# Measuring the Power of Laguerre-Gaussian Beams

Nia Burrell

Advisor: Dr. Abraham

Experimental AMO

### Gaussian Beam

- Electromagnetic radiation
- Modeled by Gaussian function
  - Intensity vs. radius





#### Laguerre-Gaussian (LG) Beams

- Higher-order modes of Gaussian
  - Modeled by Laguerre polynomial
  - Many different modes
- Diffractive optics
  - Pair of optics with patterns etched into them



# Measuring Power

Measured power as a function of propagation distance
Figure out how much power is preserved

• Gaussian, LG1-0, LG2-1, and LG10-1 beams



- Why is measuring power important?
  - Optical tweezers
  - Atmospheric sensing
  - Optical computers

# 3 Methods of Measurement

#### • CCD Camera

- Camera used for detecting photons
- Generates digital copy of light patterns
- Pixels = power
- Photodiode
  - Converts light into electrical current
  - Allows voltage values to be read
- Power Meter
  - $\boldsymbol{\cdot}$  Measures beam power in watts or joules



# Experimental Setup



# Expectations

- LG beam diffraction
  - Decrease in power as propagation distance increases
  - Beam size gets larger and dimmer
- Power of Gaussian beam should stay consistent
  - No diffraction, no changes
  - Beam size also stays the same

# Method 1: CCD

- Fluctuations were an issue
- Photodiode + 50/50 beam splitter
- Monitor power consistency of beam while CCD in use
- New experimental setup:





#### CCD Data



### Method 2: Photodiode

- Before: Photodiode measured power of whole beam
- Now: Photodiode measuring power as a function of propagation distance
  - Downside: Unable to monitor power consistency as efficiently
  - Only able to recognize significant fluctuations in electric current
- Large power fluctuations were common
  - Temperature changes in lab
  - Had to restart data runs

### Photodiode Data

• LG data consistent with predictions





Propagation Distance (in)

# Photodiode Data

- Gaussian beam inconsistent, showing drop-off
- Interference of background data
- Background data increased as a function of propagation distance



#### Method 3: Power Meter

- $\bullet$  Using 50/50 beam splitter and photodiode again
- Power meter was able to zero out background at all distances
- Results were consistent with predictions, less dramatic drop-off than CCD







### Conclusion

- Comparing data identified systematic errors: Background
- Photodiode sensitivity more useful in measuring overall power consistency
- CCD code can be adjusted to distinguish between beam and background
- Power meter gave most accurate results

# Questions?