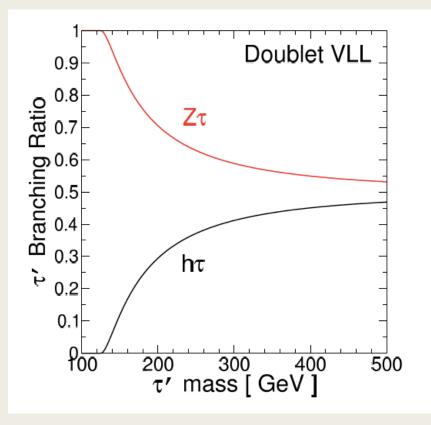
• τ'/ν' couples to τ

- Least well measured
- Most room for extra-SM behavior
- Several anomalies in our comparison to the standard model, and vectorlike leptons may help explain this.

Why?

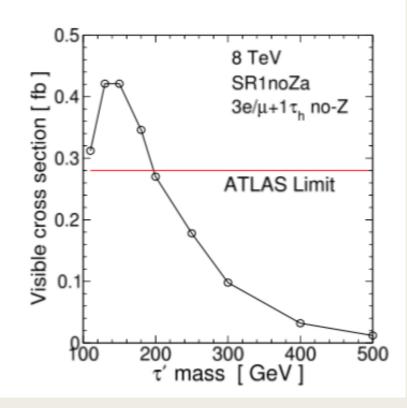
Fourth generation lepton

- Could redefine boundary of lepton flavor violation
- May explain muon g-2 anomaly
- Give insight to large dimension behavior
- String theory
 - Predicts vectorlike particles
- We're looking for a discrepancy from the Standard Model


Finding a Region of Interest

- Understand theoretical model
- Create simulations for both theoretical and standard models
- Look at regions that high expected signal and low background
- Signal vs. Background

Decay paths of Tau prime


- Particle discovery
 - Look at theoretical behavior of particle
 - Look for rare signatures
 - Decays to tau/boson pairs
 - Decays with more than two leptons are extremely rare but common in theoretical decays of τ '
- τ ' can decay into
 - Ζτ
 - Ητ
- v' can decay into
 - Wτ
- Initial decays:

 $(PP \rightarrow \tau'\tau' \rightarrow Z\tau Z\tau)$ $(PP \rightarrow \tau'\tau' \rightarrow Z\tau H\tau)$ $(PP \rightarrow \tau'\tau' \rightarrow H\tau H\tau)$ $(PP \rightarrow \tau'\nu' \rightarrow Z\tau W\tau)$ $(PP \rightarrow \tau'\nu' \rightarrow H\tau W\tau)$ $(PP \rightarrow \nu'\nu' \rightarrow W\tau W\tau)$

Regions

- How are we going to search for these particles?
 - W decays to leptons
 - Z decays to two leptons
 - H decays to WW then to multiple leptons
- Expect large amounts of leptons
- Multiple lepton events are rare in the standard model
- Searching for events with a large amount of leptons

