Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Homer L. Dodge Department of Physics and Astronomy University of Oklahoma

July 30th, 2018

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensor Goals

Background

Theory

Hall Effect Device Mode

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

What are Hall Sensors?

- Hall Sensors are devices that utilize the Hall Effect to measure magnetic fields
- Made from semiconductors
- Uses for Hall Sensors include:
 - Navigation
 - Detection of metallic objects
 - Non-destructive location of cracks in metallic objects
- Design Considerations
 - Material with large electron mobility
 - Small
 - Reduce internal magnetic fields

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensors Goals

Background

Theory

Hall Effect Device Model

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Project Goals

- Development of Hall Sensor with both High Spatial and High Magnetic field resolution
 - Develop materials with high electron mobility and low carrier densities
 - Create array of small sensors
- These sensors can be used to image metallic objects through the use of eddy current analysis
- Measure the sensitivity of a specific Hall Sensor made of 2.1 µm n-doped InSb material
 - Characterize how sensitivity changes with frequency and time constant

・ロット (日)・ (日)・ (日)・ (日)・ (日)・

Avraham Revah

Background

Hall Senso Goals

Background

Theory

Hall Effect Device Model

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

Hall Effect

 When applying a bias voltage in the presence of a magnetic field, a Hall Voltage will develop due to the Lorentz force

$$\blacktriangleright V_H \propto \frac{I_B B}{n_{2D}}$$

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Senso Goals

Background

Theory

Hall Effect Device Model

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Device Model

$$V_{out} = \left(V_H - iL\frac{dB}{dt}\right)G(C,\omega)$$

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensor Goals

Background

Theory

Hall Effect Device Model

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへの

Experimental Setup

- Apply magnet field with known current loop driven by Lock-In Amplifier
 - Measure current through loop to calculate applied field
- Apply bias current of 30 mA with Current Source
- Measure V_{out} with Lock-In Amplifier
 - Lock-In isolates the frequency of the magnetic field
 - Lock-In also allows us to look at the phase difference between field and output
- Measure V_{out} 5 times and take 3 times the standard deviation as error
- Measure how V_{out} and error change with
 - Frequency of Magnetic Field
 - Amplitude of Magnetic Field
 - Time Constant on Lock-In

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensoi Goals

Background

Theory

Hall Effect Device Model

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Using Current Reversal to Remove Inductance

- Determination of inductance is a large problem
- Inductive term does not depend on Bias Current, while Hall term does
- Take measurement with positive and negative biases. Subtract the two to cancel out inductive term.

$$V_{out} = \left(V_H - iL\frac{dB}{dt}\right)G(C,\omega)$$

$$\Delta V_{out} = V_{out}(I_B) - V_{out}(-I_B)$$

$$= 2V_HG(C,\omega)$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensoi Goals

Background

Theory

Hall Effect Device Model

Methods

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

- Measured field is on the same order of magnitude as applied field
- Measured field decreases with frequency

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Characterizing the Sensitivity of a

Hall Sensor

Avraham Revah

Frequency Dependence

Expect 1/f dependence in error

- ► For 100 Hz, error 2*nT*
- For 1 kHz, error 1nT
- ▶ for 10 kHz, error 3*nT*

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensoi Goals

Background

Theory

Hall Effect Device Mode

Method

Setup Current Reversal

Results

Frequency Dependence

Field Dependence

Time Constant Dependence

Future Work

Conclusion

Sources

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- ► For 3 ms, error 7*nT*
- ▶ For 30 ms, error 2*nT*
- for 300 ms, error 1nT

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Sensoi Goals

Background

Theory

Hall Effect Device Mode

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence

Time Constant Dependence

Future Work

Conclusion

Sources

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Future Work

- Determine why measured field decreases with frequency
- Determine the main source of error in the system
- Characterize the sensitivity of a Hall sensor made from an InSb Quantum Well material
 - 2D carrier density of Quantum Well is 20 times lower so expect better sensitivity
- Perform tests on larger array of smaller sensors
 - Smaller sensors will give better spatial resolution, but worse field resolution

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Senso Goals

Background

Theory

Hall Effect Device Mode

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

Conclusion

- Current sensors seem to have the sensitivity on the order of several nT; however, practical sensors may not do as well
- System still appears to have some component, which is not included in model
- It may be possible to improve sensitivity by using Quantum Well material

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Senso Goals

Background

Theory

Hall Effect Device Mode

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

Sources

- J. Lindemuth, S.I. Mizuta. "Hall measurements on low-mobility materials and high resistivity materials." Lake Shore Cryotronics, (2011).
- D. Pappas, High Sensitivity Magnetic Field Sensor Technology Overview, (2008).
- Pavel Ripka 2013 J. Phys.: Conf. Ser. 450 012001

Characterizing the Sensitivity of a Hall Sensor

Avraham Revah

Background

Hall Senso Goals

Background

Theory

Hall Effect Device Mode

Method

Setup Current Reversal

Results

Frequency Dependence Field Dependence Time Constant Dependence

Future Work

Conclusion

Sources

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・