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Quasars

-Extremely bright objects made of
matter accreting into a
supermassive black hole at the
centers of galaxies

-Potential energy turned into light

https://www.skyandtelescope.com/astronomy-news/watching-a-quasar-
shut-down-122614/



BALs

-Absorption lines come from photoionized
gas, powered by the accretion happening
in the quasar

-Broad Absorption Lines (BALs) are
thought to originate with high velocity
outflows, up to 1/10 the speed of light so
relativistic formulas are relevant
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lonization

-Photoionization: Photons can transfer energy to electrons in atoms to knock them off the atom,
creating ions

-Certain wavelengths of light are known to cause specific transitions
-lonization parameter describes rate of ionization compared to rate of recombination

-Radiation pressure - force per area from photons scattering from ions, pushes the gas and
creates high velocity outflows



Gas Clouds

-The absorption we see comes from
one or several clouds of gas that the
light passes through before it reaches
us

-Location could be anywhere from
near the accretion disk to far out in
the galaxy

-We know the clouds only partially
cover the continuum emission region
but we don’t know what exactly that
looks like

http://www.sci-news.com/astronomy/science-ne
w-class-quasars-01536.html



Feedback
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-One way for the black hole to interact with the galaxy

is through those high Velocity winds http://atropos.as.arizona.edu/aiz/teachin

g/a250/distant_galaxies.html



SDSS

-Our data comes from the Sloan Digital Sky Survey
(SDSS)

-2.5 m telescope in New Mexico, 10 years of design and
construction, regular observations began in 2000

-The Baryon Oscillation Spectroscopic Survey (BOSS)
ran from fall 2009 to spring 2014

-BOSS looked at 160,000 quasars

https://www.sdss.org/



Our sample

-Common BALs like Carbon are often saturated, so
other lines can give us more information about the
outflow

-Ratio of Phosphorus to Carbon of 1 to 1000 in the
universe means P v lines indicate massive outflows

-Capellupo et al. (2017) looked through 2694
quasars from the BOSS survey which had BALs and
of those found 81 “definite” detections of P v broad
absorption, so those were our sample
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http://spiff.rit.edu/classes/phys443/lectures/gal_dark/
play_deuterium.html

-Redshift z=2.5 means light that was
emitted around 11 billion years ago and 70
billion light years away, and the universe
was 2.6 billion years old then



The Physics of Broad
Absorption Line Quasars



Secrets in the Spectra
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How can we learn
about something
so far away?

We use our
knowledge of
physics to solve
the mystery!
Quasars emit a
large amount of
E-M radiation.



Radio Synchrotron
Radiation
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Emission and Absorption Fundamentals
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Radio Synchrotron

Line Region.
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Radio Synchrotron
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e Couldthe jets of matter moving at significant fractions
of the speed of light be responsible???
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The Plot Thickens... Mysterious Absorption

NO!!!

Jets are completely ionized and are incapable of producing absorption lines.

Let’s list observations and what we know

W e

Whatever is absorbing the light, is partially optically thick/opaque.

The absorption lines are only seen in a small fraction of all AGN.

The lines can be very broad, spanning a large velocity range.

The lines can be substantially blue-shifted, the Doppler Effect indicates the
absorber is moving outwards(towards Earth) at a high velocity.



Quasar Outflows
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https://www.astro.ufl.edu/~emoravec/UF_Personal_Webpage/Research/Entries/2015/12/11_Toward_a_Complete_Picture_of_Qu
asar_Outflows__From_Mini-BALs_to_BALs.html

Opaque gas
Located over a vast
range of distances
from the central
engine.

Radiating out
Observable due to
viewing angle or
evolution of AGN.



Complex Outflow Absorption Lines
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e Absorptionlines
can be identified
using wavelength.

How do the physical
aspects of the outflow
influence:

e The absorption
lines that appear.

e LineStructure
Opacity of each
line.



Important Outflow Physical Properties

1. Partial Covering
2. Density

3. lonization

4,

Column Density

Quasar Accretion Disk
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e Only part of the continuum source interacts with the outflow.

Theories to Physically Explain Partial Covering:

e Left: Absorber partially covers emission region.
e Middle: Many small absorbing clouds partially cover.
e Right: Small absorbing clouds clump together.

