Read 4.3

Dal uplated broup scores

broup tomorrow (work)

Exam 2 prep online
old Exam
answers
solutions

I handwritten sheet for exam

Office hours 1:30-2:30 today
2:45-3:45 thursday

Review

Energy of Motion

Kinetic Energy (KE)

Stored Energy

potential Energy (PE)

work = $F_{II}d$ unit (N·m = Joule J)

Work = - Fd

Negative

Work = 0

do on the crate? with a horizontal force of 52 N. How much work did you Problem: You push a 28 kg crate 2.3 m across the floor

Problem: You pull a crate for a distance of 6.2 m. The force you exert has a horizontal component of 58 N and a vertical component of 28 N?

- (a) How much work does your horizontal force do on the crate?
- (b) How much work does your vertical force do on the
- (c) How much total work do you do on the crate? c) 3605+05=3605 b) w= 5, A= 0A= 07

horizontal force. Four forces can be identified on the crate: 1) the horizontal push 2) the gravitational force, 3) You push a crate across the floor by applying a constant the normal force, and 4) the frictional force. Which forces do NO work on the crate?

A) 2 only

B) 1 and 4 only

C) 2 and 3 only

D) 2, 3, and 4

E) 1, 2, and 3

as it slide across the ground to the right does this frictional If there is a frictional force opposing the motion of a block force do work on the block?

- A) No, the frictional force does no work.
- B) Sort of, only part of the frictional force does work.
- C) Yes, the frictional force does positive work.
- D) Yes, the frictional force does negative work.

gravity is meter at a constant velocity of 0.5 m/s. The work done by You raise a 10 N physics book up in the air a distance of 1

- A) +10 J
- B) -10 J
- C) + 5 J
- D)-5J
- E) zero

meter at a constant velocity of 0.5 m/s. The work done by You raise a 10 N physics book up in the air a distance of 1

you is

$$() +5 J$$

$$D)-5J$$

increase in kinetic energy? In which of the following situations will there be an

- A) A projectile approaches its maximum height
- B) A box is pulled across a floor at a constant speed.
- C) A child is pushing a merry-go-round causing it to rotate faster.
- D) A satellite travels in a circular orbit around a planet at a fixed altitude
- E) A stone at the end of a string is whirled in a horizontal circle at a constant speed.

to the ground from the roof of a building. Just before Two marbles, one twice as heavy as the other, are dropped hitting the ground, the heavier marble has

- A) as much kinetic energy as the lighter one.
- B) twice as much kinetic energy as the lighter one.
- C) half as much kinetic energy as the lighter one
- D) four times as much kinetic energy as the lighter one
- E) impossible to tell.

Compare the kinetic energy of two objects: The first has a mass of m and a speed of 2v. The second has a mass of 2_m and a speed of v.

A)
$$KE_1 = KE_2$$

(1)
$$KE_1 - NE_2$$

D)
$$KE_1 = 4KE_2$$

comes to a stop over a distance of 82 meters. Problem: A 1500 kg car moving at a speed of 35 m/s

- a) What is the car's initial kinetic energy?
- b) What is the car's final kinetic energy?
- How much work was done to stop this car?
- d) What was the net average force stopping the car?