Identifying White Dwarf Candidates

Courtney Crawford

Advised by Dr. Mukremin Kilic

Why we care about White Dwarfs (WDs)

- WDs are the last phase of a massive stars life
 - What's left over after a Supernova
 - Continual cooling over time
- Particularly interesting and unknown physics related to WDs
 - What is the core made out of?
 - Temperature of a WD gives age of star clusters
 - Electron degenerate matter electrons are packed into lowest state
 - Very dense (10^9 kg/m^3) and high gravity (10^8 m/s^2)
- Finding new WDs is the first step to learning more about them and how they work

1. Data Extraction

- HSOY Proper Motion Survey
 - Provides proper motion data on GAIA targets
 - Proper Motion change in an object's coordinates as a function of time. Typical units of milliarcseconds/year.
 - Contains 583 million objects
 - Only using objects with significant proper motion
- □ SDSS Photometric Survey
 - Contains visible photometry for the targets
 - Photometry related to the energy flux from the object over a certain range of wavelength
 - 1.2 billion objects

2. Reduced Proper Motion Diagram

- Reduced proper motion is based on photometric magnitude and tangential velocity
- Forms clusters on diagram with similar kinematics
- Far right cluster Main sequence
 Middle cluster Halo stars
 Left cluster WDs

Image from Dame, K. (2016)

3. Fitting Photometric Data to Models

- Fit photos and fit output tell us likely composition and temperature of stars
- Top image Helium based @ 3454K (likely not a WD)
 Bottom image – Hydrogen based @ 7612K
- Specific interest in Hydrogen based WDs below 4000K due to age and rarity

Conclusion

- White Dwarfs are a gold mine for interesting physics, and identifying them is the first step to studying them.
- Using optical data and positional data, it is possible to identify white dwarf candidates
- Two more types of data are needed to definitively identify a WD:
 - Photometry in the infrared to get a more accurate temperature estimation
 - A spectrum will show large gravitationally expanded lines and confirm that object is a white dwarf