Leighly et al. 2018 (Submitted)




Complex Outflow Absorption Lines
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Partial coveringis a
subject of current
research.

Next

Why is everything
shorter than 1216
angstroms appear so
noisy?

Maybe it is not
noise... Could it be
something physical?



The Intergalactic Medium

AGN Interstellar
Medium

Intergalactic Medium

e The space between the Earth and the Quasar is not empty.
e What is the consequence when stuff gets in the way?

) https://www.engadget.com/es/2015/08/ https://www.nationalgeographic.com/scie
http://news.mit.edu/2016/oxygen-first-appe 11/nuestro-universo-esta-muriendo-lenta p/ Dace/uni y tg % phic.
arance-earth-atmosphere-0513 mente/ nce/space/universe/stars,



Lyman-a Absorption
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e Filaments of Neutral Hydrogen in the
IGM between the AGN and Earth.

e Lightredshiftedto 1216 angstroms is
absorbed by the Hydrogen.
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http://w.astro.berkeley.edu/~jcohn/lya.html



The Lyman-a Forest

http://enki.phyast.pitt.edu/qso_abs.html
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e Ly-aabsorption canobscure features shorter than 1216 angstroms



Lost in the Lyman-a Forest
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The Lyman-a Forest
often obscures
absorption at short
wavelengths.
Developing methods
to deal with the
forest are ongoing.
Importance of S IV
and C 11" will be
elaborated on.

Why istheretwo S
IV absorption lines?



Fine Structure and Collisional Excitation

e Electrons are freed by
photoionization.

e Cancollide with other
atoms.

e Collisions can excite
electrons to higher
energies.

Efgfts;ﬁf I - T T T Tt e Density of the outflow

affects amount of collisional
excitation.

Sulfur IV Doublet

Photon Photon
1062.664 A 1073.508 A



The Ratio of the Sulfur IV Doublet

e Atlow densities, small
amount of collisional

S IV Density Analysis (particles/cm?)

1.2 excitation.
, e Less populating of fine
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Collisional Excitation and Carbon IlI*

Carbon llII* Blended

Carbon I11* can be a little complicated...

1. Collisional excitation excites electrons
into fine structure.

2. Photons are absorbed, exciting the
electrons in the fine structure.

3. Theelectrons are excited into more
fine structure at higher energies.

4. The 6 absorption lines blend together

Collisional and are observed as a single

Fetaton absorption line.




Constraining Density Using Carbon I
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Finding a Reasonable Density
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Modeling with SimBal
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Density can be difficult
to constraindueto S IV
blending.

Also, Lyman-a absorbers
canobscureS1Vand C
1™

Different lines can
constrain parameters
other than density.
SimBAL provides physical
information from lines
we see, and lines we
don't see.



Statistics of Quasar
Spectrum Models

Finding Best Fit Parameters using simBAL



Path to Best Fit Solutions

Grid of Cloudy gas input parameters
(specified SED and metallicity):

* lonization parameter: log U

* Density: log n

* Column density parameter: log N,- log U
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e
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¥
Derived results:
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* Number of bins

* Velocity offset

* Velocity width

* Covering fraction parameter
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Leighly et al. 2018 (submitted)



Different Models of the Same Spectrum

Model 1 — 2
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Different Models of the Same Spectrum
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Bayes' Theorem

P(Model|Data) = E(PatalModel)xP(Model)

P(Data)



Likelihood

P(Model|Data) = M%tﬂ;)l’(Model)
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Priors
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Priors

Absorption Parameters: constraints from limits of Cloudy data: based on general
quasar observations

Continuum and Emission Parameters: constraints from analysis of a quasar sample
studied by Krawczyk et al. 2015, and from statistical analysis (PCA) of quasar samples



Evidence

P(Model|Data) = P(Datalﬂg?;l)ecg;;’(Moden




Markov Chain Monte Carlo

Choose start positionin
parameter space

Calculate likelihood (from Bayes’
Theorem)

Take a“random step” in
parameter space (methods vary)
Calculate new likelihood
Choose to accept or reject new
point

Repeat for a number of
simulations
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Emcee

From Foreman-Mackey 2013

Markov Chain Monte Carlo method

Uses a number of “walkers”

Walkers influence each other
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Emcee Results

Return Posterior
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Absorption Structure

Gaussian: max depth,

mean, standard
deviation (width)
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Absorption Structure
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Tophat Model

Wavelength change
corresponds to
velocity by Doppler
shift:
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Leighly et al. 2018 (submitted)



Emcee Results

J165710 Spectrum With Model
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Emcee Results
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Phosphorus Absorption

J165710 Spectrum With Model
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Finding Best Values

log lonization Parameter U
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Extracting Derived Properties

Fit Parameters:

lonization Parameter: log U
Maxcol: log NH - log U
Density: logn

Covering Fraction: log a

Derived Parameters:

log Ny = log U + (log Ny — log U) + log( : )
gNH &NH & 1.0 + lolngu

logR = 0.5 * (logQ — logdnc — logn — logU)
log KE = log(4.07um,€2) + logR + log Ny + 3logv.

log My, = 10g(8.0mum, * Q) + log R + 10g Ny + logvssser



Concentration in Absorption

J013802 Spectrum With Model

120

100

o0
==
o

Intensity

1200

1400 1600
Rest Wavelength (Angstroms)

1800



Concentration in Absorption
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Concentration in Absorption

log Density
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Concentration in Absorption
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Fitting Long and Short Wavelengths

Separately

-Our work this summer was exploratory so we
learned what worked and some things that didn't

-The Lyman alpha forest so drastically changes the
short wavelength section (less than 1216
angstroms) of the spectrum that it’s inaccurate to
treat the whole thing as one spectrum

-We've been running simulations of just long
wavelengths or just short wavelengths and in each
of those included some constraints based on the
results of the other simulations
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Getting The Right Continuum

100

-The continuum for the long
wavelength simulations was often 80
much too high for the short wavelength
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A Possible Solution

-One thing we tried to fix this was running

simulations that included both the long wavelength
range and the parts of the short wavelengthrange =
that didn’t have any absorption .

-We can clip out the absorption lines as well as
individual Lyman alpha lines

-This often let us get a lower continuum fit, which .
worked better with the short wavelength
simulations
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Prioritizing The Sample

-After looking at many quasars this summer we found which ones work the most easily with the program we're
using

-Focusing on objects that were low redshift (less than 3) and high signal to noise helped a lot

-It was rarer than we expected for objects to have clear Ciii lines, so specifically seeking out objects that look like
they have a good Ciii absorption line and focusing on those objects first is a good idea to get good values for
density



Al

Benefits of The Grouping Method

-Makes clear which velocity bins correspond to 15
which absorption lines

-Ties together bins that likely have the same e mﬂwﬁ_ﬂ”,ﬂ Fg = \ tWFw"ﬂ"UJw“uﬂE"‘fu ”“ILHVU"“J]H‘
properties while letting the covering fraction be
free

-Simpler than previous methods and with improved
re S u Its 1800 1810 1820 1830 1840 1850 1860 1870 181




Drawbacks to The Grouping Method

-Exact grouping can be difficult to decide on
-Not clear how covering fraction and grouping interact

-Unclear how many velocity bins can justifiably be associated together and what the right width for
velocity bins to be is



Trends

e The presence of Al lll and C Il are good indicators of outflow
thickness and are often concentrated at low velocities.

e Structure at higher velocities in C IV often do not appear in other
ions.

e Covering Fractionis larger at lower velocities.
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Outflows and C IV Structure

J102744
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e CllandAllll represent concentrations and often found at lower velocities.
e Figureon the Rightis a comparison of absorption lines in terms of outflow

velocity.

e Higher velocity C IV represents thinner gas and has been difficult to model.
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Anincreasein
covering
fraction for
lower outflow
velocities has
been observed
in some objects.



Moving Forward

e Figure out how to model out the Lyman-a Forest.

e |mprove methods used in determining grouping of velocity bins.

e Resolve differences in modeling longer wavelengths (1200-2000 A)
with shorter wavelengths (1020-1200 A).

e Further investigate previously mentioned trends.
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